Суть флотации. Операции и схемы флотации

Очистка сточных вод, в первую очередь, включает в себя этап прохождения отстойника как в локальных очистных сооружения, так и в общегородских. Отставание воды очищает воду только от крупных взвесей, которые осаждаются на дно, являясь тяжелее воды. Но как быть с теми частицами, которые легче воды и не подвержены осаждению? Существует метод для выделения и таких сложных загрязнителей, который называют флотацией.

Флотационная очистка применяется как одна из ступеней очистки сточных вод от таких примесей.

Подробнее о флотации

Флотация - это один из способов, применяемых для очистки сточных вод. Буквально слово "флотация" (англ. flotation) переводится как "плаванье на поверхности воды" , поэтому и напоминает слово флот. Но если говорить об очистке флотацией, то ее целью является вывести на поверхность различные взвеси и другие вещества, которые имеют плотность близкую воде и не способны оседать.

В толще воды плавают различные мелкие твердые частицы, коллоидные взвеси и другие примеси, которые не оседают. Флотацию применяют для очищения сточных вод от ПАВ, нефтепродуктов, жиров, волокнистых веществ и взвесей активного ила. Также флотационный процесс по типу пенной сепарации способен удалить некоторые растворенные в воде вещества.

Физико-химические законы флотации

В основу флотационной очистки заложены сложные физико-химические процессы. Главным образом рассматривается понятие смачиваемости, то есть индивидуальной способности тех или иных веществ к смачиванию. Эта способность напрямую определяет поведение этих соединений на границе раздела фаз жидкости и газа. Существует два типа веществ:

  • Гидрофильные - характеризуются хорошей способностью к смачиванию;
  • Гидрофобные – несмачиваемые.

В зависимости от того, к какому типу относится то или иное вещество, оно хорошо убирается при помощи флотационной очистки или же, наоборот, не поддается выделению таким способом.

Процесс флотации несложен для понимания, его можно описать следующим образом:

В итоге на поверхности воды образуется пенная субстанция. Полученную пену удаляют специальным приспособлением - это конечный продукт флотации или шлам.

Эффективность процесса флотации

Те или иные факторы могут понижать или повышать эффективность флотации, как способа очистки сточных вод. Наиболее значимое влияние оказывают приведенные ниже факторы:

На эти факторы можно оказать воздействие с помощью специальных реагентов , которые будут описаны далее.

Реагенты для улучшения флотации

Как описано выше, флотация зависит от качества пенообразования и гидрофобности частиц. Существуют специальные добавки, которые направлены на повышение качества пены и увеличения гидрофобности примесей. Реагенты можно разделить на две основные группы:

  • Собиратели;
  • Пенообразователи.

Реагенты собиратели

Наиболее часто встречаемый вид загрязнителей имеет в своем составе частицы с двоякими качествами, имеющими часть гидрофобных и часть гидрофильных групп. Их способность смачивания недостаточна для связывания с пузырьками воздуха, поэтому флотация малоэффективна. Чтобы решить эту проблему, в стоки добавляют так называемые добавки-собиратели, которые также имеют двоякую структуру, состоящую из гидрофильных (полярных) и гидрофобных (неполярных) групп. Полярные гидрофильные концы загрязнителя и собирателя слепляются между собой, а гидрофобные концы остаются свободными.

Собирателями для усиления флотации выступают поверхностно-активные вещества:

  • Аммонийные соли;
  • Нефтепродукты;
  • Масла;
  • Меркаптан

Реагенты пенообразователи

Качество пени играет одну из ключевых ролей в эффективности флотации. Существует группа добавок, которые направлены на улучшение пенообразования. Они предохраняют пузыри воздуха от разрушения, делая их упругими и значительно стабилизируя пенную массу. Это дает возможность удалить как можно больше загрязнителей из сточных вод. Такими стабилизаторами для пены являются:

  • Масло сосны;
  • Крезол;
  • Фенолы и много других веществ

Процесс флотации кратко описан как насыщение сточных вод воздухом с его диспергированием. То есть главная задача флотации заключается в получении пузырьков нужного диаметра в толщах сточных вод. Как именно это осуществляется описано ниже.

Выделение пузырьков воздуха из раствора

Чтобы выделить воздушные пузырьки из раствора, используют напорную и вакуумную флотацию . Напорная флотация представляет собой нагнетание воздуха, а затем резкое снижение давления в системе, что провоцирует выделение пузырьковой массы в толще воды.

Вакуумная флотация несколько схожа с напорной, но ее реализуют иначе. Первым этапом является прохождение воды через камеру аэрации, где она насыщается воздухом. После этого она поступает в дизаэратор, где удаляется нерастворенный воздух. Последним этапом является прохождение камеры флотации, в которой давление понижается, что вызывает бурное образование пузырьков.

Такими способами весьма успешно удаляются мелкодисперсные примеси .

Пропускание воздуха через пористые материалы

Это один из простейших способов с точки зрения физики для получения диспергированного воздушного потока. Перед попаданием воздуха в сточные воды, его пропускают через материалы с порами, такие как пластины со сквозными щелями. Диаметр пузырьков регулируется размером данных пор.

Электролизная флотация

Этот способ воплощают помещением в воду двух электродов, через которые пускают ток. Во время электролиза вода вокруг электродов расщепляется на пузырьки водорода и кислорода. Наиболее часто используемый материал для электродов: алюминий и железо. Эти металлы выделяют в воду коагулянты, которые связывают взвеси и превращают их в подобие хлопьев . Эти хлопья соединяются с воздушными пузырьками и выходят на поверхность сточных вод в вид пены.

Механическое диспергирование

Кроме образования пузырьков воздуха в воде при помощи смены давления, также применяют механические способы. Для этого также существует несколько путей:

Пузырьки в этих трех способах образуются в результате вихревого процесса, который стимулируется перемешиванием.

Флотация – преимущества и недостатки способа

На сегодня флотация является одним из наиболее часто используемых приемов очистки стоков. Его применяют и промышленные очистительные сооружения и городские. Причиной этому служит целый ряд факторов, которые говорят в пользу флотации.

Преимущества флотационной очистки:

Безусловно, как и любой метод, флотация связана и с некоторыми отрицательными моментами.

Недостатки флотационной очистки:

  1. Она удаляет далеко не все загрязнители, поскольку ее эффективность зависит от гидрофобности вещества;
  2. Часто приходится нести дополнительные затраты на внесение реагентов, которые улучшают качество пены и усиливают гидрофобность загрязнителей;
  3. К каждому виду загрязнителя нужен свой подходи, а, значит, нет универсального метода для удаления всех взвесей.

Выводы о флотации

Сколько бы преимуществ ни имела флотация, она не является самостоятельной и окончательной очисткой сточных вод. Это лишь один из этапов сложнейшего процесса, который позволяет удалить из воды большую часть нежелательных веществ. Флотационная очистка позволяет избавить воду от нефтепродуктов и масел, которые невозможно удалить другими способами, а также волокнистые составляющие стоков. Обычно флотационную очистку используют после этапа отстойников, чтобы удалить те вещества, которые не подвержены осаждению.

Флотацию применяют для обогащения большинства руд цветных металлов, апатитовых, фосфоритовых, графитовых, флюоритовых и других руд, широко используют в сочетании с другими методами при обогащении руд черных металлов, угля. Широкая распространенность флотации объясняется универсальностью процесса, связанной с возможностью разделения практически любых минералов, обогащения бедных руд с весьма тонкой вкрапленностью полезных минералов. Основные недостатки флотационного метода в экологической вредности процесса и относительно высокой его стоимости.

Флотация основана на различном закреплении частиц разделяемых минералов на межфазной границе, что определяется различием в смачивемости. При пенной флотации, наиболее применяемой в промышленности, пульпу насыщают газом, и частицы некоторых (несмачивемых) минералов прилипают к пузырькам газа и всплывают на поверхность, образуя минерализованную пену, которая легко удаляется механическим путем. Другие минералы (смачиваемые) не прилипают и остаются в объеме пульпы.

По способу насыщения пульпы газом различают несколько видов пенной флотации, однако наибольшее распространение получило насыщение пульпы воздухом.

Способность частицы минерала прикрепляться к пузырьку воздуха хорошо объясняется с позиции смачивания. Минералы, поверхность которых легко смачивается водой, называются гидрофильными (кальцит, кварц), а минералы, плохо смачиваемые водой,  гидрофобными (сера, графит, тальк, молибденит). Гидрофобность поверхности минералов оценивается различными методами. Наиболее распространенным методом оценки является определение краевого угла смачивания (), измеряемого от 0 до 180. Краевым углом смачивания называется угол между касательной к поверхности воздушного пузырька (или к поверхности капли воды в любой точке трехфазного периметра смачивания) и поверхностью минерала (рис. 2.11). Его принято отсчитывать в сторону жидкой фазы. Капля жидкости, нанесенная на поверхность твердого (минерала), будет растекаться до тех пор, пока не наступит равновесие между силами поверхностного натяжения, действующих по периметру смачивания, на границе твердое  газ  т-г, жидкость  газ  ж-г и твердое  жидкость  т-ж:

 т-г = т-ж + ж-г cos

Исходя из этого равенства, легко найти косинус краевого угла смачивания:

При полной гидрофильности, когда капля полностью растекается по поверхности твердого, краевой угол стремится к нулю, а косинус  к единице. При полной гидрофобности краевой угол стремится к 180, а косинус к – минус единице.

Чем хуже смачивается минерал, тем лучше он прикрепляется к пузырьку воздуха, легче флотируется. Почти все природные минералы хорошо смачиваются водой (краевой угол смачивания у них меньше 50). Исключением являются некоторые естественно-гидрофобные минералы (сера, графит, уголь, тальк и молибденит), у которых краевой угол составляет около 90.

Для регулирования смачиваемости разделяемых минералов (соответственно результатов флотации) применяют различные флотореагенты. Их подразделяют на собиратели, вспениватели, депрессоры, активаторы и регуляторы среды.

Задача собирателей  повысить гидрофобность извлекаемого минерала. Собиратели  это органические вещества, содержащие в своей молекуле углеводородную цепочку. В зависимости от строения молекулы собиратели бывают аполярными и гетерополярными.

Молекулы аполярных собирателей (керосин, смазочные масла) содержат только углеводородную цепочку. Их широко применяют при флотации естественно-гидрофобных минералов (уголь, сера и др.)

Молекулы гетерополярных собирателей имеют сложную асимметричную структуру, состоящую из двух частей, отличных по своим физико-химическим свойствам: углеводородной цепочки и активной группы (COOH, SH и др.). Такие молекулы в воде диссоциируют, и если углеводородная цепочка остается в анионе, то реагент называется анионоактивным, а если в катионе – катионоактивными. Если анионоактивные собиратели имеют в составе активной групе серу, то они называются сульфгидрильными, а если кислород – оксигидрильными. Наиболее распространенным анионоактивным собирателем являются ксантогенаты (жирные соли дитиоугольной кислоты) и жирные кислоты (например, олеиновая) или их соли (например, олеат натрия). Ксантогенаты являются основным собирателем при флотации сульфидных руд цветных металлов, а жирнокислотные при флотации кальцийсодержащих минералов.

Из катионоактивных собирателей наибольшее практическое значение получили первичные алифатические амины RNH 2 и четвертичные аммониевые основания, например лауриламин солянокислый (C 12 H 25 NH 3 Cl), который широко применяют при флотации солей и полевого шпата.

Назначение вспенивателей  способствовать созданию устойчивой минерализованной пены. В качестве вспенивателей используют органические соединения, в основном, из класса спиртов. Одним из распространенных вспенивателей является сосновое масло, которое применяют на многих обогатительных фабриках.

Назначение депрессоров  повысить гидрофильность неизвлекаемого минерала. В качестве депрессоров применяют различные минеральные соли, кислоты и основания. Например, цианистые соли (NaCN) используют для подавления флотации медных минералов.

Задача активаторов  усилить действие собирателя на извлекаемый минерал. В качестве активаторов применяют различные минеральные соли, кислоты и основания. Например, сульфид натрия (Na 2 S) широко используется для улучшения флотации окисленных минералов.

Назначение регуляторов среды  поддерживать рН пульпы в требуемых пределах. Если необходимо сдвигать рН в кислую область ( 7), то чаще используют серную кислоту; если в щелочную ( 7), то щелочи (CaO, Na 2 CO 3 , NaOH).

Подбирая соответствующие реагенты, их комбинацию и количества, добиваются оптимальных показателей флотационного обогащения.

Флотационными машинами называют аппараты, в которых осуществляют флотацию. Широкое применение флотации для обогащения самых разнообразных полезных ископаемых привело к созданию большого числа типов и конструкций флотационных машин.

Классификацию флотационных машин чаще всего производят в зависимости от способа аэрации и перемешивания пульпы. По этому признаку машины разделяют на механические, пневматические и пневмомеханические.

Механическая флотационная машина (рис. 2.13, а ) состоит из последовательного ряда камер 1. В центральной части каждой камеры внутри трубы 4 размещен вращающийся вал 2 с импеллером 3. При вращении импеллера проходящая через него пульпа эжектирует (засасывает) атмосферный воздух и выбрасывает его в камеру, заполненную пульпой. Образование воздушных пузырьков и аэрация пульпы происходят в результате турбулизации пульповоздушной смеси, поступающей из импеллера в камеру.

Пенный продукт (обычно концентрат) с помощью гребкового устройства 5 направляется на обезвоживание (или перечистку). Камерный продукт самотеком поступает в следующую камеру или выдается в качестве хвостов (из последней камеры машины).

В пневмомеханической флотационной машине (рис. 2.13, б ) перемешивание осуществляется установленной на валу 1 мешалкой 2, аэрация осуществляется путем подачи сжатого воздуха от воздуходувки. Воздух обычно подается через полый вал мешалки.

Флотационные машина обычно состоят из нескольких камер кубической формы. Пульпа последовательно перетекает из камеры в камеру и из нее удаляется пенный продукт. Камерный продукт разгружается через специальной отверстие в последней камере машины. В последнее время все чаще применяют большеобъемные (до 200 м 3) флотационные машины с цилиндрическими камерами. Такие машины состоят не более чем из трех камер. Применение большеобъемных машин позволяет снизить затраты на флотацию.

Пневматическая (аэролифтная) флотомашина конструктивно является наиболее простой (рис. 2.14). Она представляет собой емкость, вытянутую вверх, прямоугольного или круглого сечения, с коническим днищем, внутри которой расположена аэролифтная труба. В трубу под давлением подается сжатый воздух, который интенсивно перемешивает пульпу и насыщает ее пузырьками. Образующаяся на поверхности пена самотеком разгружается в желоба.

Особым видом пневматической машины является колонная флотационная машина . Эти машины предназначены для обогащения руд методом пенной флотации и рекомендуется для применения преимущественно в операциях перечистки черновых концентратов флотации. Колонная машина представляет собой камеру прямоугольного или круглого сечения (рис. 2.15). В верхней части камеры устанавливается брызгало, в нижней - шланговый затвор для полного выпуска материала из камеры. Кроме того в нижней части колонны помещен аэратор, в который подается сжатый воздух. Колонны выпускаются высотой до 15 метров и диаметром до 1,5 м. По сравнению с импеллерными флотомашинами применение колонных обеспечивает повышение содержания полезного компонента в концентрате на 1-2%, прирост извлечения на 0,5-2,5%, сокращение расходов на ремонт, электроэнергию на 40% и производственной площади - на 60%.

Обычные флотационные машины не могут обогащать крупные частицы (верхний предел крупности ограничен: для руд – 0,15 мм, для углей 0,5 – 1 мм), т.к. пузырьки воздуха просто не могут поднять крупные частицы на поверхность. Поэтому иногда используют машины пенной сепарации. В них пульпа поступает не внутрь машины, а подается сверху, через специальный питатель на слой пены (рис. 2.16) . Гидрофобные частицы задерживаются в этом слое (из-за контакта с пузырьками воздуха), а гидрофильные проходят сквозь слой пены и опускаются на дно (т.к. к пузырькам не прилипают). В таких машинах верхний предел крупности обогащаемого материала может быть поднят до 1 – 2 мм.

Для обработки пульпы реагентами применяются специальные аппараты – контактные чаны, которые представляют собой емкости круглого или прямоугольного сечения с механическим или воздушным перемешиванием. Реагентные питатели это специальные приборы, предназначенные для подачи реагента в требуемую точку схемы обогащения в строго определенном количестве. Исполнительный механизм таких приборов может быть механического, пневматического или электромагнитного принципа.

Схема флотации – определенная последовательность операций флотации возможно в сочетании с операциями измельчения и классификации. При выборе схемы флотации учитывают характер и размер вкрапленности полезных минералов, их содержание в руде и флотируемость, требования к качеству концентратов и ряд технико-экономических факторов. Начальная операция флотационного процесса в схеме при извлечении одного или нескольких металлов называется основной флотацией. В результате проведение основной флотации, как правило, не удается получить кондиционный концентрат и отвальные хвосты из-за близости флотационных свойств разделяемых минералов, недостаточного их раскрытия и т. д. Получаемые после основной флотации некондиционные (грубые) концентраты и «богатые» хвосты подвергают, иногда после их доизмельчения, повторной флотации. Флотация концентрата основной флотации называется перечистной флотацией, а флотация хвостов основной флотации  контрольной флотацией.

Число перечистных и контрольных флотации зависит от содержания флотируемых минеральных компонентов и требований, предъявляемых к концентрату и хвостам. Совокупность основной, контрольной и перечистных операций, при которых выделяется один или несколько готовых (не подвергаемых дальнейшей флотации) продуктов, образует цикл флотации.

Флотация бывает прямой и обратной. Если полезный минерал переходит в пенный продукт, то флотация называется прямой; если он остается в камерном продукте, то обратной. В практике обогащения применяют, в основном, прямую флотацию.

Флотация является основным процессом обогащения сульфидных руд всех цветных металлов.

– это процесс молекулярного “прилипания” частиц к поверхности раздела фаз, чаще всего газа и воды, обусловленной избытком свободной поверхностной энергии поверхностных пограничных слоев, а также явлениями смачивания. Применяется флотация для очистки воды от взвешенных твердых частиц, нефтепродуктов, масел, жиров, поверхностно-активных веществ.

Процесс флотации

Метод флотации (очистки) заключается в насыщении воды пузырьками газа (воздуха) и образовании комплексов частица – пузырек газа, всплывание этих комплексов на поверхность обрабатываемой воды и удалении возникающего пенного слоя с этой поверхности. Образование комплекса частица-пузырек, являющегося основой флотационного процесса, обусловлено явлениями смачивания.

Если капля воды, нанесенная на поверхность, растекается по этой поверхности, то говорят, что поверхность смачивается. Если эта капля не растекается, а сохраняет приблизительно шарообразную форму, то поверхность считается несмачиваемой. Примером смачиваемой поверхности является поверхность чистого стекла, несмачиваемой – поверхность воска или парафина. Степень смачиваемости поверхности может быть оценена краевым углом смачивания? (рис.1.)

Рис. 1. Краевой угол смачивания

Если краевой угол смачивания равен нулю, то поверхность считается абсолютно смачиваемой, если 180°С, то абсолютно несмачиваемой. Абсолютно смачиваемых и абсолютно несмачиваемых поверхностей в природе не существует. Поэтому условно принимают, что при? <90°C, поверхность смачиваема; при?>90°C – несмачиваема.

Причины смачиваемости и несмачиваемости поверхности кроются в полярном строении молекул. Известно, что молекулы воды имеют полярное строение, т.е. обладают определенным дипольным моментом. Кроме того, полярными являются молекулы многих веществ: кислот, оснований, солей и т.д.

Если частицу вещества, молекулы которого имеют полярное строение, поместить в воду, то в виду взаимодействия полярных молекул, эта частица будет окружена так называемым гидратным слоем, состоящим из строгосориентированных в пространстве молекул воды (рис.2.). Такая частица называется гидрофильной.

Рис.2. Строение гидратного слоя

Более строгая ориентация молекул воды наблюдается у поверхности раздела фаз. С расстоянием в связи с тепловым движением молекул эта ориентация постоянно нарушается. Подвижность молекул воды в гидратном слое сильно ограничена, поэтому она обладает рядом свойств, отличных от свойств воды, находящейся в объеме. К ним можно отнести повышенную прочность, более низкую температуру замерзания, такая вода плохо растворяет газы и другие вещества. Эти свойства проявляются тем больше, чем больше полярность молекул частицы.

Если частица состоит из молекул с неполярным строением, то гидратные слои не образуются, частица называется гидрофобной.

Наиболее важным свойством гидратных слоев для флотация является их прочность. Наряду с полярностью молекул на прочность гидратных слоев оказывает влияние наличие на поверхности частиц неровностей (выступов, впадин), а также адсорбция некоторых веществ (ПАВ), слабо взаимодействующих с молекулами воды. Из-за того, что неровности являются значительным препятствием для взаимодействия молекул воды в поверхностном слое, на частицах веществ даже с высокой полярностью молекул, но имеющих развитую поверхность, могут образовываться достаточно слабые гидратные слои.

Флотация, метод флотации, процесс флотации – статья на сайте “студент-строитель.ру”

На процесс пенной флотации оказывают влияние многие факторы. Рассмотрим кратко влияние наиболее значимых из них. Минералогический состав и свойства полезного ископаемого являются факторами, определяющими степень предварительного измельчения руды, расход и номенклатуру флотационных реагентов, выбор оптимальной технологической схемы флотационного обогащения.

Крупность частиц полезного ископаемого , поступающего на флотационное обогащение, определяется необходимостью достаточного раскрытия минеральных зерен, плотностью и гидрофобностью минералов. Неметаллические полезные ископаемые могут успешно флотироваться в крупности до 1 мм, плотные рудные минералы флотируются при меньшей крупности. Крупность частиц оценивается содержанием в твердой фазе пульпы класса –0,071 мм (–200 меш). Руды многих цветных металлов вследствие тонкого взаимного прорастания минералов требуют измельчения, обеспечивающего содержание класса –0,071 мм до 90-95 %, что достигается использованием двух- и трехстадиального измельчения руды перед флотацией и доизмельчением продуктов флотационного обогащения «внутри» флотационной схемы. Следует учитывать, что частицы крупностью менее 0,01 мм флотируются неселективно, и избыточное их содержание ухудшает технологические показатели процесса.

Плотность пульпы (содержание твердого в пульпе) определяет степень извлечения в пену флотируемого минерала и содержание извлекаемого компонента в концентрате. Для плотных пульп извлечение выше, для менее плотных пульп выше содержание ценного компонента в концентрате. Основную и контрольную флотации, например, сульфидных руд производят обычно при содержании твердого 30-40 %, перечистные операции, где необходимо получение концентрата высокого качества, – при содержании твердого 10-25 %.



Реагентный режим определяет перечень применяемых флотационных реагентов, их расход и порядок подачи в процесс. Обычно реагенты (в случае их использования во флотационном процессе) подаются в следующем порядке: регуляторы среды, депрессоры или активаторы, собиратели и пенообразователи. Регуляторы среды обычно подаются в мельницу; депрессоры (активаторы) – в мельницу или слив классифицирующих аппаратов; собиратели – в контактные чаны или зумпфы насосов, перекачивающих продукты обогащения, или в первые камеры флотомашин; пенообразователи – в первые камеры флотомашин. Жидкие растворимые реагенты подают в виде 1-5 % растворов, расход реагентов отсчитывают в граммах сухого реагента на одну тонну исходной руды. Подача реагента может быть сосредоточенной, когда реагент подается в какую-либо одну точку процесса, либо дробной, когда реагент распределяется по всему фронту флотации.

Продолжительность флотации определяет содержание и извлечение флотируемого компонента в концентрат. Зависимости извлечения компонента в концентрат и содержания компонента в концентрате от продолжительности флотации приведены на рис. 6.9. Данные зависимости показывают, что увеличение продолжительности флотации сверх некоторого предела не приводит к существенному повышению извлечения, но приводит к снижению качества концентрата. Продолжительность флотации всегда определяется экспериментально, исходя из технологических требований и экономических факторов.

Степень аэрации пульпы измеряется в литрах воздуха в минуту на 1 м 2 зеркала пульпы в машине. Аэрация должна быть равномерной по всему объему флотационной машины. Чрезмерная аэрация пульпы может привести к усилению процесса коалесценции пузырьков и, соответственно, ухудшению результатов флотации, так как увеличивается вероятность отрыва минеральной частицы от крупного пузырька, всплывающего с большой скоростью. Избыточная аэрация пульпы уменьшает производительность флотомашины.

Ионный состав жидкой фазы пульпы в значительной степени может определять процесс взаимодействия реагентов с минералами. Вода, используемая при флотации (в подавляющем большинстве случаев, оборотная), содержит большое количество так называемых «неизбежных» ионов (Cl – , SO 4 2– , HCO 3 – , CO 3 2– , Na + , K + , Ca 2+ , Mg 2+) природного происхождения. Кроме того, вода содержит кислород, углекислый газ, молекулярный сероводород. В процессе измельчения и классификации руды вода дополнительно насыщается ионами Cu 2+ , Ba 2+ , Ca 2+ и др.

Для уменьшения влияния «неизбежных» ионов (полностью исключить их влияние невозможно) используют соответствующие реагенты (соду, известь, щелочи), переводящие многие ионы в неактивную форму.

Технология флотационного процесса предполагает использование различных вариантов технологических схем флотации в зависимости от состава и свойств минерального сырья. Для характеристики технологических схем флотации принята специальная терминология.

Прямая флотация – процесс флотационного разделения, при котором ценный компонент переводится в пенный продукт. При обратной флотации в пенный продукт переводятся породные минералы, а ценный компонент концентрируется в камерном продукте. (Бывают случаи, когда оба продукта являются концентратами, например, при селекции медно-цинковых коллективных концентратов).

Основной флотацией называется начальная операция флотационной схемы, в которой предварительно разделяются определенные группы минералов. Например, в пенный продукт переводятся ценные минералы, а в камерном остаются породные; или в пенном продукте концентрируются минералы, содержащие одни ценные компоненты, а в камерном – другие ценные компоненты. В основной операции, как правило, невозможно получение кондиционных по качеству концентратов и отвальных хвостов (отходов).

Перечистной флотацией (или перечисткой) называют операции, в которых подвергают повторной флотации концентраты предыдущих операций флотации для повышения их качества.

Контрольной флотацией называют операции флотации хвостов предыдущих операций (чаще всего – основной флотации) для доизвлечения ценных компонентов из них.

Циклом флотации называется совокупность операций, характеризуемых каким-либо единым признаком, например ценным компонентом (медный цикл, цинковый цикл), и в котором обязательно получают один или несколько конечных продуктов.

Стадией флотации называют совокупность операций, происходящих при неизменной крупности твердой фазы пульпы. К этим операциям относятся непосредственно различные операции флотации, операции измельчения, классификации и т. д. Первая стадия флотации осуществляется на предварительно измельченной руде, последующие стадии – после доизмельчения каких-либо продуктов флотации предыдущей стадии (концентратов, хвостов, промпродуктов).

Порядок выделения ценных компонентов из руды при флотационном методе обогащения может быть различным. При коллективной флотации в общий концентрат выделяют одновременно несколько ценных компонентов, а в дальнейшем производят их разделение (селекцию). Селективная флотация предполагает последовательное получение концентратов различных компонентов, причем обычно вначале выделяют наиболее легкофлотируемые минералы, затем труднофлотируемые. Во многих случаях применяют коллективно-селективные схемы флотации , согласно которым вначале получают коллективный концентрат, содержащий несколько ценных компонентов, а затем из него получают концентраты каждого компонента в отдельности. Применение коллективно-селективной флотации позволяет существенно упростить технологическую схему и уменьшить «фронт флотации», т. е. сократить количество флотомашин, необходимых для осуществления процесса.

На рис. 6.10, а приведена принципиальная схема селективной флотации свинцово-цинково-баритовой руды, а на рис. 6.10, б – принципиальная схема коллективно-селективной флотации медно-цинково-пиритной руды.

Рис. 6.10. Принципиальные схемы флотации

На принципиальных схемах каждый цикл флотации изображается в виде одной операции, на подробных качественно-количественных схемах каждый цикл «разворачивается» в технологическую схему с основными, перечистными и контрольными флотациями, операциями измельчения, классификации и т. п.

Флотация руды представляет собой такую методику, которая позволяет сделать работу с полезными ископаемыми эффективнее и выгоднее. Разные элементы отличаются между собой способностью удерживаться на поверхности, где контактируют две фазы, то есть происходит раздел сред. Флотация - это процесс, который основан на удельной энергии поверхности.

Если говорить о частицах, то их можно разделить на следующие группы:

  • гидрофобные;
  • гидрофильные.

О гидрофобности…

Итак, метод флотации основан на том, что вода по-разному влияет на различные молекулы. О чем идет речь?

Под гидрофобными принято понимать такие молекулы, для которых вода относительно «безопасна», то есть смачиваются они из-за особенностей своей структуры очень плохо. Такие частицы сформированы таким образом, чтобы по возможности избегать контакта с водой.

В реальности подобное поведение можно наблюдать невооруженным глазом, если выйти утром из дома: роса или дождевые капли на листья деревьев и на траве формируют небольшие капли. При этом растения проявляют свою гидрофобность, не позволяя жидкости растекаться по поверхности. Что касается полезных руд, то тут сходная логика, но сопряженная с измельчением породы. Молекулы полезных веществ гидрофобны, и в ситуации, когда они оказываются в жидкой среде, происходит взаимодействие с газовыми молекулами, помогающее полезным ископаемым всплывать. Это сопряжено с природным стремлением к уменьшению энергии.

…и гидрофильности

Под гидрофильными принято понимать такие частицы, которые жидкостью могут быть смочены без особенного труда. Для этих веществ нет «дискомфорта» в ситуации, когда вещество оказалось в суспензии.

Если гидрофобные молекулы стремятся вступить в контакт с газами, у гидрофильных такой особенности не зафиксировано. Также гидрофильные соединения в своей основной массе не проявляют специфических свойств относительно масел, к которым так и «липнут» гидрофобные молекулы.

Метод флотации

Отличаются разные технологии границей раздела, создаваемой, чтобы компоненты отделялись друг от друга. Наиболее современные:

  • Масляная флотация - это такой вариант, когда смешивают предварительно измельченные руды с жидкостью, маслом. Это приводит к всплытию сульфидных соединений.
  • Пенная флотация - это технология, предполагающая измельчение руды, смешивание ее с водой, обработку полученного составом воздушными пузырьками. Этот процесс приводит к формированию пены на поверхности смеси. В ней будут находиться компоненты, которые нужно было выделить из породы. Специальной машиной пену отводят и высушивают.

Второй вариант требует измельчения исходной породы до частиц, диаметр которых не превышает 0,2 мм.

Это важно!

В современной промышленности высоко ценятся различные руды, далеко не все они отличаются гидрофобностью, а значит, описанная технология не будет работать для их извлечения. Тогда применяют химические составы - реагенты. Это такие компоненты, благодаря которым целевые частицы либо приобретают гидрофобные качества, либо теряют их.

Существуют следующие реагенты:

  • образователи пены;
  • регуляторы, повышающие гидрофильность;
  • собиратели;
  • активаторы, формирующие такие условия, в которых собиратели закрепляются на поверхности;
  • депрессоры, исключающие увеличение гидрофобности веществ (применяются для того, чтобы процесс стал более селективным).

Особенности работы

Флотация - это очень важный технологический процесс, который незаменим в промышленности, так как помогает обогащать руды с высокой результативностью. Эффективность показывает пенная технология, именно она и распространена в наши дни шире всего.

Чтобы начать флотацию, материалы сперва проходят через мельницу, что позволяет получить шихту, и уже после этого начинается процесс пенообразования. Чтобы флотация воды была результативной, выбирают такие размеры частиц, которые бы гарантировали разделение минералов. Оптимальный вариант - до 0,1 мм, но иногда измельчают и на компоненты размером всего 0,04 мм. Если в процессе окажутся более крупные компоненты, они снизят эффективность всей технологии в целом, так как имеют отрицательное действие. Также понижают эффективность процесса слишком мелкие составляющие, из-за которых элементы нормального размера не могут нормально взаимодействовать с воздушными пузырьками. Для улучшения качества необходимо использовать реагенты.

А как еще используем?

Обогащение руд - это не единственная область применения описанной технологии. В частности, широко распространена флотация сточных вод. Эта методика показала свою эффективность в ситуации, когда необходимо удалить из жидкости диспергированные компоненты, так как таковые нельзя убрать в процессе отстаивания.

Метод «пузырек-частица» показал высокую эффективность при выделении из воды следующих примесей:

  • продукты нефтяного производства;
  • нефть;
  • маслянистые вещества;
  • волокнистые компоненты.

Флотация - очистка сточных вод, в ходе которой все эти загрязняющие вещества просто всплывают на поверхность, что позволяет их быстро удалить вместе с образовавшейся пеной. Чтобы слой пены стал плотнее, а также для его разрушения допускается применять нагрев, а также использовать разработанные для этого приборы - «брызгалки».

Как это происходит

Очистка воды (флотации) происходят за счет способности частиц прилипать к пузырькам воздуха. Правда, это распространяется, как указано выше, только на гидрофобные компоненты. Чтобы сформировалась пара из воздушного пузыря и загрязняющей жидкость частицы, необходимо обеспечить их интенсивное взаимодействие. Это может быть обусловлено наличием реагента, создающего химически оптимальную среду для реакции. Также используется напорная флотация, когда создается избыточное давление в среде.

Флотация эффективна и в том случае, когда из жидкости следует удалить вещества, которые в ней уже растворились. Это касается в первую очередь поверхностно-активных веществ. Применяют в таком случае так называемую парную сепарацию. Здесь комплекс из веществ и газового пузыря образуется за счет реагента. Его надежность будет связана с природой загрязняющего компонента и его особенностями.

Ключевые преимущества

Флотация - очистка, имеющая ряд положительных параметров, что и стало причиной столь широкого распространения этой технологии в мире.

Основные аспекты:

  • обширность применимости;
  • непрерывность технологии;
  • невысокая стоимость;
  • простота эксплуатации;
  • применение в работе простых машин;
  • быстрота получения результата;
  • селективность;
  • не столь высокий уровень влажности шлама;
  • эффективность (до 98%);
  • выделяемые компоненты можно рекуперировать.

При флотации производится эффективная аэрация, понижается процентное соотношение жидкости и ПАВ, а также уменьшается количество микроскопических организмов, бактерий. Сточные воды, прошедшие флотацию, могут подаваться на очистительные установки более высокого уровня.

Разновидности технологии

Различные методики друг от друга отличаются в первую очередь по насыщаемости жидкости газами. Принято говорить о:

  • выделении из раствора воздуха;
  • диспергировании при применении механического воздействия;
  • применении пористых материалов для подачи воздушного потока;
  • химической технологии;
  • биологической флотации;
  • использовании электричества.

Установки, при помощи которых осуществляется флотация ПАВ и других примесей в жидкостях, бывают двухкамерные или однокамерные. Если камера только одна, то в ней жидкость наполняется газами и здесь же из нее выделяют загрязняющие компоненты. При наличии двух камер в одной происходит контакт с воздушным потоком, а в другом смесь может отстаиваться, во время чего шлам всплывает, а жидкость осветляется.

Флотация в медицине

Говоря об этой незаменимой методике выделения примесей из основного вещества, просто нельзя не упомянуть использование ее в медицине. Наиболее актуальна флотация кала для выявления наличия в органическом веществе гельминтов. Эта методика позволяет делать выводы о содержании:

  • ооцист;
  • цист.

Результаты оказываются достаточно точными только в том случае, когда ко врачам попадают свежие выделения. Чтобы удалось корректно и точно проанализировать вещество на наличие гельминтов, нужно хранить органическое вещество в холодильнике не более 72 часов. В некоторых случаях получается так, что образцы уже получены, а взять новые возможности нет, но изучение следует отложить на период, превышающий 72 часа. Выход есть: применяют 10% формалин. Этот раствор будет играть роль буфера. Если органические вещества были законсервированы таким образом, они могут далее использоваться в ходе исследований концентрации.

Технологии и точность

Флотация дает возможность выявить бактерии, стойкие к воздействию кислот, а также провести иммунологический анализ. Наиболее простой и легкий в реализации способ - это гравитационная флотация, также известная как стоячая. Он требует относительно мало времени на свою реализацию.

Альтернативный вариант - использование медицинских центрифуг. Этот метод более чувствителен, его результаты точнее ориентировочно в восемь раз. Если органические выделения пациента содержат небольшой процент гельминтов, гравитационный метод может показать их отсутствие, но этот результат окажется ложным. Чтобы быть уверенным в точности итогов, следует применять центрифуги.

Важные аспекты

Флотация - это такая методика выявления гельминтов, которой свойственны некоторые ограничения. О чем идет речь? К примеру, если предполагается, что в кале содержатся тяжелые яйца, их таким способом обнаружить вряд ли удастся. Это обусловлено тем, что они просто не могут всплыть из-за своего размера и массы. Кроме того, флотация не показывает достаточного эффекта на ларвальной стадии.

Планируя исследование, врачи должны помнить о том, что флотационная среда оказывает прямое влияние на точность результата. Наиболее значимые параметры:

  • удельный вес;
  • тип вещества.

Многие исследователи сходятся на том, что наилучшие результаты показывает сульфат цинка. Для этого соединения удельный вес варьируется в границах 1,18-1,2. Такой раствор даст возможность с высоким уровнем точности выявить цисты, яйца, а также поддержать структурные элементы цист.

Центрифуга: как это происходит

Рабочий процесс врача, изучающего кал на предмет наличия в нем гельминтов при помощи специальной установки, выглядит следующим образом:

  • готовится эмульсия, в которой на 30 мл раствора приходится 5 г испражнений;
  • эмульсия фильтруется через марлю в пробирку;
  • пробирка заполняется флотационной средой, пока мениска не станет положительной;
  • пробирка помещается на стекло, балансируется в установке;
  • центрифуга запускается на 10 минут на скорость до 15 тысяч оборотов в минуту.

По завершении этого процесса доктор получает покровное стекло (его необходимо доставать вертикально), которое можно изучить под микроскопом. Исследование проводится около 10 минут - начинают с десятикратного увеличения, увеличивая его затем в четыре раза. Это дает возможность с точностью говорить о наличии микроскопических организмов, а также делать выводы об их структурах и о том, какого размера есть вредные организмы и их частицы.

Нововведения

Методики не стоят на месте, и применяемая в медицине флотация в последнее время также была усовершенствована. В частности, удалось разработать такую центрифугу, которая оснащена угловым ротором. В этой установке контейнеры не колеблются свободно, последнее вращение не сопровождается наложением на покровное стекло.

При завершающем этапе обработки смеси в установке пробирку нужно поставить вертикально в специальный штатив, затем долить в нее раствор, сохраняя верхний слой в целости. Когда мениска становится положительной, устанавливают покровное стекло и оставляют стоять пробирку не более пяти минут. Далее стекло убирают и изучают его под микроскопом также под двумя мощностями увеличения.