Применение капиллярных явлений. Явления смачивания

КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ - совокупность явлений, обусловленных действием межфазного поверхностного натяжения на границе раздела несмешивающихся сред; к К. я. обычно относят явления в жидкостях, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собств. паром. К. я.- частный случай поверхностных явлений. В отсутствие поверхность жидкости искривлена всегда. Под воздействием ограниченный объём жидкости стремится принять форму шара, т. е. занять объём с мин. поверхностью. Силы тяжести существенно меняют картину. Жидкость с относительно малой вязкостью быстро принимает форму сосуда, в к-рый налита, причём её свободная поверхность (не граничащая со стенками сосуда) в случае достаточно больших масс жидкости и большой площади свободной поверхности практически плоская. Однако по мере уменьшения массы жидкости роль поверхностного натяжения становится более существенной, чем сила тяжести. Так, напр., при дроблении жидкости в газе (или газа в жидкости) образуются капли (пузырьки) сферич. формы. Свойства систем, содержащих большое кол-во капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их формирования во многом определяются кривизной поверхности этих образований, то есть К. я. Большую роль К. я. играют и в зародышеобразовании при конденсации пара, кипении жидкостей, кристаллизации. Искривление поверхности жидкости может происходить также в результате её взаимодействия с поверхностью др. жидкости или твёрдого тела. В этом случае существенно наличие или отсутствие смачивания жидкостью этой поверхности. Если имеет место , т. е. молекулы жидкости 1 (рис. 1) сильнее взаимодействуют с поверхностью твёрдого тела 3, чем с молекулами др. жидкости (или газа) 2, то под воздействием разности сил межмолекулярного взаимодействия жидкость поднимается по стенке сосуда и примыкающий к твёрдому телу участок поверхности жидкости будет искривлён. Гидростатич. давление, вызванное подъёмом уровня жидкости, уравновешивается капиллярным давлением - разностью давлений над и под искривлённой поверхностью, величина к-рого связана с локальной кривизной поверхности жидкости. Если сближать плоские стенки сосуда с жидкостью, то зоны искривления перекроются и образуется мениск - полностью искривлённая поверхность. В таком капилляре в условиях смачивания под вогнутым мениском давление понижено, жидкость поднимается; вес столба жидкости вые. h 0 уравновешивает капиллярное давление Dр. В условиях равновесия

Пар) при наличии искривления поверхности. Частный случай поверхностных явлений.

При отсутствии силы тяжести жидкость ограниченной массы под воздействием поверхностного натяжения стремится занять объём с минимальной поверхностью, т. е. принимает форму шара. В условиях действия силы тяжести не слишком вязкая жидкость достаточной массы принимает форму сосуда, в который налита, и её свободная поверхность при относительно большой площади (вдали от стенок сосуда) становится плоской, так как роль поверхностного натяжения менее существенна, чем силы тяжести. При взаимодействии с поверхностью другой жидкости или твёрдого тела (например, со стенками сосуда) поверхность рассматриваемой жидкости искривляется в зависимости от наличия или отсутствия смачивания. Если имеет место смачивание, т. е. молекулы жидкости 1 (рис. 1) сильнее взаимодействуют с молекулами поверхности 3, чем с молекулами другой жидкости (или газа) 2, то под воздействием разности сил межмолекулярного взаимодействия жидкость 1 поднимается по стенке сосуда - участок жидкости, примыкающий к стенке, искривляется. Давление, вызываемое подъёмом жидкости, уравновешивается капиллярным давлением ∆р - разностью давлений над и под искривлённой поверхностью раздела. Величина капиллярного давления зависит от среднего радиуса r кривизны поверхности и определяется формулой Лапласа: ∆р = 2σ/r, где σ - поверхностное натяжение. Если граница раздела фаз плоская (r = ∞), то в условиях механического равновесия системы давления с обеих сторон границы раздела равны и ∆р = 0. В случае вогнутой поверхности жидкости (r < 0) давление в жидкости ниже, чем давление в граничащей с ней фазе и ∆р < 0; для выпуклой поверхности (r > 0) ∆р > 0.

Если стенки сосуда приблизить друг к другу, зоны искривления поверхности жидкости образуют мениск - полностью искривлённую поверхность. Образовавшаяся система называется капилляром; в нём в условиях смачивания давление под мениском понижено и жидкость в капилляре поднимается (над уровнем свободной поверхности жидкости в сосуде); вес столба жидкости высотой h уравновешивает капиллярное давление ∆р. Несмачивающая жидкость в капилляре образует выпуклый мениск, давление над которым выше, и жидкость в нём опускается ниже уровня свободной поверхности вне капилляра. Высота поднятия (опускания) жидкости в капилляре относительно свободной поверхности (где r = ∞ и ∆р = 0) определяется соотношением: h = 2σcosθ/∆pgr, где θ - краевой угол (угол между касательной к поверхности мениска и стенкой капилляра), ∆р - разность плотностей жидкости 1 в капилляре и внешней среды 2, g - ускорение свободного падения.

Искривление поверхности влияет на условия равновесия между жидкостью и её насыщенным паром: согласно Кельвина уравнению, давление паров над каплей жидкости повышается с уменьшением её радиуса, что объясняет, например, рост больших капель в облаках за счёт малых.

К характерным капиллярным явлениям относятся капиллярное впитывание, появление и распространение капиллярных волн, капиллярное передвижение жидкости, капиллярная конденсация, процессы испарения и растворения при наличии искривлённой поверхности. Капиллярное впитывание характеризуется скоростью, зависящей от капиллярного давления и вязкости жидкости. Оно играет существенную роль в водоснабжении растений, движении воды в почвах и других процессах, связанных с движением жидкостей в пористых средах. Капиллярная пропитка - один из распространённых процессов химической технологии. В системах с непараллельными стенками (или капиллярах конического сечения) кривизна менисков зависит от расположения в них граничных поверхностей жидкости, и капля смачивающей жидкости в них начинает двигаться к мениску с меньшим радиусом (рис. 2), т. е. в ту сторону, где давление ниже. Причиной капиллярного передвижения жидкости может служить и разница сил поверхностного натяжения в менисках, например при существовании градиента температуры или при адсорбции поверхностно-активных веществ, снижающих поверхностное натяжение.

Капиллярной конденсацией называют процесс конденсации пара в капиллярах и микротрещинах пористых тел, а также в промежутках между сближенными твёрдыми частицами или телами. Необходимое условие капиллярной конденсации - наличие смачивания поверхности тел (частиц) конденсирующейся жидкостью. Процессу капиллярной конденсации предшествует адсорбция молекул пара поверхностью тел и образование менисков жидкости. В условиях смачивания форма менисков вогнутая и давление р насыщенного пара над ними ниже, чем давление насыщенного пара р 0 при тех же условиях над плоской поверхностью. Т. е. капиллярная конденсация происходит при более низких, чем р 0 , давлениях.

Искривление поверхности жидкости может существенно влиять на процессы испарения, кипения, растворения, зародышеобразования при конденсации пара и кристаллизации. Так, свойства систем, содержащих большое количество капель или пузырьков газа (эмульсий, аэрозолей, пен), и их формирование во многом определяются капиллярными явлениями. Они лежат также в основе многих технологических процессов: флотации, спекания порошков, вытеснения нефти из пластов водными растворами поверхностно-активных веществ, адсорбционного разделения и очистки газовых и жидких смесей и т. п.

Впервые капиллярные явления были исследованы Леонардо да Винчи. Систематического наблюдения и описания капиллярные явления в тонких трубках и между плоскими, близко расположенными стеклянными пластинами провёл в 1709 Ф. Хоксби, демонстратор Лондонского королевского общества. Основы теории капиллярных явлений заложены в трудах Т. Юнга, П. Лапласа, а их термодинамическое рассмотрение осуществил Дж. Гиббс (1876).

Лит.: Адамсон А. Физическая химия поверхностей. М., 1979; Роулинсон Дж., Уидом Б. Молекулярная теория капиллярности. М., 1986.

А. М. Емельяненко, Н.В. Чураев.

Искривление поверхности жидкости у краев сосуда особенно отчетливо видно в узких трубках, где искривляется вся свободная поверхность жидкости. В трубках с узким сечением эта поверхность представляет собой часть сферы, ее называют мениском . У смачивающей жидкости образуется вогнутый мениск (рис. 1, а), а у несмачивающей - выпуклый (рис. 1, б).

Так как площадь поверхности мениска больше, чем площадь поперечного сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться.

Силы поверхностного натяжения создают дополнительное (лапласово) давление под искривленной поверхностью жидкости.

Для расчета избыточного давления предположим, что поверхность жидкости имеет форму сферы радиуса R (рис. 2. а), от которой мысленно отсечен шаровой сегмент, опирающийся на окружность радиуса .

На каждый бесконечно малый элемент длины этого контура действует касательная к поверхности сферы сила поверхностного натяжения, модуль которой . Разложим вектор на две составляющие силы . Из рисунка 2, а видим, что геометрическая сумма сил для двух выделенных диаметрально противоположных элементов равна нулю. Поэтому сила поверхностного натяжения направлена перпендикулярно плоскости сечения внутрь жидкости (рис. 2, в) и модуль ее равен

Избыточное давление, создаваемое этой силой

где - площадь основания сферического сегмента. Поэтому

Если поверхность жидкости вогнутая, то сила поверхностного натяжения направлена из жидкости (рис. 2, б) и давление под вогнутой поверхностью жидкости меньше, чем под плоской, на ту же величину . Эта формула определяет лапласово давление для случая сферической формы свободной поверхности жидкости. Она является частным случаем формулы Лапласа, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны:

где - радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости. Для цилиндрической поверхности избыточное давление .

Если поместить узкую трубку (капилляр ) одним концом в жидкость, налитую в широкий сосуд, то вследствие наличия силы лапласова давления жидкость в капилляре поднимается (если жидкость смачивающая) или опускается (если жидкость несмачивающая) (рис. 3, а, б), так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет.

Если вы любите пить коктейли или другие напитки из трубочки, то наверняка замечали, что когда один из ее концов опущен в жидкость, уровень напитка в ней несколько выше, чем в чашке или бокале. Почему так происходит? Обычно люди над этим не задумываются. А вот физики подобные феномены уже давно успели хорошо изучить и даже дали им собственное название - капиллярные явления. Пришел и наш черед выяснить, почему так происходит и как объясняется данные феномен.

Почему происходят капиллярные явления

В природе всему происходящему есть разумное объяснение. Если жидкость является смачивающей (к примеру, вода в пластмассовой трубке), она будет подниматься вверх по трубочке, а если несмачивающей (например, ртуть в стеклянной колбочке) - то опускаться. Причем чем меньше радиус такого капилляра, тем на большую высоту поднимется или опустится жидкость. Чем объясняются такие капиллярные явления? Физика говорит, что они происходят в результате воздействия сил Если приглядеться к поверхностному слою жидкости в капилляре, то можно заметить, что по своей форме он представляет собой некую окружность. Вдоль ее границы на стенки трубочки оказывает так называемого поверхностного натяжения. Причем, для смачивающей жидкости вектор ее направления обращен вниз, а для несмачивающей - вверх.

Согласно третьему она неизбежно вызывает равное ей по модулю противодействующее давление. Как раз оно и заставляет подниматься или опускаться жидкость в узкой трубке. Этим и объясняются всевозможные капиллярные явления. Впрочем, наверняка у многих уже возник закономерный вопрос: «А когда же прекратится подъем или опускание жидкости?» Это произойдет в том случае, когда сила тяжести, или сила Архимеда, уравновесит силу, заставляющую жидкость двигаться по трубочке.

Как можно использовать капиллярные явления?

С одним из применений данного явления, которое получило широкое распространение в производстве канцелярских изделий, знаком практически каждый студент или ученик. Вы, наверное уже догадались, что речь идет о


Ее устройство позволяет писать практически в любом положении, а тонкий и четкий след на бумаге давно сделал этот предмет весьма популярным среди пишущей братии. также широко используют в сельском хозяйстве для регулирования движения и сохранения влаги в почве. Как известно, земля, где выращиваются культуры, имеет рыхлое строение, в котором между отдельными ее частицами находятся узкие промежутки. По сути, это не что иное, как капилляры. По ним вода поступает к корневой системе и обеспечивает растения необходимой влагой и полезными солями. Однако по этим путям почвенные воды также поднимаются вверх и достаточно быстро испаряются. Чтобы предотвратить этот процесс, следует разрушить капилляры. Как раз для этого и проводят рыхление почвы. А иногда возникает и обратная ситуация, когда требуется усилить движение воды по капиллярам. В этом случае грунт укатывают, и благодаря этому число узких каналов увеличивается. В быту капиллярные явления используют при самых разных обстоятельствах. Использование промокательной бумаги, полотенец и салфеток, применение фитилей в и в технике - все это возможно благодаря наличию в их составе узких длинных каналов.

Пусть жидкость находится в каком-либо сосуде. Если расстояния между поверхностями, ограничивающими жидкость сравнимы с радиусом кривизны поверхности жидкости, то такие сосуды называются капиллярами . Явления, происходящие в капиллярах, называются капиллярными явлениями . К капиллярным явлениям относят капиллярный подъём жидкости и капиллярное сцепление между смачиваемыми поверхностями.

Наиболее простыми и часто используемыми капиллярами являются цилиндрические капилляры (рис.10.10). Поверхность жидкости в таких капиллярах является сферической. Пусть r - радиус кривизны поверхности жидкости, R – радиус капилляра, θ – краевой угол. В случае частичного смачивания жидкость будет подниматься по капилляру под действием давления Лапласа, до тех пор, пока его не скомпенсирует гидравлическое давление жидкости:

Где ρ – плотность жидкости, g – ускорение силы тяжести, h – высота капиллярного подъёма. Радиус кривизны поверхности жидкости удобно выразить через радиус капилляра, который можно легко измерить: . Подставляя давление Лапласа для сферической поверхности выражение (10-12), получим:

В случае полного смачивания θ =0 о, cos θ =1 , r = R и формула высоты капиллярного подъёма имеет вид:

При полном несмачивании θ=180 о, cos θ = - 1, и высота капиллярного подъёма будет отрицательной, то есть поверхность жидкости опустится на величину h (рис. 10.11).

Интересно отметить, что в сообщающихся капиллярах высота уровня жидкости не одинакова. Наибольший капиллярный подъём наблюдается в самом узком капилляре, а наименьший – в самом широком капилляре (рис.10.12).

Для полного смачивания . Капиллярные явления наблюдаются при подъёме воды к поверхности почвы, при использовании промокательной бумаги, тряпки, при подъёме керосина в фитилях и т.п.

С повышением температуры коэффициент поверхностного натяжения жидкостей уменьшается, а при критической температуре равен нулю. Коэффициент поверхностного натяжения жидкостей зависит также от плотности и молярной массы жидкости. Причём зависимость коэффициента поверхностного натяжения от температуры выражена тем сильнее, чем больше плотность жидкости и меньше её молярная масса. Для определения коэффициента поверхностного натяжения можно использовать полуэмпирическую формулу:

Здесь В – постоянный коэффициент, практически одинаковый для всех жидкостей, Т к – критическая температура, ρ- плотность жидкости, μ – её молярная масса, τ- небольшая величина размерности температуры. Формула (10-14) неприменима вблизи критической температуры. Коэффициент поверхностного натяжения водных растворов зависит от рода растворённого вещества. Одни вещества, например, такие как спирт, мыло, стиральные порошки, растворённые в воде, имеющие меньшую, чем у воды плотность, приводят к уменьшению коэффициента поверхностного натяжения и называются поверхностно активными веществами . Поверхностно активные вещества применяют в качестве смачивателей, флотационных реагентов, пенообразователей, диспергаторов- понизителей твёрдости, пластифицирующих добавок, модификаторов кристаллизации и т.п. Увеличение концентрации таких веществ приводит к уменьшению коэффициента поверхностного натяжения. Другие вещества, растворённые в воде, например, сахар, соль, приводят к увеличению плотности раствора и увеличивают коэффициент поверхностного натяжения. Увеличение концентрации таких веществ приводит к увеличению коэффициента поверхностного натяжения. Для экспериментального определения коэффициентов поверхностного натяжения используют несколько методов измерения: метод Ребиндера, метод капиллярных волн, метод капли и пузырька и др.