Фенол его строение свойства получение и применение. Фенол (гидроксибензол, карболовая кислота)

Фенол (гидроксибензол, карболовая кислота) это о рганическ ое соединение ароматического ряда с формул ой C 6 H 5 OH. Относится к одноименному классу – фенолы.

В свою очередь, Фено́лы - это класс органических соединений ароматического ряда, в которых гидроксильные группы OH − связаны с углерода ароматического кольца.

По числу гидроксильных групп различают:

  • одноатомные фенолы (аренолы): фенол и его гомологи;
  • двухатомные фенолы (арендиолы): пирокатехин, резорцин, гидрохинон;
  • трёхатомные фенолы (арентриолы): пирогаллол, гидроксигидрохинон, флороглюцин;
  • многоатомные фенолы.


Соответственно, собственно фенол, как вещество, представляет собой простейший представитель группы фенолов и имеет одно ароматическое ядро и одну гидроксильную группу ОН .

Свойства фенола

Свежеперегнанный фенол представляет собой бесцветные игольчатые кристаллы с температурой плавления 41 °С и температурой кипения 182 °С . При хранении, особенно во влажной атмосфере и в присутствии небольших количеств солей железа и меди, он быстро приобретает красную окраску. Фенол смешивается в любых соотношениях со спиртом, водой (при нагревании свыше 60 °С ), хорошо растворим в эфире, хлороформе, глицерине, сероуглероде.

Из-за наличия -OH гидроксильной группы, фенол имеет химические свойства характерные для спиртов, так и ароматических углеводородов.

По гидроксильной группе фенол вступает в следующие реакции:

  • Так как фенол обладает немного более сильными кислотными свойствами, чем у спирты, то под воздействием щелочей он образует соли - феноляты (к примеру, фенолят натрия - C 6 H 5 ONa ):

C 6 H 5 OH + NaOH -> C 6 H 5 ONa + H 2 O

  • В результате взаимодействия фенола с металлическим натрием также получается фенолят натрия:

2C 6 H 5 OH + 2Na -> 2C 6 H 5 ONa + H 2

  • Фенол непосредственно не этерифицируется карбоновыми кислотами, получение эфиров осуществляют путем взаимодействия фенолятов с ангидридами или галогенангидридами кислот:

C 6 H 5 OH + CH 3 COOH -> C6H 5 OCOCH 3 + NaCl

  • При перегонке фенола с цинковой пылью идет реакция замещения гидроксильной группы водородом:

C 6 H 5 OH + Zn -> C 6 H 6 + ZnO

Реакции фенола по ароматическому кольцу:

  • Фенол вступает в реакции электрофильного замещения по ароматическому кольцу. Группа ОН, являясь одной из самых сильных донорных групп (вследствие уменьшении электронной плотности на функциональной группе), увеличивает реакционную способность кольца к этим реакциям и направляет замещение в орто- и пара- положения. Фенол легко алкилируется, ацилируется, галогенируется, нитруется и сульфируется.
  • Реакция Кольбе - Шмитта служит для синтеза салициловой кислоты и её производных (ацетилсалициловой кислоты и других).

C 6 H 5 OH + CO 2 – NaOH -> C 6 H 4 OH(COONa)

C 6 H 4 OH(COONa) – H2SO4 -> C 6 H 4 OH(COOH)

Качественные реакции на фенол:
  • В результате взаимодействия с бромной водой:

C 6 H 5 OH + 3Br 2 -> C 6 H 2 Br 3 OH +3HBr

образуется 2,4,6-трибромфенол - твёрдое вещество белого цвета.
  • С концентрированной азотной кислотой:

C 6 H 5 OH + 3HNO 3 -> C 6 H 2 (NO 2) 3 OH + 3H 2 O

  • С хлоридом железа(III) (качественная реакция на фенол):

C 6 H 5 OH + FeCl 3 -> ⌈Fe(C 6 H 5 OH) 6 ⌉Cl 3

Реакция присоединения

  • Гидрированием фенола в присутствии металлических катализаторов Pt/Pd, Pd/Ni , получают циклогексиловый спирт:

C 6 H 5 OH -> C 6 H 11 OH

Окисление фенола

Вследствие наличия гидроксильной группы в молекуле фенола, устойчивость к окислению много ниже нежели, чем у бензола. В зависимости от природы окислителя и условия проведения реакции получаются различные продукты.

  • Так под действием перекиси водорода в присутствии железного катализатора образуется небольшое количество двухатомного фенола - пирокатехина:

C 6 H 5 OH + 2H 2 O 2 – Fe> C 6 H 4 (OH) 2

  • При взаимодействии более сильных окислителей (хромовая смесь, диоксид марганца в кислой среде) образуется пара-хинон.

Получение фенола

Получают фенол из каменноугольной смолы (продукта коксования) и синтетическим путем.

В каменноугольной смоле коксохимического производства содержится от 0,01 до 0,1% фенолов, в продуктах полукоксования от 0,5 до 0,7%; в масле, образующемся при гидрогенизации, и в сточной воде, вместе взятых,- от 0,8 до 3,7%. В смоле бурого угля и сточных водах полукоксования содержится от 0,1 до 0,4% фенолов. Каменноугольную смолу перегоняют, отбирая фенольную фракцию, выкипающую при 160-250 °С . В состав фенольной фракции входят фенол и его гомологи (25-40%), нафталин (25-40%) и органические основания (пиридин, хинолин). Нафталин отделяют фильтрованием, а оставшуюся часть фракции обрабатывают 10-14%-ным раствором едкого натра.

Образовавшиеся феноляты отделяют от нейтральных масел и пиридиновых оснований путем продувки острым паром, а затем обрабатывают диоксидом углерода. Выделенные сырые фенолы подвергают ректификации, отбирая последовательно фенол, крезолы и ксиленолы.

Большая часть фенола, производимого в настоящее время в промышленном масштабе, получается различными синтетическими методами

Синтетические методы получения фенола

  1. По бензолсульфонатному методу бензол смешивают с купоросным маслом. Полученный продукт обрабатывают содой и получают натриевую соль бензолсульфокислоты, после чего раствор упаривают, отделяют выпавший сульфат натрия, а натриевую соль бензолсульфокислоты сплавляют со щелочью. Образовавшийся фенолят натрия либо насыщайте диоксидом углерода, либо добавляют серную кислоту до начала выделения диоксида серы и отгоняют фенол.
  2. Хлорбензольный метод заключается в прямом хлорировании бензола газообразным хлором в присутствии железа или его солей и омылении образующегося хлорбензола раствором едкого натра или при гидролизе в присутствии катализатора.
  3. Модифицированный метод Рашига основан на окислительном хлорировании бензола хлористым водородом и воздухом с последующим гидролизом хлорбензола и выделением фенола перегонкой.
  4. Кумольный метод заключается в алкилировании бензола, окислении полученного изопропилбензола в гидропероксид кумола и последующем разложении его на фенол и ацетон:
    Изопропилбензол получают действием на бензол чистого пропилена или пропан-пропиленовой фракции нефтекрекинга, очищенной от других ненасыщенных соединений, влаги, меркаптанов и сероводорода, отравляющих катализатор. В качестве катализатора используют трихлорид алюминия, растворенный в полиалкилбензоле, например. в диизопропилбензоле. Алкилирование ведут при 85 °С и избыточном давлении 0,5 МПа , что обеспечивает протекание процесса в жидкой фазе. Изопропилбензол окисляют в гидропероксид кислородом воздуха или техническим кислородом при 110-130°С в присутствии солей металлов переменной валентности (железо, никель, кобальт, марганец) Разлагают гидропероксид разбавленными кислотами (серной или фосфорной) или небольшими количествами концентрированной серной кислоты при 30-60 °С . После ректификации получают фенол, ацетон и некоторое количество α-метилстирола . Промышленный кумольный метод, разработанный в СССР, является экономически наиболее выгодным по сравнению с другими методами получения фенола. Получение фенола через бензолсульфокислоту связано с расходованием больших количеств хлора и щелочи. Окислительное хлорирование бензола связано с большим расходом пара-в 3-6 раз большим, чем при применении других методов; кроме того, при хлорировании происходит сильная коррозия аппаратуры, что требует применения специальных материалов. Кумольный метод прост по аппаратурному оформлению и позволяет получать одновременно два технически ценных продукта: фенол и ацетон.
  5. При окислительном декарбоксилировании бензойной кислоты сначала проводят жидкофазное каталитическое окисление толуола в бензойную кислоту, которая в присутствии Сu 2+ превращается в бензолсалициловую кислоту. Этот процесс может быть описан следующей схемой:
    Бензоилсалициловая кислота разлагается водяным паром на салициловую и бензойные кислоты. Фенол образуется в результате быстрого декарбоксилирования салициловой кислоты.

Применение фенола

Фенол используют как сырье для производства полимеров: поликарбоната и (сначала синтезируют бисфенол А, а затем – эти ), фенолфольмальдегидных смол, циклогексанола (с последующим получением нейлона и капрона).

В процессе нефтепереработки при помощи фенола проводят очистку масел от смолистых веществ, серосодержащих соединений и полициклических ароматических углеводородов.

Кроме того, фенол служит сырьем для производства ионола, неонолов (), креозолов, аспирина, антисептиков и пестицидов.

Фенол хороший консервант и антисептик. Его используют для дезинфекции в животноводстве, в медицине, в косметологии.

Токсические свойства фенола

Фенол токсичен (класс опасности II). При вдыхании фенола нарушаются функций нервной системы. Пыль, пары и раствор фенола при попадании на слизистые оболочки глаз, дыхательных путей, кожу, вызывают химические ожоги. При попадании на кожу фенол всасывается в течение нескольких минут и начинает воздействовать на ЦНС. В больших дозах может вызывать паралич дыхательного центра.Смертельная доза для человека при попадании внутрь 1-10 г , для детей 0,05-0,5 г.

Список литературы:
Кузнецов Е. В., Прохорова И. П. Альбом технологических схем производства полимеров и пластических масс на их основе. Изд. 2-е. М., Химия, 1975. 74 с.
Кноп А., Шейб В. Фенольные смолы и материалы на их основе. М., Химия, 1983. 279 с.
Бахман А., Мюллер К. Фенопласты. М., Химия, 1978. 288 с.
Николаев А. Ф. Технология пластических масс, Л., Химия, 1977. 366 с.

Различают одно-, двух-, трехатомные фенолы в зависимости от количества ОН-групп в молекуле (рис.1)

Рис. 1. ОДНО-, ДВУХ- И ТРЕХАТОМНЫЕ ФЕНОЛЫ

В соответствии с количеством конденсированных ароматических циклов в молекуле различают (рис. 2) сами фенолы (одно ароматическое ядро – производные бензола), нафтолы (2 конденсированных ядра – производные нафталина), антранолы (3 конденсированных ядра – производные антрацена) и фенантролы (рис. 2).

Рис. 2. МОНО- И ПОЛИЯДЕРНЫЕ ФЕНОЛЫ

Номенклатура спиртов.

Для фенолов широко используют тривиальные названия, сложившиеся исторически. В названиях замещенных моноядерных фенолов используются также приставки орто- , мета- и пара -, употребляемые в номенклатуре ароматических соединений. Для более сложных соединений нумеруют атомы , входящие в состав ароматических циклов и с помощью цифровых индексов указывают положение заместителей (рис. 3).

Рис. 3. НОМЕНКЛАТУРА ФЕНОЛОВ . Замещающие группы и соответствующие цифровые индексы для наглядности выделены различными цветами.

Химические свойства фенолов.

Бензольное ядро и ОН-группа, объединенные в молекуле фенола, влияют друг на друга, существенно повышая реакционную способность друг друга. Фенильная группа оттягивает на себя неподеленную электронную пару от атома кислорода в ОН-группе (рис. 4). В результате на атоме Н этой группы увеличивается частичный положительный заряд (обозначен значком d+), полярность связи О–Н возрастает, что проявляется в увеличении кислотных свойств этой группы. Таким образом, в сравнении со спиртами, фенолы представляют собой более сильные кислоты. Частичный отрицательный заряд (обозначен через d–), переходя на фенильную группу, сосредотачивается в положениях орто- и пара- (по отношению к ОН-группе). Эти реакционные точки могут атаковаться реагентами, тяготеющими к электроотрицательным центрам, так называемыми электрофильными («любящими электроны») реагентами.

Рис. 4. РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В ФЕНОЛЕ

В итоге для фенолов возможны два типа превращений: замещение атома водорода в ОН-группе и замещение Н-атомобензольном ядре. Пара электронов атома О, оттянутая к бензольному кольцу, увеличивает прочность связи С–О, поэтому реакции, протекающие с разрывом этой связи, характерные для спиртов, для фенолов не типичны.

1. Реакции замещения атома водорода в ОН-группе. При действии на фенолы щелочей образуются феноляты (рис. 5А), каталитическое взаимодействие со спиртами приводит к простым эфирам (рис. 5Б), а в результате реакции с ангидридами или хлорангидридами карбоновых кислот образуются сложные эфиры (рис. 5В). При взаимодействии с аммиаком (повышенная температура и давление) происходит замена ОН-группы на NH 2 , образуется анилин, (рис. 5Г), восстанавливающие реагенты превращают фенол в бензол (рис. 5Д)

2. Реакции замещения атомов водорода в бензольном кольце.

При галогенировании, нитровании, сульфировании и алкилировании фенола атакуются центры с повышенной электронной плотностью (рис.4), т.е. замещение проходят преимущественно в орто- и пара- положениях (рис.6).

При более глубоком протекании реакции происходит замещение двух и трех атомов водорода в бензольном кольце.

Особое значение имеют реакции конденсации фенолов с альдегидами и кетонами, по существу, это алкилирование, проходящее легко и в мягких условиях (при 40–50° С, водная среда в присутствии катализаторов), при этом атом углерода в виде метиленовой группы СН 2 или замещенной метиленовой группы (CНR либо CR 2) встраивается между двумя молекулами фенола. Часто такая конденсация приводит к образованию полимерных продуктов (рис. 7).

Двухатомный фенол (торговое название бисфенол А, рис.7), используют в качестве компонента при получении эпоксидных смол. Конденсация фенола с формальдегидом лежит в основе производства широко применяемых феноло-формальдегидных смол (фенопласты).

Способы получения фенолов.

Фенолы выделяют из каменноугольной смолы, а также из продуктов пиролиза бурых углей и древесины (деготь). Промышленный способ получения самого фенола С 6 Н 5 ОН основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной H 2 SO 4 (рис. 8А). Реакция проходит с высоким выходом и привлекательна тем, что позволяет получить сразу два технически ценных продукта – фенол и ацетон. Другой способ – каталитический гидролиз галогензамещенных бензолов (рис. 8Б).

Рис. 8. СПОСОБЫ ПОЛУЧЕНИЯ ФЕНОЛА

Применение фенолов.

Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин (рис. 3), а также гидрохинон (пара- дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.

В виде отдельных соединений фенолы используются ограниченно, зато их различные производные применяют широко. Фенолы служат исходными соединениями для получения разнообразных полимерных продуктов – феноло-альдегидных смол (рис. 7), полиамидов, полиэпоксидов. На основе фенолов получают многочисленные лекарственные препараты, например, аспирин, салол, фенолфталеин, кроме того, красители, парфюмерные продукты, пластификаторы для полимеров и средства защиты растений.

Михаил Левицкий

Одноатомные фенолы - прозрачные жидкости или кристаллические вещества, часто окрашенные в розово-красный цвет благодаря их окислению. Это яды, и в случае попадания на кожу они вызывают ожоги. Они убивают множество микроорганизмов, то есть имеют дезинфицирующие и антисептические свойства. Растворимость фенолов в воде мала, их температуры кипения относительно большие вследствие существования межмолекулярных водородных связей.

Физические свойства

Фенолы - малорастворимы в воде, но хорошо растворяются в спирте, эфире, бензоле, с водой образуют кристаллогидраты, перегоняются с водяным паром. На воздухе сам фенол легко окисляется и темнеет. Введение в пара- положение молекулы фенола таких заместителей, как галоиды, нитрогруппы и др. значительно повышает температуру кипения и температуру плавления соединений:

Рисунок 1.

Фенолы - полярные вещества с дипольным моментом $\mu$ = 1,5-1,6 $D$. Значение $EI$ 8,5-8,6 эВ свидетельствует о больших донорных свойствах фенолов по сравнению с такими аренами, как бензол (9,25 эВ), толуол (8,82 эВ), этилбензол (8,76 эВ). Это связано со взаимодействием гидроксильной группы с $\pi$-связями бензольного ядра благодаря положительному $M$-эффекту $OH$-группы, преобладает ее негативный $I$ -эффект.

Спектральные характеристики фенолов

Максимум поглощения в УФ-части спектра для фенола смещен в сторону более длинных волн примерно на 15 нм по сравнению с бензолом (батохромное смещение) благодаря участию $\pi$-электронов кислорода в сопряжении с бензольным ядром и проявляется при 275 нм с тонкой структурой.

В ИК-спектрах для фенолов, как и для спиртов, характерны интенсивные полосы $v_{OH}$ в области 3200-3600 см$^{-1}$ и 3600-3615 см$^{-1}$ для сильно разведенных растворов, но для $v_{c\_D}$ фенолов прослеживается полоса около 1230 см$^{-1}$ в отличие от 1220-1125 см$^{-1}$ для спиртов.

В ПМР-спектрах сигнал протона $OH$-группы фенолов проявляется в широком диапазоне (4,0-12,0 м.ч.) по сравнению со спиртами в зависимости от природы и концентрации растворителя, температуры, наличия меж- или внутримолекулярных водородных связей. Часто сигнал протона $OH$-группы регистрируют при 8,5-9,5 м.ч. в диметилсульфоксиде или при 4,0-7,5 м.ч, в $CCl_4$.

В масс-спектре фенола основным направлением фрагментации является элиминирования частиц $HCO$ и $CO$:

Рисунок 2.

Если в молекуле фенола присутствуют алкильные радикалы, первичным процессом будет бензильное расщепление.

Химические свойства фенолов

В отличие от спиртов, для которых характерны реакции с расщеплением как $O-H$-связи (кислотно-основные свойства, образование эфиров, окисления и т.д.), так и $C-O$-связи (реакции нуклеофильного замещения, дегидратации, перегруппировки), фенолам более характерны реакции первого типа. Кроме того, им свойственны реакции электрофильного замещения в бензольном ядре, активированном электронодонорной гидроксильной группой.

Химические свойства фенолов обусловлены наличием взаимного влияния гидроксильной группы и бензольного ядра.

Гидроксильная группа имеет $-I-$ и + $M$-эффект. Последний значительно превышает $-I$ эффект, обусловливающий $n-\pi$-сопряжение свободных электронов кислорода с $\pi$-орбиталью бензольного ядра. Вследствие $n-\pi$-сопряжения уменьшается длина связи $C - O$, величина дипольного момента и положения полос поглощения связей в ИК-спектрах по сравнению с этиловым спиртом:

Некоторые характеристики фенола и этанола:

Рисунок 3.

$n-\pi$-Сопряжение приводит к уменьшению электронной плотности на атоме кислорода, поэтому полярность связи $O - H$ у фенолов растет. В связи с этим кислотные свойства фенолов выражены сильнее, чем у спиртов. Большая кислотность фенолов по сравнению со спиртами объясняется также возможностью делокализации заряда в фенолят-анион, что влечет стабилизацию системы:

Рисунок 4.

На различии кислотности фенола и спиртов указывает константа диссоциации. Для сравнения: Кд = $1,3 \cdot 10^{-10}$ для фенола и Кд = $10^{-18}$ для этилового спирта.

Поэтому фенолы, в отличие от спиртов, образуют феноляты не толькос щелочными металлами, но и через взаимодействие со щелочами:

Рисунок 5.

Реакция фенола с щелочными металлами проходит довольно бурно и может сопровождаться взрывом.

Но фенол является слабой кислотой, слабее даже угольной кислоты ($K = 4,7 \cdot 10^{-7}$). Поэтому угольная кислота вытесняет фенол из раствора фенолята. Эти реакции используют для разделения фенолов, спиртов или карбоновых кислот. Электронакцепторные группы в молекуле фенола значительно усиливают, а донорные - ослабляют кислотные свойства фенольного гидроксила.

Кроме того фенолу характерен ряд реакций различной направленности:

  1. образование простых и сложных эфиров;
  2. реакции алкилирования и ацилирования;
  3. реакции окисления
  4. реакции электрофильного замещения в ароматическом кольце, в том числе реакции:

    • галогенирования,
    • сульфирования,
    • нитрозирование,
    • формилирования,
    • конденсации с альдегидами и кетонами,
    • карбоксилирования.

Вопрос 2.Фенол, его строение, свойства и применение.

Ответ. Фенолы – органические вещества, производные ароматических углеводородов, в которых гидроксильные группы (одна или несколько) связаны с бензольным кольцом.

Простейший представитель этой группы веществ – фенол, или карболовая кислота С 6 Н 5 ОН. В молекуле фенола π-электроны бензольного кольца оттягивают на себя неподеленные пары электронов атома кислорода гидроксильное группы, вследствие чего увеличивается подвижность атома водорода этой группы.

Физические свойства

Твердое бесцветное кристаллическое вещество, с резким характерным запахом, при хранении окисляется на воздухе и приобретает розовый цвет, плохо растворим в холодной воде, но хорошо растворяется в горячей воде. Температура плавления – 43 °C, кипения – 182 °C. Сильный антисептик, очень ядовит.

Химические свойства

Химические свойства обусловлены взаимным влиянием гидроксильной группы и бензольного кольца.

Реакции по бензольному кольцу

1. Бромирование:

C 6 H 5 OH + 3Br 2 = C 6 H 2 Br 3 OH + 3HBr.

2 , 4 ,6-трибромфенол (белый осадок)

2. Взаимодействие с азотной кислотой:

C 6 H 5 OH + 3HNO 3 = C 6 H 2 (NO 2) 3 OH + 3H 2 O.

2,4,6-тринитрофенол (пикриновая кислота)

Эти реакции проходят в обычных условиях (без нагревания и катализаторов), тогда как для нитрования бензола требуется температура и катализаторы.

Реакции по гидроксигруппе

1. Как и спирты, взаимодействует с активными металлами:

2C 6 H 5 OH + 2Na = 2C 6 H 5 ONa + H 2 .

фенолят натрия

2. В отличие от спиртов взаимодействует со щелочами:

C 6 H 5 OH + NaOH = C 6 H 5 ONa + H 2 O.

Феноляты легко разлагаются слабыми кислотами:

а) C 6 H 5 ONa + H 2 O + CO 2 = C 6 H 5 OH + NaHCO 3 ;

б) C 6 H 5 ONa + CH 3 I + CO 2 = C 6 H 5 OСH 3 + NaI.

метилфениловый эфир

3. Взаимодействие с галогенопроизводными:

C 6 H 5 OH + C 6 H 5 I = C 6 H 5 OC 2 H 5 + HI

этилфениловый эфир

4. Взаимодействие со спиртами:

C 6 H 5 OH + HOC 2 H 5 = C 6 H 5 OC 2 H 5 + H 2 O.

5. Качественная реакция:

3C 6 H 5 OH + FeCl 3 = (C 6 H 5 O) 3 Fe↓+ 3HCl.

фенолят железа (III)

Фенолят железа (III) имеет коричнево-фиолетовый цвет с запахом туши (краски).

6. Ацелирование:

C 6 H 5 OH + CH 3 COOH = C 6 H 5 OCOCH 3 + H 2 O.

7. Сополиконденсация:

C 6 H 5 OH + СH 2 O + … → - n. –.

метаналь –Н 2 О фенолоформальдегидная смола

Получение

1. Из каменноугольной смолы.

2. Получение из хлорпроизводных:

C 6 H 5 Cl + NaOH = C 6 H 5 ONa + HCl,

2C 6 H 5 ONa + H 2 SO 4 = 2C 6 H 5 OH + Na 2 SO 4 .

3. Кумольный способ:

C 6 H 6 + CH 2 CHCH 3 C 6 H 5 CH(CH 3) 2 ,

C 6 H 5 CH(CH 3) 2 + O 2 С 6 H 5 C(CH 3) 2 OOH C 6 H 5 OH +CH 3 COCH 3.

фенол ацетон

Применение

1. Как антисептик используется в качестве дезинфицирующего средства.

2. В производстве пластмасс (фенолформальдегидная смола).

3. В производстве взрывчатых веществ (тринитрофенол).

4. В производстве фотореактивов (проявители для черно- белой бумаги).

5. В производстве лекарств.

6. В производстве красок (гуашь).

7. В производстве синтетических материалов.

Вопрос 3.Через 200г 40-% раствора КОН пропустили 1,12л СО 2 . Определите тип и массу образовавшейся соли.

Ответ.

Дано: Найти : тип и массу соли.

V(CO 2)= 1,12 л.


Решение

m(KOH безводн)= 200*0,4=80г.

х 1 г 1,12 л x 2 г

2KOH + CO 2 = K 2 CO 3 +H 2 O.

v: 2 моль 1 моль 1 моль

M: 56 г/моль – 138 г/моль

m: 112 г -- 138 г

x 1 = m(KOH) = (1,12* 112)/22,4=5,6 г,

x 2 =m(K 2 CO 3)=138*1,12/22,4=6,9 г.

Поскольку КОН взят в избытке, то образовалась средняя соль К 2 СО 3 , а не кислая КНСО 3 .

Ответ: m(K 2 CO 3)= 6,9 г.

БИЛЕТ №3

Вопрос 1 .Теория строения органических соединений. Значение теории для развития науки.

Ответ. В 1861 г. Русский учёный Александр Михайлович Бутлеров сформулировал основные положения теории строения органических веществ.

1.Молекулы органических соединений состоят из атомов, связанных между собой в определённой последовательности согласно их валентности (C-IV,H-I, O-II, N-III, S-II).

2.Физические и химические свойства вещества зависят не только от природы атомов и их количественного соотношения в молекуле, но и от порядка соединения атомов, то есть от строение молекулы.

3. Химические свойства вещества можно определить, зная его строение молекулы. И наоборот, строение молекулы вещества можно установить опытным путём, изучая химические превращения вещества.

4.В молекулах имеет место взаимное влияние атомов или групп атомов друг на друга:

CH 3 - CH 3 (t кип =88,6 0 С), CH 3 - CH 2 – CH 3 (t кип, = 42,1 0 С)

этан пропан

На основе своей теории Бутлеров предсказал существование изомеров соединений, например двух изомеров бутана (бутана и изобутана):

CH 3 -CH 2 - CH 2 -CH 3 (t кип. =0,5 0 C),

CH 3 -CH(CH 3)- CH 3 (t кип = -11,7 0 С).

2-метилпропан или изобутан

Изомеры – вещества, имеющий одинаковый состав молекулы, но различное химическое строение и по этому обладающие различными свойствами.

Зависимость свойств веществ от их структур- одна из идей, лежащих в основе теории строения органических веществ А.М. Бутлерова.

Значение теории А.М.Бутлерова

1.ответила на основные «Противоречия» органической химии:

а) Многообразие соединений углерода

б) кажущееся несоответствие валентности и органических веществах:

в) различные физические и химические свойства соединений, имеющих одинаковую молекулярную формулу (С 6 Н 12 O 6 – глюкоза и фруктоза).

2. Позволила предсказать существование новых органических веществ, и также указать пути их получения.

3. Дала возможность предвидеть различные случаи изомерии, предугадывать возможные направления реакций.

Вопрос 2.Виды Химической связи в органических и органических соединениях.

Ответ: Основная движущая сила, проводящая к образованию химической связи,- стремление атомов к завершению внешнего энергетического уровня.

Ионная связь – химическая связь, осуществляемая за счёт электростатического притяжения между ионами. Образование ионных связей возможно только между атомами, значения электроотрицательности которых очень сильно различаются.

К ионным соединениями относят галогениды и оксиды щелочных и щелочно-земельных металлов (NAI, KF,CACI 2 ,K 2 O,LI 2 O).

Ионы могут состоять и из нескольких атомов, связи между которыми не ионные:

NаOH = Nа + + OH - ,

Nа 2 SO 4 = 2Nа + + SO 4 2- .

Следует отметить, что свойства ионов существенно отличаются от свойств соответствующих им атомов и молекул простых веществ: Na- металл бурно реагирующий с водой, ион Na + растворяется в ней; H 2 - растворяется в ней; H 2 - газ без цвета, вкуса и запаха, ион H + придает раствору кислый вкус, изменяет цвет лакмуса (на красный).

Свойства ионных соединений

1.Соединения с ионной связью являются электролитами. Электрический ток проводят только растворы и расплавы.

2. Большая хрупкость кристаллических веществ.

Ковалентная связь- химическая связь, осуществляемая за счет образования общих (связывающих) электронных пар.

Ковалентная неполярная связь- связь, образующаяся между атомами, проявляющими одинаковую электроотрицательность. При ковалентной неполярной связи электронная плотность общей пары электронов распределяется в пространстве симметрично относительно ядер общих атомов (H 2 ,I 2, O 2 ,N 2).

Ковалентная полярная связь- ковалентная связь между атомами с различной (но не сильно отличающейся друг от друга) электроотрицательностью (H 2 S, H 2 O,NH 3).

По донорно-акцепторному механизму образуется:NH + 4 , H 3 , O + , SO 3 , NO 2 . В случае возникновения иона NH + 4 атом азота-донор, предоставляющий в общее пользование не поделённую электронную пару, а ион водорода – акцептор, принимающий эту пару и предоставляющий для этого свою орбиталь. При этом образуется донорно-акцепторная (координационная) связь. Атом акцептора приобретает большой отрицательный заряд, а атом донора- положительный.

У Соединений с ковалентной полярной связью температуры кипения и плавления выше, чем к веществ с ковалентной неполярной связью.

В молекулах органический соединений связь атомов ковалентная полярная.

В таких молекулах происходит гибридизация (смешение орбиталей и выравнивание их по формуле и энергии) валентных (внешних) орбиталей атомов углерода.

Гибридные орбитали перекрываются, и образуются прочные химические связи.

Металлические связи- связь, осуществляемая относительно свободными электронами между ионами металлов в кристаллической решетке. Атомы металлов легко отдают электроны, превращаясь в положительно заряженные ионы. Оторвавшиеся электроны свободно перемещаются между положительными ионами металлов, т.е. они обобществлены ионами металлов, т.е. они обобществлены и передвигаются по всему куску металла, в целом электронейтрального.

Свойства металлов.

1. Электропроводимость. Обусловлено наличием свободных электронов, способных создавать электрический ток.

2. Теплопроводность. Обусловлена тем же.

3. Ковкость и пластичность. Ионы и атомы металлов в металлической решетке непосредственно не связаны друг с другом, и отдельные слои металла могут свободно перемещаться один относительно другого.

Водородная связь- может быть межмолекулярной и внутримолекулярной.

Межмолекулярная водородная связь образуется между атомами водорода одной молекулы и атомами сильноэлектроотрицательного элемента (F,O,N)другой молекулы. Такая связь определяет аномально высокие температуры кипения и плавления некоторых соединений (HF,H 2 O). При испарении этих веществ происходит разрыв водородных связей, что требует затрат дополнительной энергии.

Причина водородной связи: при отдаче единственного электрона «своему» атому электроотрицательного элемента водород приобретает относительно сильный положительный заряд, который затем взаимодействует с неподеленной электронной парой «чужого» атома электроотрицательного элемента.

Внутримолекулярная водородная связь осуществляется внутри молекулы. Эта связь определяет структуру нуклеиновых кислот (двойная спираль) и вторичную (спиралевидную) структуру белка.

Водородная связь гораздо слабее ионной или ковалентной, но сильнее, чем межмолекулярное взаимодействие.

Вопрос 3. Решить задачу. 20г нитробензола подвергли реакции восстановления. Найти массу образовавшегося анилина, если выход реакции составляет 50%.

Ответ.

Дано: Найти: m(C 6 H 6 NH 2).

m(C 6 H 6 NO 2) = 20г,

Решение

(C 6 H 6 NO 2) + 3H 2 = C 6 H 6 NH 2 +2H 2 0.

v: 1 моль 1 моль

M: 123г/моль 93 г /моль

х= m теор (C 6 H 6 NH 2) =20*93/123=15г,

m практ = 15*0,5=7,5 г.

Ответ: 7,5 г.

Билет № 4

Свойства Металл Li, K, Rb, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb, (H), Cu, Hg, Ag, Pt, Au
Восстановительная способность (отдавать электроны) Возрастает
Взаимодействие с кислородом воздуха Быстро окисляются при обычной температуре Медленно окисляются при обычной температуре или при нагревании Не окисляются
Взаимодействие с водой Выделяется Н 2 и образуется гидроксид При нагревании выделяется водород и образуется гидроксид Не вытесняют водород из воды
Взаимодействие с кислотами Вытесняют водород из разбавленных кислот Не вытеснят водород из разбавленных кислот
Окислительная способность (присоединять электроны) Возрастает

Вопрос 1.Общие свойства металлов. Особенности строение атомов .

Ответ . Атомы металлов сравнительно легко отдают валентные электроны и превращаются при этом в положительно заряженные ионы. Поэтому металлы являются восстановителями. В этом и состоит главная и наиболее общая химическая свойства металлов. Соединениях металлы проявляют только положительные степень окисления. Восстановительная способность разных металлов не одинакова и возрастает в электрохимическом ряду напряжений металлов от Au и до Li.

Физические свойства

1.Электропроводность. Обусловлена наличием в металлах свободных электронов, образующих электрический ток(направленное движение электронов).

2.Теплопроводность.

3.Ковкость и пластичность.

Металлы c ρ <5 г /см 3 – легкие, c ρ > 5 г/см 3 – тяжелые.

Легкоплавкие металлы: c t пл < 1000 0 C ,тугоплавкие – c t пл >1000 0 C.

Схемы взаимодействия металлов с серной кислотой.

Разбавленная H 2 SO 4 растворяет металлы расположенные в ряду стандартных электродных потенциалов (ряд активности металлов)до водорода:

M + H 2 SO 4 (разб.) → соль + H 2

(M = (Li →Fe) в ряду активности металлов).

При этом образуются соответствующая соль и вода.

С Ni разбавленная H 2 SO 4 реагирует очень медленно, с Ca, Mn, и Pb кислота не реагирует. При действии кислоты на поверхности свинца образуется пленка PbSO 4 , защищающая его от дальнейшего взаимодействия с кислотой.

Концентрированная H 2 SO 4 при обычной температуре со многими металлами не взаимодействует. Однако при нагревании концентрированная кислота реагирует почти со всеми металлами (кроме Pt ,Au и некоторых других). При этом кислота восстанавливается до H 2 S,или SO 2:

M + H 2 SO 4 (конц.) → соль + H 2 O + H 2 S (S ,SO 2).

Водород в этих реакциях не выделяется, а образуется вода.

Схемы взаимодействия металлов с азотной кислотой.

При взаимодействии металлов с HNO 3 водород не выделяется; он окисляется, образуя воду. В зависимости от активности металла кислота может восстанавливаться до соединений.

5 +4 +2 +1 0 -3 -3

HNO 3 →NO 2 → NO→ N 2 O→N 2 →NH 3 (NH 4 NO 3).

При этом образуется также и соль азотной кислоты.

Разбавленная HNO 3 реагирует со многими металлами (исключение: Ca ,Cr ,Pb, Au) чаще всего с образованием NH 3 ,NH 4 NO 3 ,N 2 или NO:

M + HNO 3 (разб.) → соль + H 2 O + NH 3 (NH 4 NO 3 , N 2 ,NO).

Концентрированная HNO 3 взаимодействует в основном с тяжелыми металлами с образованием N 2 O или NO 2:

M + HNO 3 (конц.) → соль + H 2 O + N 2 O(NO 2­).

При обычной температуре эта кислота (сильный окислитель) не реагирует с Al ,Cr, Fe и Ni. Она легко переводит их в пассивное состояние (на поверхности металла образуется плотная защитная оксидная пленка, препятствующая контакту металла со средой.)

Вопрос 2. Крахмал и целлюлоза. Сравнить их строение и свойства. Их применение.

Ответ. Строение крахмала: структурное звено – остаток молекулы

α-глюкозы. Строение целлюлозы: структурное звено-остаток молекулы β-глюкозы.

Физические свойства

Крахмал-белый хрустящий порошок,нерастворимый в холодной воде. В горячей воде образует коллоидный раствор-клейстер.

Целлюлоза-твердое волокнистое вещество,нерастворимое в воде и органических растворителях.

Химические свойства

1. Крахмал целлюлоза подвергаются гидролизу:

(C 6 H 10 O 5) n + nH 2 O=nC 6 H 12 O 6 .

При гидролизе крахмала образуется альфа-глюкоза, при гидролизе целлюлоза бета-глюкоза.

2. Крахмал с йодом дает синие окрашивание(в отличие от целлюлозы).

3. Крахмал переваривается в пищеварительной системой человека,а целлюлоза не переваривается.

4. Для целлюлозы характерна реакция этерификации:

[(C 6 H 7 O 2)(OH) 3 ] n +3nHONO 2 (конц.) [(C 6 H 7 O 2)(ONO 2) 3 ] n +3nH 2 O.

тринитроцеллюлоза

5. Молекулы крахмала имеют как линейную, так и разветвленную структуру. Молекулы же целлюлоза имеет линейное (то есть не разветвленное) строение, благодаря чему целлюлоза легко образует волокна.Это основное различие крахмала и целлюлозы.

6.Горение крахмала и целлюлозы:

(C 6 H 10 O 5) n +O 2 =CO 2 +H 2 O+Q.

Без доступа воздуха происходит термическое разложение. Образуются CH 3 O, CH 3 COOH, (CH 3) 2 CO и др.

Применение

1. Путем гидролиза превращают в потоку и глюкозу.

2. Как ценный и питательный продукт(основной углевод пищи человека-хлеба,крупы,картофеля).

3. В производстве клейстера.

4. В производстве красок (загуститель)

5. В медицине (для приготовления мазей, присыпок).

6. Для накрахмаливания белья.

Целлюлоза:

1. В производстве ацетатного волокна,оргстекла, негорючей пленки(целлофан).

2. При изготовлении бездымного пороха(тринитроцеллюлоза).

3. В производстве целлулоида и колодита (динитроцеллюлоза).

Вопрос 3. К 500 грамм 10% раствора NACL прибавили 200 грамм 5% раствора того же вещества, потом еще 700 грамм воды. Найдите процентную концентрации полученного раствора.


Ответ. Найти:m 1 (NаCl)= 500г

Дано:

ω 1 (NаCl)=10%

m 2 (NаCl)=200г

Решение

m 1 (NaCl, безв.)=500 *10\100 = 50 г,

m 2 (NaCl, безв.)=200*5\100=10 г,

m (р-ра)=500+200+700=1400г,

m общ (NaCl)=50+10=60г,

ω 3 (NaCl)=60\1400 * 100 % = 4,3 %

Ответ: ω 3 (NaCl)=4,3 %

БИЛЕТ № 5

Вопрос 1. Ацетилен. Его строение, свойства, получение и применение.

Ответ. Ацетилен относится к классу алкинов.

Ацетеленовые углеводороды, или алкины, -непредельные (ненасыщенные) углеводороды с общей формулой , в молекулах которых между атомами углерода есть тройная связь.

Электронное строение

Углерод в молекуле ацетилена находится в состоянии sp – гибридизации. Атомы углерода в этой молекуле образуют тройную связь, состоящую из двух -связей и одной σ-связи.

Молекулярная формула: .

Графическая формула: H-C≡ C-H

Физические свойства

Газ, легче воздуха, малорастворим в воде, в чистом виде почти без запаха, бесцветный, = - 83,6 . (В ряду алкинов с увеличением молекулярной массы алкина температуры кипения и плавления увеличиваются.)

Химические свойства

1. Горение:

2. Присоединение:

а) водорода:

б) галогена:

C 2 H 2 + 2Cl 2 = C 2 H 2 Cl 4 ;

1,1,2,2-тетрохлорэтан

в) галогеноводорода:

HC≡CH + HCl = CHCl

винилхлорид

CH 2 =CHCl + HCl = CH 3 -CHCl 2

1,1-дихлорэтан

(по правилу Марковникова);

г) воды(реакция Кучерова):

HC=CH + H 2 O = CH 2 =CH-OH CH 3 -CHO

виниловый спирт уксусный альдегид

3. Замещение:

HC≡CH + 2AgNO 3 + 2NH 4 = AgC≡CAg↓+ 2NH 4 NO 3 + 2H 2 O.

ацетиленид серебра

4. Окисление:

HC≡CH + + H 2 O → HOOC-COOH ( -KMnO 4).

щавельная кислота

5. Тримеризация:

3HC≡CH t, кат

6. Димеризация:

HC≡CH + HC≡CH КАТ. HC≡C - HC=CH 2

винилацетилен

Получение

1. Дегидрирование алканов (крекинг жидких нефтяных фракций):

C 2 H 6 = C 2 H 2 + 2H 2 .

2. Из природного газа (термический крекинг метана):

2CH 4 C 2 H 2 + 3H 2

3. Карбидный способ:

CaC 2 + 2H 2 O = Ca(OH) 2 + C 2 H 2

Применение

1.В производстве винилхлорида, ацетальдегида, винилацетата, хлоропрена, уксусной кислоты и других органических веществ.

2.В синтезе каучука и поливинилхлоридных смол.

3.В производстве поливинилхлорида (кожзаменитель).

4.В производстве лаков, лекарств.

5.При изготовлении взрывчатых веществ (ацетилениды).

На рисунке показана взаимосвязь различных методов производства фенола, а в таблице под теми же номерами приведены их технико-экономические показатели (в % относительно сульфонатного метода).

Рис. 1.1. Методы производства фенола

Таблица 1.3

Технико-экономические показатели производства фенола
Методы
Показатель 1 2 3 4 5 6
Капитальные затраты 100 83 240 202 208 202
Стоимость сырья 100 105 58 69 72 45
Себестоимость 100 96 70 73 76 56

Таким образом, наиболее целесообразным с экономической точки зрения является наиболее востребованный в настоящее время кумольный процесс. Ниже кратко описаны промышленные процессы, которые в то или иное время использовались для получения фенола.

1. Сульфонатный процесс был первым фенольным процессом, реализованным в промышленном масштабе фирмой «BASF» в 1899 г. Этот метод основан на сульфировании бензола серной кислотой с последующим щелочным плавлением сульфокислоты. Несмотря на применение агрессивных реагентов и образование большого количества отходов сульфита натрия, данный метод использовался в течение почти 80 лет. В США это производство было закрыто лишь в 1978 году.

2. В 1924 г. фирмой «Dow Chemical» был разработан процесс получения фенола, включающий реакцию хлорирования бензола и последующий гидролиз монохлорбензола (процесс каталитического гидролиза галогензамещенных бензолов ). Независимо аналогичная технология была разработана немецкой фирмой «I.G. Farbenindustrie Co». Впоследствии стадия получения монохлорбензола и стадия его гидролиза были усовершенствованы, и процесс получил название «процесс Рашига». Суммарный выход фенола по двум стадиям составляет 70-85%. Данный процесс был основным методом получения фенола в течение нескольких десятилетий.

3. Циклогексановый процесс , разработанный фирмой «Scientific Design Co.», основан на окислении циклогексана в смесь циклогексанона и циклогексанола, которая далее дегидрируется с образованием фенола. В 60-е годы фирма «Monsanto» в течение нескольких лет использовала этот метод на одном из своих заводов в Австралии, однако в дальнейшем перевела его на кумольный способ получения фенола.

4. В 1961 г. фирмой «Dow Chemical of Canada» был реализован процесс через разложение бензойной кислоты , это единственный способ синтеза фенола, основанный на использовании небензольного сырья. Обе реакции протекают в жидкой фазе. Первая реакция. окисление толуола. использовалась в Германии уже в период Второй мировой войны для получения бензойной кислоты. Реакция протекает в довольно мягких условиях с высоким выходом. Вторая стадия является более трудной вследствие дезактивации катализатора и низкой селективности по фенолу. Полагают, что проведение этой стадии в газовой фазе может сделать процесс более эффективным. В настоящее время этот метод используется на практике, хотя его доля в мировом производстве фенола составляет лишь около 5%.

5. Метод синтеза, по которому в наши дни получают большую часть производимого в мире фенола - кумольный процесс - открыт группой советских химиков во главе с профессором П. Г. Сергеевым в 1942 году. Метод основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной серной кислотой. В 1949 году в г. Дзержинске Горьковской области был введен в действие первый в мире кумольный завод. До этого гидроперекиси считались малостабильными промежуточными продуктами окисления углеводородов. Даже в лабораторной практике их почти не использовали. На Западе кумольный метод был разработан в конце 40-х годов и отчасти известен как процесс Хока, по имени немецкого ученого, позднее независимо открывшего кумольный путь синтеза фенола. В ромышленном масштабе этот метод стал впервые использоваться в США в начале 50-х годов. С этого времени на многие десятилетия кумольный процесс становится образцом химических технологий во всем мире.

Несмотря на прекрасно отлаженную технологию и длительный опыт эксплуатации, кумольный метод имеет ряд недостатков. Прежде всего это наличие взрывоопасного промежуточного соединения (гидропероксид кумола), а также многостадийность метода, что требует повышенных капитальных затрат и делает труднодостижимым высокий выход фенола в расчете на исходный бензол. Так, при выходе полезного продукта 95% на каждой из трех стадий итоговый выход составит лишь 86%. Приблизительно такой выход фенола и дает кумольный метод в настоящее время. Но самый важный и принципиально неустранимый недостаток кумольного метода связан с тем, что в качестве побочного продукта образуется ацетон. Это обстоятельство, которое первоначально рассматривалось как сильная сторона метода, становится все более серьезной проблемой, поскольку ацетон не находит эквивалентного рынка сбыта. В 90-х годах эта проблема стала особенно ощутимой после создания новых способов синтеза метилметакрилата путем окисления углеводородов С4, что резко сократило потребность в ацетоне. Об остроте ситуации говорит тот факт, что в Японии разработана технология, предусматривающая рецикл ацетона. С этой целью к традиционной кумольной схеме добавляются еще две стадии, гидрирование ацетона в изопропиловый спирт и дегидратация последнего в пропилен. Образующийся пропилен снова возвращают на стадию алкилирования бензола. В 1992 году фирма «Mitsui» пустила крупное производство фенола (200 тыс. т/год), основанное на этой пятистадийной кумольной технологии.


Рис. 1.2. Рецикл ацетона с получением пропилена

Предлагаются также другие сходные модификации кумольного метода, которые позволили бы смягчить проблему ацетона. Однако все они приводят к значительному усложнению технологии и не могут рассматриваться как перспективное решение проблемы. Поэтому исследования, ориентированные на поиск новых путей синтеза фенола, которые основывались бы на прямом окислении бензола, в последнее десятилетие приобрели особенно интенсивный характер. Работы ведутся главным образом в следующих направлениях: окисление молекулярным кислородом, окисление моноатомными донорами кислорода и сопряженное окисление. Рассмотрим более подробно направления поиска новых путей синтеза фенола.