Соединения титана iii проявляют свойства. Способ получения гидроксида титана

Скорость химической реакции при данной температуре пропорциональна произведению концентраций реагирующих веществ в степени, равной стехиометрическому коэффициенту, стоящему перед формулой данного вещества в уравнении реакции.

Закон действия масс справедлив только для наиболее простых по своему механизму реакций взаимодействия, протекающих в газах или в разбавленных растворах.

1. aA(Ж) + bB (Ж) ↔ cC (Ж) + dD (Ж) ; (T=const)

2. 3H 2(Г) + N 2(Г) ↔ 2NH 3(Г) ;

Для гетерогенных реакций:

1. aA (т) + bB (Г) = cC (Г) + dD (Г) ; 2. С (т) +О 2(Г) =СО 2(Г) ;

В законе действия масс не учитываются концентрации веществ, находящихся в твердой фазе. Чем больше площадь поверхности твердой фазы, тем выше скорость химической реакции.

k - константа скорости химической реакции определяется природой реагирующих веществ и зависит от температуры, от присутствия в системе катализатора, но не зависит от концентрации реагирующих веществ. Константа скорости представляет собой скорость химической реакции (), если концентрации реагирующих веществ .

3. Зависимость скорости химической реакции от давления . Для газообразных систем увеличение давления или уменьшение объема, равноценно увеличению концентрации и наоборот.

Задача: Как изменится скорость химической реакции 2SO 2(г) + O 2(г) 2SO 3(г) , если давление в системе увеличить в 4 раза?

В соответствие с законом действия масс для прямой реакции, записываем выражение:

Пусть = a моль/л, = b моль/л, тогда по закону действия масс

Уменьшение объема в 4 раза соответствует увеличению концентрации в системе в 4 раза, тогда:

Влияние температуры на скорость химической реакции приближенно определяется правилом Вант-Гоффа . При повышении температуры на 10 0 С скорость химической реакции возрастает в 2-4раза.

Математическая запись правила Вант-Гоффа: γ - температурный коэффициент скорости реакции или коэффициент Вант-Гоффа для большинства реакций лежит в пределах 2-4.

Задача. Во сколько раз изменится скорость химической реакции, протекающей в газовой фазе, если температура изменилась от 80 0 С до 120 0 С (γ = 3)?

В соответствии с правилом Вант-Гоффа записываем:

Увеличение скорости химической реакции при повышении температуры объясняется не только увеличением кинетической энергии взаимодействующих молекул. Например, число столкновений молекул растет пропорционально корню квадратному из абсолютной температуры. При нагревании веществ от нуля до ста градусов по Цельсию, скорость движения молекул возрастает в 1,2 раза, а скорость химической реакции возрастает примерно в 59 тысяч раз. Такое резкое увеличение скорости реакции с ростом температуры объясняется долей активных молекул, столкновения которых приводит к химическому взаимодействию. Согласно теории активных столкновений в реакцию вступают только активные молекулы, энергия которых превышает среднюю энергию молекул данного вещества, т.е. молекулы, обладающие энергией активации.


Энергия активации (E А) - это тот избыток энергии по сравнению со средним запасом, которым должны обладать молекулы для осуществления химической реакции. Если Е А < 40 кДж/моль - реакции протекают быстро, если Е А > 120 кДж/моль - реакции не идут, если Е А = 40-120 кДж/моль - реакции протекают в обычных условиях. Повышение температуры снижает энергию активации, делает вещества более реакционно-способными, скорость взаимодействия при этом увеличивается.

Более точную зависимость скорости химической реакции от температуры установил C. Аррениус : константа скорости реакции пропорциональна основанию натурального логарифма, возведенного в степень (-Е А /RT). ,

А - предэкспоненциальный множитель, определяет число активных соударений;

е - экспонента (основание натурального логарифма).

Логарифмируя выражение , получим уравнение:

. Уравнение Аррениуса показывает, что скорость реакции тем выше, чем меньше энергия активации. Для снижения энергии активации используют катализаторы.

Оксиды титана:

Ti (IV) - TiO 2 - Двуокись титана. Имеет амфотерный характер. Наиболее устойчив и имеет наобольшее практическое значение.

Ti (III) - Ti 2 O 3 - окись титана. Имеет основной характер. Устойчив в растворе и является сильным восстановителем, как и остальные соединенияTi (III).

TI (II) - TiO 2 - Закись титана. Имеет основной характер. Наименее устойчив.

Двуокись титана, ТiO2, - соединение титана с кислородом, в котором титан четырёхвалентен. Белый порошок, желтый в нагретом состоянии. Встречается в природе главным образом в виде минерала рутила, t° пл выше 1850°. Плотностъ 3,9 - 4,25 г/см 3 . Практически нерастворима в щелочах и кислотах, за исключениемHF. В концентрированной Н 2 SO 4 растворяется лишь при длительном нагревании. При сплавлении двуокиси титана с едкими или углекислыми щелочами образуются титанаты, которые легко гидролизуются с образованием на холоду ортотитановой кислоты (или гидрата) Ti (OH) 4 , легко растворимой в кислотах. При стоянии она переходит в мстатитановую кислоту (форма), имеющую микрокристаллическую структуру и растворимую лишь в горячей концентрированной серной и фтористоводородной кислотах. Большинство титанатов практически нерастворимы в воде. Основные свойства двуокиси титана выражены сильнее кислотных, но соли, в которых титан является катионом, также в значительной мере гидролизуются с образованием двухвалентного радикала титанила TiO 2 + . Последний входит в состав солей в качестве катиона (например, сернокислый титанил TiOSO 4 *2H 2 O). Двуокись титана является одним из важнейших соединений титана, служит исходным материалом для получения других его соединений, а также частично металлического титана. Используется главным образом как минеральная краска, кроме того, как наполнитель в производстве резины и пластических металлов. Входит в состав тугоплавких стекол, глазурей, фарфоровых масс. Из нее изготовляют искусственные драгоценные камни, бесцветные и окрашенные.

Диоксид титана не растворяется в воде и разбавленных минеральных кислотах (кроме плавиковой) и разбавленных растворах щелочей.

Медленно растворяется в концентрированной серной кислоте:

TiO 2 + 2H 2 SO 4 = Ti (SO4) 2 + 2H 2 O

С пироксидом водорода образует ортотитановую кислоту H4TiO4:

TiO 2 + 2H 2 O 2 = H 4 TiO 4

В концентрированных растворах щелочей:

TiO 2 + 2NaOH = Na 2 TiO 3 + H 2 O

При нагревании диоксид титана с аммиаком образует нитрид титана:

2TiO 2 + 2NH 3 = 2TiN + 3H 2 O + O 2

В насыщенном растворе гидрокарбоната калия:

TiO 2 + 2KHCO 3 = K 2 TiO 3 + H 2 O + 2CO 2

При сплавлении с оксидами, гидроксидами и карбонатами образуются титанаты и двойные оксиды:

TiO 2 + BaO = BaO TiO 2 (BaTiO 3)

TiO 2 + BaCO 3 = BaO TiO2 + CO 2 (BaTiO 3)

TiO 2 + Ba (OH) 2 = BaO TiO 2 (BaTiO 3)

Гидроксиды титана:

H 2 TiO 3 - П.Р. = 1,0 10 -29

H 2 TiO 4 - П.Р. = 3,6 10 -17

TIO (OH) 2 - П.Р. = 1,0 10 -29

Ti (OH) 2 - П.Р. = 1,0 10 -35

Гидроскида Ti (IV) - Ti (OH) 4 или H 4 TiO 4 - ортотитановой кислоты по видимому вообще не существует, а осадок, выпадающий при добавлении оснований к растворам солейTi (IV), представляет собой гидратированную формуTiO 2 . Это вещество растворяется в концентрированных щелочах, и из таких растворов можно выделить гидратированные титанаты общей формулы: M 2 TiO 3 nH 2 OиM 2 Ti 2 O 5 nH 2 O.

Для титана характерно комплексообразование с соответствующими галогеноводородными кислотами и особенно с их солями. Наиболее типичны комплексные производные с общей формулой Мe 2 TiГ 6 (где Мe - одновалентный металл). Они хорошо кристаллизуются и подвергаются гидролизу гораздо менее, чем исходные галогенидыTiГ 4 . Это указывает на устойчивость комплексных ионовTiГ 6 в растворе.

Окраска производных титана сильно зависит от природы входящего в них галогена:

Устойчивость солей комплексных кислот типа Н 2 ЭГ 6 , в общем, возрастает по ряду Ti-Zr-Hf и уменьшается в ряду галогенов F-Cl-Br-I.

Производные трёхвалентных элементов более или менее характерны лишь для титана. Тёмно-фиолетовый оксид Тi 2 O 3 (т. пл.1820°С) может быть получен прокаливанием TiO 2 до 1200°C в токе водорода. В качестве промежуточного продукта при 700-1000°С образуется синий Ti 2 O 3 .

В воде Ti 2 O 3 практически нерастворим. Его гидроксид образуется в виде тёмно-коричневого осадка при действии щелочей на растворы солей трёхвалентного титана. Он начинает осаждаться из кислых растворов при рН = 4, имеет только основные свойства и в избытке щелочи не растворяется. Однако производящиеся от HTiO 2 титаниты металлов (Li, Na, Mg, Mn) были получены сухим путём. Известна также сине-чёрная "титановая бронза” состава Na0,2TiO 2 .

Гидроксид титана (III) легко окисляется кислородом воздуха. Если в растворе нет других способных окисляться веществ, одновременно с окислением Ti (OH) 3 идёт образование пероксида водорода. В присутствии Са (ОН) 2 (связывающего Н 2 О 2) реакция протекает по уравнению:

2Ti (ОН) 3 + O 2 + 2H 2 O = 2Ti (OH) 4 + H 2 O 2

Азотнокислые соли Тi (OH) 3 восстанавливает до аммиака.

Фиолетовый порошок ТiCl 3 может быть получен пропусканием смеси паров ТiCl 4 c избытком водорода сквозь нагретую до 650°С трубку. Нагревание вызывает его возгонку (с частичным образованием димерных молекул Ti 2 Cl 6) и затем дисмутацию по схеме:

2TiCl 3 = TiCl 4 + TiCl 2

Интересно, что уже при обычных условиях тетрахлорид титана постепенно восстанавливается металлической медью, образуя чёрное соединение состава CuTiCl 4 (т.е. СuCl·TiCl 3).

Трёххлористый титан образуется также при действии на TiCl 4 водорода в момент выделения (Zn + кислота). При этом бесцветный раствор окрашивается в характерный для ионов Ti 3+ фиолетовый цвет, и из него может быть выделен кристаллогидрат состава ТiCl 3 ·6H 2 O. Известен и малоустойчивый зелёный кристаллогидрат того же состава, выделяющийся из насыщенного HCl раствора TiCl 3 . Структуре обеих форм, равно как и аналогичных кристаллогидратов СrCl 3 , отвечают формулы Cl 3 и Cl·2Н 2 О. При стоянии в открытом сосуде раствор TiCl 3 постепенно обесцвечивается ввиду окисления Ti 3+ до Ti 4+ кислородом воздуха по реакции:

4TiCl 3 + O 2 +2H 2 O = 4TiOCl 2 + 4HCl.

Ион Тi3+ является одним из очень немногих восстановителей, довольно быстро восстанавливающих (в кислой среде) перхлораты до хлоридов. В присутствии платины Тi 3+ окисляется водой (с выделением водорода).

Безводный Ti 2 (SO 4) 3 имеет зелёный цвет. В воде он нерастворим, а раствор его в разбавленной серной кислоте имеет обычную для солей Ti 3+ фиолетовую окраску. От сульфата трёхвалентного титана производятся комплексные соли, главным образом типов Мe ·12H 2 O (где Мe - Сs или Rb) и Me (с переменным в зависимости от природы катиона содержанием кристаллизационной воды).

Теплота образования TiO (т. пл.1750°С) составляет 518 кДж/моль. Он получается в виде золотисто-жёлтой компактной массы нагреванием в вакууме до 1700°С спрессованной смеси TiO 2 + Ti. Интересным способом его образования является термическое разложение (в высоком вакууме при 1000°С) нитрила титанила.

Похожий по виду на металл, тёмно-коричневый TiS получен прокаливанием TiS 2 в токе водорода (первоначально при этом образуются сульфиды промежуточного состава, в частности Ti 2 S 3). Известны также TiSe, TiTe и силицид состава Ti 2 Si.

Все TiГ 2 образуются при нагревании соответствующих галогенидовTiГ 3 без доступа воздуха за счёт их разложения по схеме:

2TiГ 3 =TiГ 4 +TiГ 2

При несколько более высоких температурах галогениды TiГ 2 сами подвергаются дисмутации по схеме: 2TiГ 2 =TiГ 4 +Ti

Двухлористый титан может быть получен также восстановлением TiCl4 водородом при 700°С. Он хорошо растворим в воде (и спирте), а с жидким аммиаком даёт серый аммиакат TiCl 2 ·4NH 3 . Раствор TiCl 2 может быть получен восстановлением TiCl 4 амальгамой натрия. В результате окисления кислородом воздуха бесцветный раствор TiCl 2 быстро буреет, затем становится фиолетовым (Ti 3+) и, наконец, вновь обесцвечивается (Ti 4+). Получаемый действием щёлочи на раствор TiCl 2 чёрный осадок Ti (OH) 2 исключительно легко окисляется.

Вечный, загадочный, космический, - все эти и многие другие эпитеты присваиваются в различных источниках титану. История открытия этого металла не была тривиальной: одновременно над выделением элемента в чистом виде трудились несколько ученых. Процесс изучения физических, химических свойств и определение областей его применения на сегодняшний день. Титан - металл будущего, место его в жизни человека еще окончательно не определено, что дает современным исследователям огромный простор для творчества и научных изысканий.

Характеристика

Химический элемент обозначается в периодической таблице Д. И. Менделеева символом Ti. Располагается в побочной подгруппе IV группы четвертого периода и имеет порядковый номер 22. титан - металл бело-серебристого цвета, легкий и прочный. Электронная конфигурация атома имеет следующую структуру: +22)2)8)10)2, 1S 2 2S 2 2P 6 3S 2 3P 6 3d 2 4S 2 . Соответственно, титан имеет несколько возможных степеней окисления: 2, 3, 4, в наиболее устойчивых соединениях он четырехвалентен.

Титан - сплав или металл?

Этот вопрос интересует многих. В 1910 году американский химик Хантер получил впервые чистый титан. Металл содержал всего 1 % примесей, но при этом его количество оказалось ничтожно мало и не давало возможности дальнейшего исследования его свойств. Пластичность полученного вещества достигалась толькопод воздействием высоких температур, при нормальных условиях (комнатной температуре) образец был слишком хрупок. Фактически этот элемент не заинтересовал ученых, так как перспективы его использования казались слишком неопределенными. Сложность получения и исследования еще больше снизили потенциал его применения. Только в 1925 году ученые-химики из Нидерландов И. де Бур и А. Ван-Аркел получили металл титан, свойства которого привлекли внимание инженеров и конструкторов всего мира. История исследования этого элемента начинается с 1790 года, именно в это время параллельно, независимо друг от друга, двое ученых открывают титан как химический элемент. Каждый из них получает соединение (оксид) вещества, не сумев выделить металл в чистом виде. Первооткрывателем титана считается английский минеролог монах Уильям Грегор. На территории своего прихода, расположенного в юго-западной части Англии, молодой ученый начал изучение черного песка долины Менакэна. Результатом стало выделение блестящих крупиц, которые являлись соединением титана. В это же время в Германии химик Мартин Генрих Клапрот выделил новое вещество из минерала рутиле. В 1797 году он же доказал, что открытые параллельно элементы являются аналогичными. Двуокись титана более века являлась загадкой для многих химиков, получить чистый металл оказалось не по силам даже Берцелиусу. Новейшие технологии XX века значительно ускорили процесс изучения упомянутого элемента и определили начальные направления его использования. При этом сфера применения расширяется постоянно. Ограничить её рамки может только сложность процесса получения такого вещества, как чистый титан. Цена сплавов и металла достаточно высока, поэтому на сегодняшний день он не может вытеснить традиционное железо и алюминий.

Происхождение названия

Менакин - первое название титана, которое применялось до 1795 года. Именно так, по территориальной принадлежности, назвал новый элемент У. Грегор. Мартин Клапрот присваивает элементу в 1797 году наименование «титан». В это время его французские коллеги во главе с достаточно авторитетным химиком А. Л. Лавуазье предлагают именовать вновь открытые вещества в соответствии с их основными свойствами. Немецкий ученый не был согласен с таким подходом, он вполне обоснованно считал, что на стадии открытия достаточно сложно определить все характеристики, свойственные веществу, и отразить их в названии. Однако следует признать, что интуитивно выбранный Клапротом термин в полной мере соответствует металлу - это неоднократно подчеркивали современные ученые. Существуют две основные теории возникновения названия титан. Металл мог быть обозначен так в честь эльфийской царицы Титании (персонаж германской мифологии). Такое название символизирует одновременно легкость и прочность вещества. Большинство ученых склоняются к версии использования древнегреческой мифологии, в которой титанами называли могучих сыновей богини земли Геи. В пользу этой версии говорит и название открытого ранее элемента - урана.

Нахождение в природе

Из металлов, которые в техническом отношении представляют ценность для человека, титан занимает четвертое место по степени распространенности в земной коре. Большим процентным содержанием в природе характеризуются только железо, магний и алюминий. Наибольшее содержание титана отмечено в базальтовой оболочке, чуть меньше его в гранитном слое. В морской воде содержание данного вещества невысокое - приблизительно 0,001 мг/л. Химический элемент титан достаточно активен, поэтому в чистом виде его встретить невозможно. Чаще всего он присутствует в соединениях с кислородом, при этом имеет валентность, равную четырем. Количество титаносодержащих минералов варьируется от 63 до 75 (в различных источниках), при этом на современном этапе исследований ученые продолжают открывать новые формы его соединений. Для практического использования наибольшее значение имеют следующие минералы:

  1. Ильменит (FeTiO 3).
  2. Рутил (TiO 2).
  3. Титанит (CaTiSiO 5).
  4. Перовскит (CaTiO 3).
  5. Титаномагнетит (FeTiO 3 +Fe 3 O 4) и т. д.

Все существующие титаносодержащие руды делят на россыпные и основные. Данный элемент является слабым мигрантом, он может путешествовать только в виде обломов камней или перемещения илистых придонных пород. В биосфере наибольшее количество титана содержится в водорослях. У представителей наземной фауны элемент накапливается в роговых тканях, волосе. Для человеческого организма характерно присутствие титана в селезенке, надпочечниках, плаценте, щитовидной железе.

Физические свойства

Титан - цветной металл, имеющий серебристо-белую окраску, внешне напоминает сталь. При температуре 0 0 С его плотность составляет 4,517 г/см 3 . Вещество имеет низкую удельную массу, что характерно для щелочных металлов (кадмий, натрий, литий, цезий). По плотности титан занимает промежуточную позицию между железом и алюминием, при этом его эксплуатационные характеристики выше, чем у обоих элементов. Основными свойствами металлов, которые учитываются при определении сферы их применения, являются и твердость. Титан прочнее алюминия в 12 раз, железа и меди - в 4 раза, при этом он значительно легче. Пластичность и предел его текучести позволяют производить обработку при низких и высоких температурных значениях, как и в случае с остальными металлами, т. е. методами клепки, ковки, сварки, проката. Отличительная характеристика титана - его низкая тепло- и электропроводность, при этом данные свойства сохраняются при повышенных температурах, вплоть до 500 0 С. В магнитном поле титан является парамагнитным элементом, он не притягивается, как железо, и не выталкивается, как медь. Очень высокие антикоррозийные показатели в агрессивных средах и при механических воздействиях уникальны. Более 10 лет нахождения в морской воде не изменили внешнего вида и состава пластины из титана. Железо в этом случае было бы уничтожено коррозией полностью.

Термодинамические свойства титана

  1. Плотность (при нормальных условиях) составляет 4,54 г/см 3 .
  2. Атомный номер - 22.
  3. Группа металлов - тугоплавкий, легкий.
  4. Атомная масса титана - 47,0.
  5. Температура кипения (0 С) - 3260.
  6. Молярный объем см 3 /моль - 10,6.
  7. Температура плавления титана (0 С) - 1668.
  8. Удельная теплота испарения (кДж/моль) - 422,6.
  9. Электросопротивление (при 20 0 С) Ом*см*10 -6 - 45.

Химические свойства

Повышенная коррозийная устойчивость элемента объясняется образованием на поверхности небольшой оксидной пленки. Она предотвращает (при нормальных условиях) с газами (кислород, водород), находящимися в окружающей атмосфере такого элемента, как металл титан. Свойства его изменяются под воздействием температуры. При ее повышении до 600 0 С происходит реакция взаимодействия с кислородом, в результате образуется оксид титана (TiO 2). В случае поглощения атмосферных газов образуются хрупкие соединения, которые не имеют никакого практического применения, именно поэтому сварка и плавка титана производятся в условиях вакуума. Обратимой реакцией является процесс растворения водорода в металле, он более активно происходит при повышении температуры (от 400 0 С и выше). Титан, особенно его мелкие частицы (тонкая пластина или проволока), сгорает в атмосфере азота. Химическая реакция взаимодействия возможна только при температуре 700 0 С, в результате образуется нитрид TiN. Со многими металлами формирует высокотвердые сплавы, часто является легирующим элементом. В реакцию с галогенами (хром, бром, йод) вступает только при наличии катализатора (высокой температуры) и при условии взаимодействия с сухим веществом. При этом образуются очень твердые тугоплавкие сплавы. С растворами большинства щелочей и кислот титан химически не активен, исключением является концентрированная серная (при длительном кипячении), плавиковая, горячие органические (муравьиная, щавелевая).

Месторождения

Наиболее распространены в природе ильменитовые руды - их запасы оцениваются в 800 млн тонн. Залежи рутиловых месторождений гораздо скромнее, но общий объем - при сохранении роста добычи - должен обеспечить человечество на ближайшие 120 лет таким металлом, как титан. Цена готового продукта будет зависеть от спроса и повышения уровня технологичности производства, но в среднем варьируется в диапазоне от 1200 до 1800 руб./кг. В условиях постоянного технического совершенствования значительно понижается себестоимость всех производственных процессов при их своевременной модернизации. Наибольшими запасами обладают Китай и Россия, также минерально-сырьевую базу имеют Япония, ЮАР, Австралия, Казахстан, Индия, Южная Корея, Украина, Цейлон. Месторождения отличаются объемами добычи и процентным содержанием титана в руде, геологические изыскания продолжаются постоянно, что дает возможность предполагать снижение рыночной стоимости металла и его более широкое применение. Россия на сегодняшний день является наиболее крупным производителем титана.

Получение

Для производства титана чаще всего используется его диоксид, содержащий минимальное количество примесей. Его получают путем обогащения ильменитовых концентратов или рутиловых руд. В электродуговой печи происходит термическая обработка руды, которая сопровождается отделением железа и образованием шлака, содержащего оксид титана. Сернокислый или хлоридный метод применяется для обработки свободной от железа фракции. Оксид титана является порошком серого цвета (см. фото). Металл титан получается при его поэтапной обработке.

Первой фазой является процесс спекания шлака с коксом и воздействия парами хлора. Полученный TiCl 4 восстанавливают магнием или натрием при воздействии температуры 850 0 С. Титановая губка (пористая сплавленная масса), полученная в результате химической реакции, очищается или переплавляется в слитки. В зависимости от дальнейшего направления использования, формируется сплав или металл в чистом виде (примеси удаляются путем нагрева до 1000 0 С). Для производства вещества с долей примесей 0,01 % используется йодидный метод. Он основан на процессе выпаривания из титановой губки, предварительно обработанной галогеном, его паров.

Сферы применения

Температура плавления титана является достаточно высокой, что при легкости металла является неоценимым преимуществом использования его в качестве конструкционного материала. Поэтому наибольшее применение он находит в судостроении, авиационной промышленности, изготовлении ракет, химических производствах. Титан достаточно часто используют в качестве легирующей добавки в различных сплавах, которые обладают повышенными характеристиками твердости и жаропрочности. Высокие антикоррозийные свойства и способность выдерживать большинство агрессивных сред делают этот металл незаменимым для химической промышленности. Из титана (его сплавов) изготавливают трубопроводы, емкости, запорную арматуру, фильтры, используемые при перегонке и транспортировке кислот и других химически активных веществ. Он востребован при создании приборов, работающих в условиях повышенных температурных показателях. Соединения титана используются для изготовления прочного режущего инструмента, красок, пластика и бумаги, хирургических инструментов, имплантатов, ювелирных изделий, отделочных материалов, применяется в пищевой промышленности. Все направления сложно описать. Современная медицина из-за полной биологической безопасности часто использует металл титан. Цена - это единственный фактор, который пока влияет на широту применения данного элемента. Справедливым является утверждение, что титан - материал будущего, изучая который, человечество перейдет на новый этап развития.

81,88 г/моль Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Гидроксид титана(II) - неорганическое соединение гидроксид металла титана с формулой Ti(OH) 2 , чёрный порошок, не растворимый в воде.

Получение

  • Обработка растворов галагенидов двухвалентного титана щелочами:
\mathsf{TiCl_2 + 2NaOH \ \xrightarrow{}\ Ti(OH)_2\downarrow + 2NaCl }

Физические свойства

Гидроксид титана(II) образует чёрный осадок, который постепенно светлеет из-за разложения.

Химические свойства

  • Разлагается при хранении в присутствии воды:
\mathsf{2Ti(OH)_2 + 2H_2O \ \xrightarrow{}\ 2Ti(OH)_3 + H_2\uparrow } \mathsf{Ti(OH)_2 + 2H_2O \ \xrightarrow{}\ H_4TiO_4 + H_2\uparrow }

Напишите отзыв о статье "Гидроксид титана(II)"

Литература

  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. - М .: Советская энциклопедия, 1995. - Т. 4. - 639 с. - ISBN 5-82270-092-4 .
  • Справочник химика / Редкол.: Никольский Б.П. и др.. - 3-е изд., испр. - Л. : Химия, 1971. - Т. 2. - 1168 с.
  • Рипан Р., Четяну И. Неорганическая химия. Химия металлов. - М .: Мир, 1972. - Т. 2. - 871 с.

Отрывок, характеризующий Гидроксид титана(II)

Красавица направилась к тетушке, но Пьера Анна Павловна еще удержала подле себя, показывая вид, как будто ей надо сделать еще последнее необходимое распоряжение.
– Не правда ли, она восхитительна? – сказала она Пьеру, указывая на отплывающую величавую красавицу. – Et quelle tenue! [И как держит себя!] Для такой молодой девушки и такой такт, такое мастерское уменье держать себя! Это происходит от сердца! Счастлив будет тот, чьей она будет! С нею самый несветский муж будет невольно занимать самое блестящее место в свете. Не правда ли? Я только хотела знать ваше мнение, – и Анна Павловна отпустила Пьера.
Пьер с искренностью отвечал Анне Павловне утвердительно на вопрос ее об искусстве Элен держать себя. Ежели он когда нибудь думал об Элен, то думал именно о ее красоте и о том не обыкновенном ее спокойном уменьи быть молчаливо достойною в свете.
Тетушка приняла в свой уголок двух молодых людей, но, казалось, желала скрыть свое обожание к Элен и желала более выразить страх перед Анной Павловной. Она взглядывала на племянницу, как бы спрашивая, что ей делать с этими людьми. Отходя от них, Анна Павловна опять тронула пальчиком рукав Пьера и проговорила:
– J"espere, que vous ne direz plus qu"on s"ennuie chez moi, [Надеюсь, вы не скажете другой раз, что у меня скучают,] – и взглянула на Элен.
Элен улыбнулась с таким видом, который говорил, что она не допускала возможности, чтобы кто либо мог видеть ее и не быть восхищенным. Тетушка прокашлялась, проглотила слюни и по французски сказала, что она очень рада видеть Элен; потом обратилась к Пьеру с тем же приветствием и с той же миной. В середине скучливого и спотыкающегося разговора Элен оглянулась на Пьера и улыбнулась ему той улыбкой, ясной, красивой, которой она улыбалась всем. Пьер так привык к этой улыбке, так мало она выражала для него, что он не обратил на нее никакого внимания. Тетушка говорила в это время о коллекции табакерок, которая была у покойного отца Пьера, графа Безухого, и показала свою табакерку. Княжна Элен попросила посмотреть портрет мужа тетушки, который был сделан на этой табакерке.
– Это, верно, делано Винесом, – сказал Пьер, называя известного миниатюриста, нагибаясь к столу, чтоб взять в руки табакерку, и прислушиваясь к разговору за другим столом.
Он привстал, желая обойти, но тетушка подала табакерку прямо через Элен, позади ее. Элен нагнулась вперед, чтобы дать место, и, улыбаясь, оглянулась. Она была, как и всегда на вечерах, в весьма открытом по тогдашней моде спереди и сзади платье. Ее бюст, казавшийся всегда мраморным Пьеру, находился в таком близком расстоянии от его глаз, что он своими близорукими глазами невольно различал живую прелесть ее плеч и шеи, и так близко от его губ, что ему стоило немного нагнуться, чтобы прикоснуться до нее. Он слышал тепло ее тела, запах духов и скрып ее корсета при движении. Он видел не ее мраморную красоту, составлявшую одно целое с ее платьем, он видел и чувствовал всю прелесть ее тела, которое было закрыто только одеждой. И, раз увидав это, он не мог видеть иначе, как мы не можем возвратиться к раз объясненному обману.
«Так вы до сих пор не замечали, как я прекрасна? – как будто сказала Элен. – Вы не замечали, что я женщина? Да, я женщина, которая может принадлежать всякому и вам тоже», сказал ее взгляд. И в ту же минуту Пьер почувствовал, что Элен не только могла, но должна была быть его женою, что это не может быть иначе.
Он знал это в эту минуту так же верно, как бы он знал это, стоя под венцом с нею. Как это будет? и когда? он не знал; не знал даже, хорошо ли это будет (ему даже чувствовалось, что это нехорошо почему то), но он знал, что это будет.
Пьер опустил глаза, опять поднял их и снова хотел увидеть ее такою дальнею, чужою для себя красавицею, какою он видал ее каждый день прежде; но он не мог уже этого сделать. Не мог, как не может человек, прежде смотревший в тумане на былинку бурьяна и видевший в ней дерево, увидав былинку, снова увидеть в ней дерево. Она была страшно близка ему. Она имела уже власть над ним. И между ним и ею не было уже никаких преград, кроме преград его собственной воли.
– Bon, je vous laisse dans votre petit coin. Je vois, que vous y etes tres bien, [Хорошо, я вас оставлю в вашем уголке. Я вижу, вам там хорошо,] – сказал голос Анны Павловны.
И Пьер, со страхом вспоминая, не сделал ли он чего нибудь предосудительного, краснея, оглянулся вокруг себя. Ему казалось, что все знают, так же как и он, про то, что с ним случилось.
Через несколько времени, когда он подошел к большому кружку, Анна Павловна сказала ему:
– On dit que vous embellissez votre maison de Petersbourg. [Говорят, вы отделываете свой петербургский дом.]
(Это была правда: архитектор сказал, что это нужно ему, и Пьер, сам не зная, зачем, отделывал свой огромный дом в Петербурге.)
– C"est bien, mais ne demenagez pas de chez le prince Ваsile. Il est bon d"avoir un ami comme le prince, – сказала она, улыбаясь князю Василию. – J"en sais quelque chose. N"est ce pas? [Это хорошо, но не переезжайте от князя Василия. Хорошо иметь такого друга. Я кое что об этом знаю. Не правда ли?] А вы еще так молоды. Вам нужны советы. Вы не сердитесь на меня, что я пользуюсь правами старух. – Она замолчала, как молчат всегда женщины, чего то ожидая после того, как скажут про свои года. – Если вы женитесь, то другое дело. – И она соединила их в один взгляд. Пьер не смотрел на Элен, и она на него. Но она была всё так же страшно близка ему. Он промычал что то и покраснел.

Оксиды титана:

Ti(IV) – TiO 2 – Двуокись титана. Имеет амфотерный характер. Наиболее устойчив и имеет наобольшее практическое значение.

Ti(III) – Ti 2 O 3 – окись титана. Имеет основной характер. Устойчив в растворе и является сильным восстановителем, как и остальные соединения Ti(III).

TI(II) – TiO 2 - Закись титана. Имеет основной характер. Наименее устойчив.

Двуокись титана, ТiO2, - соединение ти­тана с кислородом, в котором титан четырёхвалентен. Белый порошок, желтый в нагретом состоянии. Встречается в природе главным образом в виде минерала ру­тила, t° пл выше 1850°. Плотностъ 3,9 - 4,25 г/см 3 . Практически нерастворима в щелочах и кислотах, за исключением HF. В концентрированной Н 2 SO 4 растворяется лишь при длительном на­гревании. При сплавлении двуокиси титана с едкими или угле­кислыми щелочами образуются титанаты, которые легко гидролизуются с образованием на холоду ортотитановой кислоты (или гидрата) Ti(OH) 4 , легко рас­творимой в кислотах. При стоянии она переходит в мстатитановую кислоту (форма), имеющую микрокристаллическую структуру и растворимую лишь в горя­чей концентрированной серной и фтористоводородной кислотах. Большинство титанатов практически нерастворимы в воде. Основные свойства двуокиси титана выра­жены сильнее кислотных, но соли, в которых титан является катионом, также в значительной мере гид­ролизуются с образованием двухвалентного радикала титанила TiO 2 + . Последний входит в состав солей в качестве катиона (например, сернокислый титанил TiOSO 4 *2H 2 O). Двуокись титана является одним из важнейших соединений титана, служит исходным материа­лом для получения других его соединений, а также частично металлического титана. Используется главным образом как минеральная краска, кроме того, как наполнитель в производстве резины и пластических металлов. Входит в состав тугоплавких стекол, глазурей, форфоровых масс. Из нее изготов­ляют искусственные драгоценные камни, бесцветные и окрашенные.

Диоксид титана не растворяется в воде и разбавленных минеральных кислотах (кроме плавиковой) и разбавленных растворах щелочей.

Медленно растворяется в концентрированной серной кислоте:

TiO 2 + 2H 2 SO 4 = Ti(SO4) 2 + 2H 2 O

С пероксидом водорода образует ортотитановую кислоту H4TiO4:

TiO 2 + 2H 2 O 2 = H 4 TiO 4

В концентрированных растворах щелочей:

TiO 2 + 2NaOH = Na 2 TiO 3 + H 2 O

При нагревании диоксид титана с аммиаком образует нитрид титана:

2TiO 2 + 2NH 3 = 2TiN + 3H 2 O + O 2

В насыщенном растворе гидрокарбоната калия:

TiO 2 + 2KHCO 3 = K 2 TiO 3 + H 2 O + 2CO 2

При сплавлении с оксидами, гидроксидами и карбонатами образуются титанаты и двойные оксиды:



TiO 2 + BaO = BaO∙TiO 2 (BaTiO 3)

TiO 2 + BaCO 3 = BaO∙TiO2 + CO 2 (BaTiO 3)

TiO 2 + Ba(OH) 2 = BaO∙TiO 2 (BaTiO 3)

Гидроксиды титана:

H 2 TiO 3 – П.Р. = 1,0∙10 -29

H 2 TiO 4 - П.Р. = 3,6∙10 -17

TIO(OH) 2 - П.Р. = 1,0∙10 -29

Ti(OH) 2 - П.Р. = 1,0∙10 -35

Гидроскида Ti(IV) – Ti(OH) 4 или H 4 TiO 4 - ортотитановой кислоты по видимому вообще не существует, а осадок, выпадающий при добавлении оснований к растворам солей Ti(IV), представляет собой гидратированную форму TiO 2 . Это вещество растворяется в кончентрированных щелочах, и из таких растворов можно выделить гидратированные титанаты общей формулы: M 2 TiO 3 ∙nH 2 O и M 2 Ti 2 O 5 ∙nH 2 O.

Для титана характерно комплексообразование с соответствующими галогеноводородными кислотами и особенно с их солями. Наиболее типичны комплексные производные с общей формулой Мe 2 TiГ 6 (где Мe - одновалентный металл). Они хорошо кристаллизуются и подвергаются гидролизу гораздо менее, чем исходные галогениды TiГ 4 . Это указывает на устойчивость комплексных ионов TiГ 6 в растворе.

Окраска производных титана сильно зависит от природы входящего в них галогена:

Устойчивость солей комплексных кислот типа Н 2 ЭГ 6 , в общем, возрастает по ряду Ti-Zr-Hf и уменьшается в ряду галогенов F-Cl-Br-I.

Производные трёхвалентных элементов более или менее характерны лишь для титана. Тёмно-фиолетовый оксид Тi 2 O 3 (т. пл. 1820 °С) может быть получен прокаливанием TiO 2 до 1200 °C в токе водорода. В качестве промежуточного продукта при 700-1000 °С образуется синий Ti 2 O 3 .

В воде Ti 2 O 3 практически нерастворим. Его гидроксид образуется в виде тёмно-коричневого осадка при действии щелочей на растворы солей трёхвалентного титана. Он начинает осаждаться из кислых растворов при рН = 4, имеет только основные свойства и в избытке щелочи не растворяется. Однако производящиеся от HTiO 2 титаниты металлов (Li, Na, Mg, Mn) были получены сухим путём. Известна также сине-чёрная “титановая бронза” состава Na0,2TiO 2 .

Гидроксид титана (III) легко окисляется кислородом воздуха. Если в растворе нет других способных окисляться веществ, одновременно с окислением Ti(OH) 3 идёт образование пероксида водорода. В присутствии Са(ОН) 2 (связывающего Н 2 О 2) реакция протекает по уравнению:

2Ti(ОН) 3 + O 2 + 2H 2 O = 2Ti(OH) 4 + H 2 O 2

Азотнокислые соли Тi(OH) 3 восстанавливает до аммиака.

Фиолетовый порошок ТiCl 3 может быть получен пропусканием смеси паров ТiCl 4 c избытком водорода сквозь нагретую до 650 °С трубку. Нагревание вызывает его возгонку (с частичным образованием димерных молекул Ti 2 Cl 6) и затем дисмутацию по схеме:

2TiCl 3 = TiCl 4 + TiCl 2

Интересно, что уже при обычных условиях тетрахлорид титана постепенно восстанавливается металлической медью, образуя чёрное соединение состава CuTiCl 4 (т. е. СuCl·TiCl 3).

Трёххлористый титан образуется также при действии на TiCl 4 водорода в момент выделения (Zn + кислота). При этом бесцветный раствор окрашивается в характерный для ионов Ti 3+ фиолетовый цвет, и из него может быть выделен кристаллогидрат состава ТiCl 3 ·6H 2 O. Известен и малоустойчивый зелёный кристаллогидрат того же состава, выделяющийся из насыщенного HCl раствора TiCl 3 . Структуре обеих форм, равно как и аналогичных кристаллогидратов СrCl 3 , отвечают формулы Cl 3 и Cl·2Н 2 О. При стоянии в открытом сосуде раствор TiCl 3 постепенно обесцвечивается ввиду окисления Ti 3+ до Ti 4+ кислородом воздуха по реакции:

4TiCl 3 + O 2 +2H 2 O = 4TiOCl 2 + 4HCl.

Ион Тi3+ является одним из очень немногих восстановителей, довольно быстро восстанавливающих (в кислой среде) перхлораты до хлоридов. В присутствии платины Тi 3+ окисляется водой (с выделением водорода).

Безводный Ti 2 (SO 4) 3 имеет зелёный цвет. В воде он нерастворим, а раствор его в разбавленной серной кислоте имеет обычную для солей Ti 3+ фиолетовую окраску. От сульфата трёхвалентного титана производятся комплексные соли, главным образом типов Мe·12H 2 O (где Мe - Сs или Rb) и Me (с переменным в зависимости от природы катиона содержанием кристаллизационной воды).

Теплота образования TiO (т. пл. 1750 °С) составляет 518 кДж/моль. Он получается в виде золотисто-жёлтой компактной массы нагреванием в вакууме до 1700 °С спрессованной смеси TiO 2 + Ti. Интересным способом его образования является термическое разложение (в высоком вакууме при 1000 °С) нитрила титанила. Похожий по виду на металл, тёмно-коричневый TiS получен прокаливанием TiS 2 в токе водорода (первоначально при этом образуются сульфиды промежуточного состава, в частности Ti 2 S 3). Известны также TiSe, TiTe и силицид состава Ti 2 Si.

Все TiГ 2 образуются при нагревании соответствующих галогенидов TiГ 3 без доступа воздуха за счёт их разложения по схеме:

2TiГ 3 = TiГ 4 + TiГ 2

При несколько более высоких температурах галогениды TiГ 2 сами подвергаются дисмутации по схеме: 2TiГ 2 = TiГ 4 + Ti. Двухлористый титан может быть получен также восстановлением TiCl4 водородом при 700 °С. Он хорошо растворим в воде (и спирте), а с жидким аммиаком даёт серый аммиакат TiCl 2 ·4NH 3 . Раствор TiCl 2 может быть получен восстановлением TiCl 4 амальгамой натрия. В результате окисления кислородом воздуха бесцветный раствор TiCl 2 быстро буреет, затем становится фиолетовым (Ti 3+) и, наконец, вновь обесцвечивается (Ti 4+). Получаемый действием щёлочи на раствор TiCl 2 чёрный осадок Ti(OH) 2 исключительно легко окисляется.