Уравнение прямой в отрезках в пространстве. Нахождение уравнения прямой для отрезка

Продолжаем изучение раздела «Уравнение прямой на плоскости» и в этой статье разберем тему «Уравнение прямой в отрезках». Последовательно рассмотрим вид уравнения прямой в отрезках, построение прямой линии, которая задается этим уравнением, переход от общего уравнения прямой к уравнению прямой в отрезках. Все это будет сопровождаться примерами и разбором решения задач.

Пусть на плоскости расположена прямоугольная система координат O x y .

Прямая линия на плоскости в декартовой системе координат O x y задается уравнением вида x a + y b = 1 , где a и b – это некоторые действительные числа, отличные от нуля, величины которых равны длинам отрезков, отсекаемых прямой линией на осях O x и O y . Длины отрезков считаются от начала координат.

Как мы знаем, координаты любой из точек, принадлежащих прямой линии, заданной уравнением прямой, удовлетворяют уравнению этой прямой. Точки a , 0 и 0 , b принадлежат данной прямой линии, так как a a + 0 b = 1 ⇔ 1 ≡ 1 и 0 a + b b = 1 ⇔ 1 ≡ 1 . Точки a , 0 и b , 0 расположены на осях координат O x и O y и удалены от начала координат на a и b единиц. Направление, в котором нужно откладывать длину отрезка, определяется знаком, который стоит перед числами a и b . Знак « - » обозначает, что длину отрезка необходимо откладывать в отрицательном направлении координатной оси.

Поясним все вышесказанное, расположив прямые относительно фиксированной декартовой системы координат O x y на схематическом чертеже. Уравнение прямой в отрезках x a + y b = 1 применяется для построения прямой линии в декартовой системе координат O x y . Для этого нам необходимо отметить на осях точки a , 0 и b , 0 , а затем соединить эти точки линией при помощи линейки.

На чертеже показаны случаи, когда числа a и b имеют различные знаки, и, следовательно, длины отрезков откладываются в разных направлениях координатных осей.

Рассмотрим пример.

Пример 1

Прямая линия задана уравнением прямой в отрезках вида x 3 + y - 5 2 = 1 . Необходимо построить эту прямую на плоскости в декартовой системе координат O x y .

Решение

Используя уравнение прямой в отрезках, определим точки, через которые проходит прямая линия. Это 3 , 0 , 0 , - 5 2 . Отметим их и проведем линию.

Приведение общего уравнения прямой к уравнению прямой в отрезках

Переход от заданного уравнения прямой к уравнению прямой в отрезках облегчает нам решение различных задач. Имея полное общее уравнение прямой, мы можем получить уравнение прямой в отрезках.

Полное общее уравнение прямой линии на плоскости имеет вид A x + B y + C = 0 , где А, В и C не равны нулю. Мы переносим число C в правую часть равенства, делим обе части полученного равенства на – С. При этом, коэффициенты при x и y мы отправляем в знаменатели:

A x + B y + C = 0 ⇔ A x + B y = - C ⇔ ⇔ A - C x + B - C y = 1 ⇔ x - C A + y - C B = 1

Для осуществления последнего перехода мы воспользовались равенством p q = 1 q p , p ≠ 0 , q ≠ 0 .

В результате, мы осуществили переход от общего уравнения прямой A x + B y + C = 0 к уравнению прямой в отрезках x a + y b = 1 , где a = - C A , b = - C B .

Разберем следующий пример.

Пример 2

Осуществим переход к уравнению прямой в отрезках, имея общее уравнение прямой x - 7 y + 1 2 = 0 .

Решение

Переносим одну вторую в правую часть равенства x - 7 y + 1 2 = 0 ⇔ x - 7 y = - 1 2 .

Делим обе части равенства на - 1 2: x - 7 y = - 1 2 ⇔ 1 - 1 2 x - 7 - 1 2 y = 1 .

Преобразуем полученное равенство к нужному виду: 1 - 1 2 x - 7 - 1 2 y = 1 ⇔ x - 1 2 + y 1 14 = 1 .

Мы получили уравнение прямой в отрезках.

Ответ: x - 1 2 + y 1 14 = 1

В тех случаях, когда прямая линия задана каноническим или параметрическим уравнением прямой на плоскости, то сначала мы переходим к общему уравнению прямой, а затем уже к уравнению прямой в отрезках.

Перейти от уравнения прямой в отрезках и общему уравнению прямой осуществляется просто: мы переносим единицу из правой части уравнения прямой в отрезках вида x a + y b = 1 в левую часть с противоположным знаком, выделяем коэффициенты перед неизвестными x и y .

x a + y b = 1 ⇔ x a + y b - 1 = 0 ⇔ 1 a · x + 1 b · y - 1 = 0

Получаем общее уравнение прямой, от которого можно перейти к любому другому виду уравнения прямой на плоскости. Процесс перехода мы подробно разобрали в теме «Приведение общего уравнения прямой к другим видам уравнения прямой».

Пример 3

Уравнение прямой в отрезках имеет вид x 2 3 + y - 12 = 1 . Необходимо написать общее уравнение прямой на плоскости.

Решение

Действует по заранее описанному алгоритму:

x 2 3 + y - 12 = 1 ⇔ 1 2 3 · x + 1 - 12 · y - 1 = 0 ⇔ ⇔ 3 2 · x - 1 12 · y - 1 = 0

Ответ: 3 2 · x - 1 12 · y - 1 = 0

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Пусть задана некоторая афинная система координат OXY.

Теорема 2.1. Любая прямая l системе координат ОX задается линейным уравнением вида

Аx + By + С = О, (1)

где А, В, С R и А 2 + В 2 0. Обратно, любое уравнение вида (1) задает прямую.

Уравнение вида (1) - общее уравнение прямой .

Пусть в уравнении (1) все коэффициенты А, В и С отличны от нуля. Тогда

Ах-By=-С, и .

Обозначим -С/А=а, -С/B=b. Получим

-уравнение в отрезках .

Действительно, числа |а| и |b| указывают на величины отрезков, отсекаемых прямой l на осях ОХ и OY соответственно.

Пусть прямая l задана общим уравнением (1) в прямоугольной системе координат и пусть точки M 1 (x 1 ,у 1) и М 2 (х 2 ,у 2) принадлежит l . Тогда

Аx 1 + Ву 1 + С = Ах 2 + Ву 2 + С, то есть A(x 1 -x 2) + В(у 1 -у 2) = 0.

Последнее равенство означает, что вектор =(А,В) ортогонален вектору =(x 1 -x 2 ,у 1 -у 2). т.е. Вектор (А,В) называется нормальным вектором прямой l .

Рассмотрим вектор =(-В,А). Тогда

А(-В)+ВА=0. т.е. ^ .

Следовательно, вектор =(-В,А) является направляющим вектором пряной l .

Параметрическое и каноническое уравнения прямой

Уравнение прямой, проходящей через две заданные точки

Пусть в афинной системе координат (0, X, Y) задана прямая l , ее направлящий вектор = (m,n) и точка M 0 (x 0 ,y 0) принадлежащая l . Тогда для произвольной точки M (x ,у ) этой прямой имеем

и так как то .

Если обозначить и

Радиус-векторы соответственно точек M и M 0 , то

- уравнение прямой в векторной форме.

Так как =(х ,у ), =(х 0 ,у 0), то

x = x 0 + mt ,

y = y 0 + nt

- параметрическое уравнение прямой .

Отсюда следует, что

- каноническое уравнение прямой .

Наконец, если на прямой l заданы две точки M 1 (х 1 ,у 1) и

M 2 (x 2 ,у 2), то вектор =(х 2 -х 1 ,y 2 -у 1) является направляющим вектором прямой l . Тогда



- уравнение прямой проходящей через две заданные точки .

Взаимное расположение двух прямых .

Пусть прямые l 1 и l 2 заданы своими общими уравнениями

l 1: А 1 х + В 1 у + С 1 = 0, (1)

l 2: А 2 х + В 2 у + С 2 = 0.

Теорема . Пусть прямые l 1 и l 2 заданы уравнениями (1). Тогда и только тогда:

1) прямые пересекаются, когда не существует такого числа λ, что

A 1 =λA 2 , В 1 =λB 2 ;

2) прямые совпадают, когда найдется такое число λ, что

А 1 =λA 2 , B 1 =λB 2 , С 1 =λС 2 ;

3) прямые различны и параллельны, когда найдется такое числе λ, что

А 1 =λA 2 , В 1 =λВ 2 , С 1 λС 2 .

Пучок прямых

Пучком прямых называется совокупность всех прямых на плоскости, проходящих через некоторую точку, называемую центром пучка.

Для задания уравнения пучка достаточно знать какие-либо две прямые l 1 и l 2 , проходящие через центр пучка.

Пусть в аффинной системе координат прямые l 1 и l 2 заданы уравнениями

l 1: A 1 x + B 1 y + C 1 = 0,

l 2: A 2 x + B 2 y + C 2 = 0.

Уравнение:

A 1 x + B 1 y + С + λ (A 2 х + В 2 y + C) = 0

- уравнение пучка прямых, определяемого уравнениями l 1 и l 2.

В дальнейшем, под системой координат будем понимать прямоугольную систему координат .

Условия параллельности и перпендикулярности двух прямых

Пусть заданы прямые l 1 и l 2 . своими общими уравненими; = (А 1 ,B 1), = (А 2 ,В 2) – нормальные векторы этих прямых; k 1 = tgα 1 , k 2 = tgα 2 – угловые коэффициенты; = (m 1 ,n 1), (m 2 ,n 2) – направляющие векторы. Тогда, прямые l 1 и l 2 параллельны, в том и только том случае, если выполняется одно из следующих условий:

либо , либо k 1 =k 2 , либо .

Пусть теперь прямые l 1 и l 2 перпендикулярны. Тогда, очевидно, , то есть А 1 А 2 + В 1 В 2 = 0.

Если прямые l 1 и l 2 заданы соответственно уравнениями

l 1: у =k 1 x + b 1 ,

l 2: у =k 2 x + b 2 ,

то tgα 2 = tg(90º+α) = .

Отсюда следует, что

Наконец, если и направляющие векторы прямых, то ^ , то есть

m 1 m 2 + n 1 n 2 = 0

Последнее соотношения выражают необходимое и достаточное условие перпендикулярности двух плоскостей.

Угол между двумя прямыми

Под углом φ между двумя прямыми l 1 и l 2 будем понимать наименьший угол, на который надо повернуть одну прямую, чтобы она стала параллельной другой прямой или совпала с ней, то есть 0 £ φ £

Пусть прямые заданы общими уравнениями. Очевидно, что

cosφ=

Пусть теперь прямые l 1 и l 2 задана уравнениями с угловыми коэффициентами k 1 в k 2 соответственно. Тогда

Очевидно, что , то есть (х -х 0) + В(у -у 0) + C(z -z 0) = 0

Раскроем скобки и обозначим D= -Аx 0 - Ву 0 - Cz 0 . Получим

Ax + By + Сz + D = 0 (*)

- уравнение плоскости в общем виде или общее уравнение плоскости .

Теорема 3.1 Линейное уравнение (*) (A 2 +B 2 +C 2 ≠ 0) является уравнением плоскости и обратно, любое уравнение плоскости является линейным.

1) D = 0, тогда плоскость проходит через начало координат.

2) А = 0, тогда плоскость параллельна оси ОХ

3) А = 0, В = 0, тогда плоскость параллельна плоскости OXY.

Пусть в уравнении все коэффициенты отличны от нуля.

- уравнение плоскости в отрезках . Числа |а|, |b|, |с| указывают на величины отрезков, отсекаемых плоскостью на координатных осях.

Уравнение прямой вида , где a и b – некоторые действительные числа отличные от нуля, называется уравнением прямой в отрезках . Это название не случайно, так как абсолютные величины чисел а и b равны длинам отрезков, которые прямая отсекает на координатных осях Ox и Oy соответственно (отрезки отсчитываются от начала координат). Таким образом, уравнение прямой в отрезках позволяет легко строить эту прямую на чертеже. Для этого следует отметить в прямоугольной системе координат на плоскости точки с координатами и , и с помощью линейки соединить их прямой линией.

Для примера построим прямую линию, заданную уравнением в отрезках вида . Отмечаем точки и соединяем их.

Детальную информацию об этом виде уравнения прямой на плоскости Вы можете получить в статье уравнение прямой в отрезках.

К началу страницы

Конец работы -

Эта тема принадлежит разделу:

Алгебра и аналитическая геометрия. Понятие матрица, операции над матрицами и их свойства

Понятие матрица операции над матрицами и их свойства.. матрица это прямоугольная таблица составленная из чисел которые нельзя.. а сложение матриц поэлементная операция..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Определение дифференцируемости
Операция нахождения производной называется дифференцированием функции. Функция называется дифференцируемой в некоторой точке, если она имеет в этой точке конечную производную, и

Правило дифференцирования
Следствие 1. Постоянный множитель можно выносить за знак производной:

Геометрический смысл производной. Уравнение касательной
Углом наклона прямой y = kx+b называют угол, отсчитываемый от полож

Геометрический смысл производной функции в точке
Рассмотрим секущую АВ графика функции y = f(x) такую, что точки А и В имеют соответственно координаты

Решение
Функция определена для всех действительных чисел. Так как (-1; -3) – точка касания, то

Необходимые условия экстремума и достаточные условия экстремума
Определение возрастающей функции. Функция y = f(x) возрастает на интервале X, если для любых

Достаточные признаки экстремума функции
Для нахождения максимумов и минимумов функции можно пользоваться любым из трех достаточных признаков экстремума. Хотя самым распространенным и удобным является первый из них.


Основные свойства определенного интеграла. Свойство 1. Производная от определённого интеграла по верхнему пределу равна подынтегральной функции, в которую вместо переменной интегрирован

Формула Ньютона-Лейбница (с доказательством)
Формула Ньютона-Лейбница. Пусть функция y = f(x) непрерывна на отрезке и F(x) - одна из первообразных функции на этом отрезке, тогда справедливо рав

И подробно разберем особый вид уравнения прямой – . Начнем с вида уравнения прямой в отрезках и приведем пример. После этого остановимся на построении прямой линии, которая задана уравнением прямой в отрезках. В заключении покажем, как осуществляется переход от полного общего уравнения прямой к уравнению прямой в отрезках.

Навигация по странице.

Уравнение прямой в отрезках – описание и пример.

Пусть на плоскости зафиксирована Oxy .

Уравнение прямой в отрезках на плоскости в прямоугольной системе координат Oxy имеет вид , где a и b - некоторые отличные от нуля действительные числа.

Уравнение прямой в отрезках не случайно получило такое название - абсолютные величины чисел a и b равны длинам отрезков, которые отсекает прямая на координатных осях Ox и Oy , считая от начала координат.

Поясним этот момент. Мы знаем, что координаты любой точки прямой удовлетворяют уравнению этой прямой. Тогда отчетливо видно, что прямая, заданная уравнением прямой в отрезках, проходит через точки и , так как и . А точки и как раз расположены на координатных осях Ox и Oy соответственно и удаленны от начала координат на a и b единиц. Знаки чисел a и b указывают направление, в котором следует откладывать отрезки. Знак «+» означает, что отрезок откладывается в положительном направлении координатной оси, знак «-» означает обратное.

Изобразим схематический чертеж, поясняющий все вышесказанное. На нем показано расположение прямых относительно фиксированной прямоугольной системы координат Oxy в зависимости от значений чисел a и b в уравнении прямой в отрезках.


Теперь стало понятно, что уравнение прямой в отрезках позволяет легко производить построение этой прямой линии в прямоугольной системе координат Oxy . Чтобы построить прямую линию, которая задана уравнением прямой в отрезках вида , следует отметить в прямоугольной системе координат на плоскости точки и , после чего соединить их прямой линией с помощью линейки.

Приведем пример.

Пример.

Постройте прямую линию, заданную уравнением прямой в отрезках вида .

Решение.

По заданному уравнению прямой в отрезках видно, что прямая проходит через точки . Отмечаем их и соединяем прямой линией.

Приведение общего уравнения прямой к уравнению прямой в отрезках.

При решении некоторых задач, связанных с прямой на плоскости, удобно работать с уравнением прямой в отрезках. Однако существуют другие виды уравнений, задающих прямую на плоскости. Поэтому приходится осуществлять переход от заданного уравнения прямой к уравнению этой прямой в отрезках.

В этом пункте мы покажем, как получить уравнение прямой в отрезках, если дано полное общее уравнение прямой .

Пусть нам известно полное общее уравнение прямой на плоскости . Так как А , В и С не равны нулю, то можно перенести число С в правую часть равенства, разделить обе части полученного равенства на –С , а коэффициенты при x и y отправить в знаменатели:
.

(В последнем переходе мы пользовались равенством ).

Так мы от общего уравнения прямой перешли к уравнению прямой в отрезках , где .

Пример.

Прямая в прямоугольной системе координат Oxy задана уравнением . Напишите уравнение этой прямой в отрезках.

Решение.

Перенесем одну вторую в правую часть заданного равенства: . Теперь разделим на обе части полученного равенства: . Осталось преобразовать полученное равенство к нужному виду: . Так мы получили требуемое уравнение прямой в отрезках.

Ответ:

Если прямую определяет

Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем , то получим

Xcosj + ysinj - p = 0 –

нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример. Дано общее уравнение прямой 12х – 5у – 65 = 0. Требуется написать различные типы уравнений этой прямой.

уравнение этой прямой в отрезках:

уравнение этой прямой с угловым коэффициентом: (делим на 5)

нормальное уравнение прямой:

; cosj = 12/13; sinj = -5/13; p = 5.

Cледует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые, параллельные осям или проходящие через начало координат.

Пример. Прямая отсекает на координатных осях равные положительные отрезки. Составить уравнение прямой, если площадь треугольника, образованного этими отрезками равна 8 см 2 .

Уравнение прямой имеет вид: , a = b = 1; ab/2 = 8; a = 4; -4.

a = -4 не подходит по условию задачи.

Итого: или х + у – 4 = 0.

Пример. Составить уравнение прямой, проходящей через точку А(-2, -3) и начало координат.

Уравнение прямой имеет вид: , где х 1 = у 1 = 0; x 2 = -2; y 2 = -3.

Уравнение прямой, проходящей через данную точку

Перпендикулярно данной прямой.

Определение. Прямая, проходящая через точку М 1 (х 1 , у 1) и перпендикулярная к прямой у = kx + b представляется уравнением:

Угол между прямыми на плоскости.

Определение. Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми будет определяться как

Две прямые параллельны, если k 1 = k 2 .

Две прямые перпендикулярны, если k 1 = -1/k 2 .

Теорема. Прямые Ах + Ву + С = 0 и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты А 1 = lА, В 1 = lВ. Если еще и С 1 = lС, то прямые совпадают.

Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.

Расстояние от точки до прямой.

Теорема. Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С =0 определяется как

Доказательство. Пусть точка М 1 (х 1 , у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М 1:

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой.

Если преобразовать первое уравнение системы к виду:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

Пример. Определить угол между прямыми: y = -3x + 7; y = 2x + 1.

k 1 = -3; k 2 = 2 tgj = ; j = p/4.

Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

Находим: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1, следовательно, прямые перпендикулярны.

Пример. Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С.

Находим уравнение стороны АВ: ; 4x = 6y – 6;

2x – 3y + 3 = 0;

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b.

k = . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .

Ответ: 3x + 2y – 34 = 0.

Кривые второго порядка.

Кривая второго порядка может быть задана уравнением

Ах 2 + 2Вху + Су 2 + 2Dx + 2Ey + F = 0.

Существует система координат (не обязательно декартова прямоугольная), в которой данное уравнение может быть представлено в одном из видов, приведенных ниже.

1) - уравнение эллипса.

2) - уравнение “мнимого” эллипса.

3) - уравнение гиперболы.

4) a 2 x 2 – c 2 y 2 = 0 – уравнение двух пересекающихся прямых.

5) y 2 = 2px – уравнение параболы.

6) y 2 – a 2 = 0 – уравнение двух параллельных прямых.

7) y 2 + a 2 = 0 – уравнение двух “мнимых” параллельных прямых.

8) y 2 = 0 – пара совпадающих прямых.

9) (x – a) 2 + (y – b) 2 = R 2 – уравнение окружности.

Окружность.

В окружности (x – a) 2 + (y – b) 2 = R 2 центр имеет координаты (a; b).

Пример. Найти координаты центра и радиус окружности, если ее уравнение задано в виде:

2x 2 + 2y 2 – 8x + 5y – 4 = 0.

Для нахождения координат центра и радиуса окружности данное уравнение необходимо привести к виду, указанному выше в п.9. Для этого выделим полные квадраты:

x 2 + y 2 – 4x + 2,5y – 2 = 0

x 2 – 4x + 4 –4 + y 2 + 2,5y + 25/16 – 25/16 – 2 = 0

(x – 2) 2 + (y + 5/4) 2 – 25/16 – 6 = 0

(x – 2) 2 + (y + 5/4) 2 = 121/16

Отсюда находим О(2; -5/4); R = 11/4.

Эллипс.

Определение. Эллипсом называется кривая, заданная уравнением .

Определение. Фокусами называются такие две точки, сумма расстояний от которых до любой точки эллипса есть постоянная величина.

F 1 , F 2 – фокусы. F 1 = (c; 0); F 2 (-c; 0)

с – половина расстояния между фокусами;

a – большая полуось;

b – малая полуось.

Теорема. Фокусное расстояние и полуоси эллипса связаны соотношением:

a 2 = b 2 + c 2 .

Доказательство: В случае, если точка М находится на пересечении эллипса с вертикальной осью, r 1 + r 2 = 2 (по теореме Пифагора). В случае, если точка М находится на пересечении эллипса с горизонтальной осью, r 1 + r 2 = a – c + a + c. Т.к. по определению сумма r 1 + r 2 – постоянная величина, то, приравнивая, получаем:

a 2 = b 2 + c 2

r 1 + r 2 = 2a.

Определение. Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом .

Т.к. с < a, то е < 1.

Определение. Величина k = b/a называется коэффициентом сжатия эллипса, а величина 1 – k = (a – b)/a называется сжатием эллипса.

Коэффициент сжатия и эксцентриситет связаны соотношением: k 2 = 1 – e 2 .

Если a = b (c = 0, e = 0, фокусы сливаются), то эллипс превращается в окружность.

Если для точки М(х 1 , у 1) выполняется условие: , то она находится внутри эллипса, а если , то точка находится вне эллипса.

Теорема. Для произвольной точки М(х, у), принадлежащей эллипсу верны соотношения :

R 1 = a – ex, r 2 = a + ex.

Доказательство. Выше было показано, что r 1 + r 2 = 2a. Кроме того, из геометрических соображений можно записать:

После возведения в квадрат и приведения подобных слагаемых:

Аналогично доказывается, что r 2 = a + ex. Теорема доказана.

С эллипсом связаны две прямые, называемые директрисами . Их уравнения:

X = a/e; x = -a/e.

Теорема. Для того, чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету е.

Пример. Составить уравнение прямой, проходящей через левый фокус и нижнюю вершину эллипса, заданного уравнением:

1) Координаты нижней вершины: x = 0; y 2 = 16; y = -4.

2) Координаты левого фокуса: c 2 = a 2 – b 2 = 25 – 16 = 9; c = 3; F 2 (-3; 0).

3) Уравнение прямой, проходящей через две точки:

Пример. Составить уравнение эллипса, если его фокусы F 1 (0; 0), F 2 (1; 1), большая ось равна 2.

Уравнение эллипса имеет вид: . Расстояние между фокусами:

2c = , таким образом, a 2 – b 2 = c 2 = ½

по условию 2а = 2, следовательно а = 1, b =

Гипербола.

Определение. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами есть величина постоянная, меньшая расстояния между фокусами.

По определению ïr 1 – r 2 ï= 2a. F 1 , F 2 – фокусы гиперболы. F 1 F 2 = 2c.

Выберем на гиперболе произвольную точку М(х, у). Тогда:

обозначим с 2 – а 2 = b 2 (геометрически эта величина – меньшая полуось)

Получили каноническое уравнение гиперболы.

Гипербола симметрична относительно середины отрезка, соединяющего фокусы и относительно осей координат.

Ось 2а называется действительной осью гиперболы.

Ось 2b называется мнимой осью гиперболы.

Гипербола имеет две асимптоты, уравнения которых

Определение. Отношение называется эксцентриситетом гиперболы, где с – половина расстояния между фокусами, а – действительная полуось.

С учетом того, что с 2 – а 2 = b 2:

Если а = b, e = , то гипербола называется равнобочной (равносторонней).

Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии a/e от него, называются директрисами гиперболы. Их уравнения: .

Теорема. Если r – расстояние от произвольной точки М гиперболы до какого- либо фокуса, d – расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение r/d – величина постоянная, равная эксцентриситету.

Доказательство. Изобразим схематично гиперболу.

Из очевидных геометрических соотношений можно записать:

a/e + d = x, следовательно d = x – a/e.

(x – c) 2 + y 2 = r 2

Из канонического уравнения: , с учетом b 2 = c 2 – a 2:

Тогда т.к. с/a = e, то r = ex – a.

Для левой ветви гиперболы доказательство аналогично. Теорема доказана.

Пример. Найти уравнение гиперболы, вершины и фокусы которой находятся в соответствующих вершинах и фокусах эллипса .

Для эллипса: c 2 = a 2 – b 2 .

Для гиперболы: c 2 = a 2 + b 2 .


Уравнение гиперболы: .

Пример. Составить уравнение гиперболы, если ее эксцентриситет равен 2, а фокусы совпадают с фокусами эллипса с уравнением параметром параболы. Выведем каноническое уравнение параболы.

Из геометрических соотношений: AM = MF; AM = x + p/2;

MF 2 = y 2 + (x – p/2) 2

(x + p/2) 2 = y 2 + (x – p/2) 2

x 2 +xp + p 2 /4 = y 2 + x 2 – xp + p 2 /4

Уравнение директрисы: x = -p/2.

Пример. На параболе у 2 = 8х найти точку, расстояние которой от директрисы равно 4.

Из уравнения параболы получаем, что р = 4.

r = x + p/2 = 4; следовательно:

x = 2; y 2 = 16; y = ±4. Искомые точки: M 1 (2; 4), M 2 (2; -4).

Пример. Уравнение кривой в полярной системе координат имеет вид:

Найти уравнение кривой в декартовой прямоугольной системе координат, определит тип кривой, найти фокусы и эксцентриситет. Схематично построить кривую.

Воспользуемся связью декартовой прямоугольной и полярной системы координат: ;

Получили каноническое уравнение гиперболы. Из уравнения видно, что гипербола сдвинута вдоль оси Ох на 5 влево, большая полуось а равна 4, меньшая полуось b равна 3, откуда получаем c 2 = a 2 + b 2 ; c = 5; e = c/a = 5/4.

Фокусы F 1 (-10; 0), F 2 (0; 0).

Построим график этой гиперболы.