Как открыли химический элемент водород. Что такое водород? Физические исследования Генри Кавендиша

Имеет форму шара, а представляли себе ее в виде диска и даже плавающего прямоугольника, огонь, воздух, землю и воду считали четырьмя основными элементами мироздания . Кто перестал называть воду элементом? Кто лишил ее этого высокого звания? ? Целый ряд смелых химиков, работавших независимо друг от друга, почти одновременно сделали это открытие.

Первооткрыватели кислорода и водорода

С тех пор как химики оттеснили алхимиков и чернокнижников от реторт, семья элементов сразу увеличилась. Если сто лет тому назад она насчитывала только 60 членов, то теперь, считая искусственно полученные элементы, их стало сто. Их названия, химический знак, атомный вес и порядковый номер мы найдем в любой химической таблице. Только имена «предков» исчезли из нее. Первооткрывателями кислорода и водорода считаются:
  1. Французский химик Антуан Лоран Лавуазье . Он был управляющим селитровым и пороховым заводом, а позднее, после победы французской буржуазной революции, комиссаром национальной казны, одним из влиятельнейших людей Франции.
  2. Английский химик Генри Кавендиш , родом из старой герцогской семьи, пожертвовавший значительную долю своего состояния науке.
  3. Соотечественник Кавендиша, Джозеф Пристли . Он был священником. Как ярый сторонник французской революции, Пристли был изгнан из Англии и бежал в Америку.
  4. Известный шведский химик Карл Вильгельм Шееле, фармацевт.
Это их имена. А что они сделали?

Кислород - в воде и воздухе

Лавуазье, Пристли и Шееле произвели ряд опытов. Сначала они открыли кислород в воде и воздухе . Сокращенно в химии он обозначается буквой «О». Когда мы говорили:
Без воды нет жизни,
этим еще не было сказано, кому, собственно, вода обязана своей живительной силой. Теперь мы можем ответить на этот вопрос. Живительная сила воды заключается в кислороде . Кислород важнейший элемент воздушной оболочки, окружающей Землю. Без кислорода гаснет жизнь, как пламя свечи, поставленной под стеклянную банку. Даже самый большой пожар утихает, если горящие предметы забросать песком, прекратив к ним доступ кислорода.
Теперь вы понимаете, почему огонь в печке так плохо горит, если вьюшка закрыта? Такой же процесс сгорания происходит и в нашем организме при обмене веществ. Паровая машина работает за счет использования тепловой энергии горящего угля. Точно так же наш организм использует энергию тех питательных веществ, которые мы потребляем. Воздух, который мы вдыхаем, необходим для того, чтобы «печка» - наш организм - хорошо горела, - ведь наше тело должно иметь определенную температуру. При выдохе мы выделяем воду в виде пара и продукты сгорания.
Лавуазье изучал эти процессы и обнаружил, что горение - это быстрое соединение различных веществ с кислородом воздуха . При этом возникает теплота. Но Лавуазье не удовлетворился тем, что открыл кислород . Он хотел знать, с какими веществами соединяется кислород.

Открытие водорода

Почти одновременно с Кавендишем, который тоже разложил воду на составные части, Лавуазье открыл водород . Этот элемент получил название «Hydrogenium», что значит: Водород обозначается буквой «Н». Исследуем еще раз, действительно ли водород находится в составе воды . Наполним пробирку льдом и нагреем ее над пламенем спиртовки. (Спирт, как и всякий алкоголь, богат водородом.) И что же мы увидим? Наружная сторона пробирки покроется как бы росою. Или подержим чистый нож над пламенем свечи. Нож тоже покроется каплями воды. Откуда же берется вода? Вода возникает из пламени. Значит, огонь - источник воды! Это не новое открытие, и все же оно поражает. Химики сказали бы так: при сгорании водорода, иначе говоря, при соединении водорода с кислородом образуется водяной пар . Потому-то пробирка и нож покрываются каплями воды. Так произошло открытие состава воды . Итак, водород, который в 16 раз легче кислорода и в 14 раз легче воздуха, горит! При этом он образует большое количество тепла. Прежде воздушные шары наполняли водородом. Это было очень опасно. Теперь вместо водорода применяют гелий. Можно ответить и на второй вопрос:
Почему вода не горит?
Этот вопрос кажется настолько простым, что мы его сначала даже и не задавали. Большинство скажет:
Вода мокрая, поэтому она и не горит.
Неверно. Бензин тоже «мокрый», но лучше не пробуйте узнать, горит ли он! Вода не горит потому, что она сама образовалась в результате горения. Это, можно сказать, «жидкая зола» водорода. Вот почему вода тушит огонь не хуже, чем песок.

Цель сегодняшней публикации – представить неподготовленному читателю исчерпывающие сведения о том, что такое водород , каковы его физические и химические свойства, сфера применения, значение и способы получения.

Водород присутствует в подавляющем большинстве органических веществ и клеток, в которых на его долю приходится почти две трети атомов.

Фото 1. Водород считается одним из самых распространенных элементов в природе

В периодической системе элементов Менделеева водород занимает почетную первую позицию с атомным весом, равным единице.

Название «водород» (в латинском варианте – Hydrogenium ) ведет происхождение от двух древнегреческих слов: ὕδωρ - « » и γεννάω - «рождаю» (буквально – «рождающий ) и впервые было предложено в 1824 г. русским химиком Михаилом Соловьевым.

Водород является одним из водообразующих (наряду с кислородом) элементов (химическая формула воды H 2 O).

По физическим свойствам водород характеризуется как бесцветный газ (легче воздуха). При смешении с кислородом или воздухом крайне и горюч.

Способен растворяться в некоторых металлах (титане, железе, платине, палладии, никеле) и в этаноле, однако очень плохо растворим в серебре.

Молекула водорода состоит из двух атомов и обозначается H 2 . Водород имеет несколько изотопов: протий (H), дейтерий (D) и тритий (T).

История открытия водорода

Еще в первой половине XVI века при проведении алхимических опытов, смешивая металлы с кислотами, Парацельс заметил доселе неизвестный горючий газ, который отделить от воздуха он так и не смог.

Спустя почти полтора столетия – в конце XVII века – французскому ученому Лемери удалось-таки отделить водород (еще не зная, что это именно водород) от воздуха и доказать его горючесть.

Фото 2. Генри Кавендиш — первооткрыватель водорода

Химические опыты в середине XVIII века позволили Михаилу Ломоносову выявить процесс выделения некоего газа в результате некоторых химических реакций, не являющегося, однако, флогистоном.

Настоящий прорыв в исследовании горючего газа удалось совершить английскому химику Генри Кавендишу , которому и приписывается открытие водорода (1766).

Этот газ Кавендиш называл «горючим воздухом». Им же проведена реакция сжигания этого вещества, в результате которой получалась вода.

В 1783 г. французским химикам во главе с Антуаном Лавуазье был осуществлен синтез воды, а впоследствии – разложение воды с выделением «горючего воздуха».

Эти исследования окончательно доказали присутствие водорода в составе воды. Именно Лавуазье предложил именовать новый газ Hydrogenium (1801).

Полезные свойства водорода

Водород легче воздуха в четырнадцать с половиной раз.

Его же отличает и самая высокая теплопроводность среди прочих газов (белее чем в семь раз превышает теплопроводность воздуха).

В былые воздушные шары и дирижабли заполняли водородом. После серии катастроф в середине 1930-х, закончившихся взрывами дирижаблей, конструкторам пришлось искать водороду замену.

Теперь для подобных летательных аппаратов используется гелий, который намного дороже водорода, зато не так взрывоопасен.

Фото 3. Водород применяется для изготовления ракетного топлива

Во многих странах ведутся исследования по созданию экономичных двигателей для легковых и грузовых автомобилей на основе водорода.

Автомобили на водородном топливе значительно экологичнее своих бензиновых и дизельных собратьев.

При обычных условиях (комнатная температура и естественное давление) водород неохотно вступает в реакции.

При нагревании смеси водорода и кислорода до 600 °C начинается реакция, завершающаяся образованием молекул воды.

Эту же реакцию можно спровоцировать с помощью электрической искры.

Реакции при участи водорода завершаются, лишь когда участвующие в реакции компоненты будут израсходованы целиком.

Температура горящего водорода достигает 2500-2800 °C.

С помощью водорода производят очистку различных типов топлива на основе нефти и нефтепродуктов.

В живой природе водород заменить нечем, так как он присутствует в любой органике (включая нефть) и во всех белковых соединениях.

Без участия водорода была бы невозможна.

Агрегатные состояния водорода

Водород способен пребывать в трех основных агрегатных состояниях:

  • газообразном;
  • жидком;
  • твердом.

Обычное состояние водорода – газ. Понижая его температуру до -252,8 °C, водород превращается в жидкость, а после температурного порога -262 °C водород становится твердым.

Фото 4. Уже несколько десятилетий вместо дешевого водорода для наполнения воздушных шаров используют дорогой гелий

Ученые предполагают, что водород способен находиться в дополнительном (четвертом) агрегатном состоянии – металлическом.

Для этого нужно всего лишь создать давление в два с половиной миллиона атмосфер.

Пока, увы, это всего лишь научная гипотеза, так как получить «металлический водород» еще никому не удавалось.

Жидкий водород – из-за своей температуры — при попадании на кожу человека способен вызвать сильное обморожение.

Водород в таблице Менделеева

В основе распределения химических элементов в периодической таблице Менделеева лежит их атомный вес, рассчитанный относительно атомного веса водорода.

Фото 5. В таблице Менделеева водороду отведена ячейка с порядковым номером 1

Такого подхода долгие годы никто не мог ни опровергнуть, ни подтвердить.

С возникновением в начале XX века и, в частности, появлением знаменитых постулатов Нильса Бора, объясняющих с позиций квантовой механики строение атома, удалось доказать справедливость гипотезы Менделеева.

Верно и обратное: именно соответствие постулатов Нильса Бора периодическому закону, лежащему в основе таблицы Менделеева, и стало самым веским доводом в пользу признания их истинности.

Участие водорода в термоядерной реакции

Изотопы водорода дейтерий и тритий являются источниками невероятно мощной энергии, высвобождающейся в процессе термоядерной реакции.

Фото 6. Термоядерный взрыв без водорода был бы невозможен

Такая реакция возможна при температуре не ниже 1060 °C и протекают очень быстро – в течение нескольких секунд.

На Солнце термоядерные реакции протекают медленно.

Задача ученых – понять, почему так происходит, чтобы использовать полученные знания для создания новых – практически неисчерпаемых – источников энергии.

Что такое водород (видео):

>

История открытия водорода занимает важную веху в развитии науки. Согласно современным научным представлениям, этот газ - один из Он является наиболее важным веществом для существования звезд, а, следовательно, главным источником энергии.

Краткая история открытия водорода

Элемент был обнаружен британским ученым в 1766 году. Происхождение названия восходит к греческим словам «гидро» и «генов», что означает «вода» и «генератор».

Еще в 1671 году Роберт Бойл (1627-1691, английский химик и физик) опубликовал статью «Новые эксперименты, касающиеся отношения между пламенем и воздухом», в которой он описал реакцию между железными опилками и разбавленными кислотами. В процессе экспериментов ученый заметил, что реакция данных веществ приводит к эволюции газообразного водорода («горючий раствор Марса»).

Однако только в 1766 году газ был утвержден в качестве основного элемента Генри Кавендишем (1731-1810, английский химик и физик, который также открыл азот), использовавшим для синтеза ртуть. Ученый охарактеризовал его как «легковоспламеняющийся воздух из металлов». Кавендиш точно описал свойства водорода, но ошибочно считал, что газ происходит от металла, а не от кислоты. Современное название химическому элементу дал французский естествоиспытатель А. Л. Лавуазье.

История открытия водорода (H) на этом не заканчивается. В 1931 году профессором химии Гарольдом Юри, работавшим в Чикаго (США), был обнаружен газ дейтерий. Он является тяжелым изотопом водорода и записывается как 2 H и D.

Кирпичики мироздания

Долгое время люди не могли разобраться в свойствах материи. Хотя еще древние греки предполагали, что «эфир» (окружающее пространство) состоит из неких элементов, четкого обоснования и тем более твердых доказательств сему факту не существовало.

Осенью 1803 года англичанин смог объяснить результаты некоторых своих исследований, предположив, что вещество состоит из атомов. Также исследователь выяснил, что все образцы любого данного соединения состоят из одной и той же комбинации этих атомов. Дальтон также отметил, что в ряде соединений отношения масс второго элемента, которые сочетаются с заданным весом первого элемента, могут быть сведены к малым целым числам («Закон множественных пропорций»). Таким образом, ученый имеет определенное отношение к истории открытия водорода.

Презентация «Теории атомов» Дальтона состоялась в 3-м томе научного издания «Системы химии», изданном Томасом Томсоном в 1807 году. Также материал появился в статье об оксалатах стронция, опубликованной в «Философских транзакциях». В следующем году Дальтон самостоятельно опубликовал эти идеи, сделав более развернутый анализ в работе «Новая система химической философии». Кстати, в ней ученый предложил использовать в качестве символа водорода круг с точкой в центре.

Первый топливный элемент

История открытия водорода богата интересными событиями. В 1839 году британский ученый сэр Уильям Роберт Гроув провел эксперименты по электролизу. Он использовал электричество для разделения воды на водород и кислород. Позже исследователь задумался, а можно ли сделать обратное действие - генерировать электричество из реакции кислорода с водородом? Гроув закрыл платиновые пластинки в отдельных запечатанных емкостях, в одной из которых содержался водород, а в другой - кислород. Когда контейнеры были погружены в разбавленную серную кислоту, между двумя электродами потек ток с образованием воды в газовых баллонах. Затем ученый связал несколько подобных устройств в последовательную цепь, чтобы увеличить напряжение, создаваемое в газовой батарее.

С тех пор на водород возлагаются большие надежды в плане получения компактных экологически чистых источников энергии. Однако пока не решен вопрос 100 %-й безопасности и высокой эффективности конечных устройств для массового потребления. Кстати, термин «топливный элемент» впервые использован химиками Людвигом Мондом и Чарльзом Лангером, продолжившими исследования У. Р. Гроува.

Автономные источники энергии

В 1932 году Фрэнсис Томас Бэкон, инженер Кембриджского университета в Великобритании, продолжил работу над проектами Гроува, Монда и Лангера. Он заменил платиновые электроды менее дорогой никелевой сеткой, а вместо электролита с серной кислотой использовал щелочной гидроксид калия (менее агрессивный к электродам). Это было по существу создание первого щелочного топливного элемента, получившего название ячейка Бэкона. Британцу потребовалось еще 27 лет, чтобы продемонстрировать установку, способную производить 5 кВт энергии, что достаточно для питания сварочного аппарата. Примерно в то же время был продемонстрирован первый автомобиль на топливных элементах.

Позже топливные элементы использовались НАСА в 1960 годах для полетов в рамках лунной программы «Аполлон». Ячейки Бэкона стояли (и стоят) на сотнях космических аппаратов. Также «большие батарейки» используются на подводных лодках.

Полезный, но опасный

История открытия водорода сопряжена не только с радостными моментами. О том, насколько небезопасен данный элемент, свидетельствует трагедия дирижабля-гиганта «Гинденбург». В 1930 годах Германия построила серию воздушных судов - цеппелинов. В качестве газа использовался водород. Будучи легче азотно-кислородной смеси, составляющей основную часть атмосферы, он позволял перевозить большие объемы грузов.

В 1936 году немецкие конструкторы представили миру крупнейший на то время дирижабль «Гинденбург». 245-метровый гигант вмещал 200000 м3 газа. Его грузоподъемность поразительна: аппарат был способен поднять в небо до 100 тонн грузов. Воздушное судно использовалось для трансатлантических перевозок между Германией и США. Пассажирская гондола вмещала 50 человек с багажом. 6.05.1937 по прибытии в Нью-Йорк произошла утечка водорода. Легко воспламеняющийся газ загорелся, произошел взрыв, приведший к смерти 36 человек. С тех пор вместо водорода в летательных аппаратах применяют более безопасный гелий.

Вывод

Водород - один из важнейших элементов во Вселенной. Хотя его свойства хорошо изучены, он не перестает интересовать ученых, инженеров, конструкторов. Данный элемент является темой тысяч научных работ, дипломов и рефератов. История открытия водорода - это история самой науки, системы знаний, пришедшей на смену невежеству и религиозным догмам.

В периодической системе водород располагается в двух абсолютно противоположных по своим свойствам группах элементов. Данная особенность делают его совершенно уникальным. Водород не просто представляет собой элемент или вещество, но также является составной частью многих сложных соединений, органогенным и биогенным элементом. Поэтому рассмотрим его свойства и характеристики более подробно.


Выделение горючего газа в процессе взаимодействия металлов и кислот наблюдали еще в XVI веке, то есть во время становления химии как науки. Известный английский ученый Генри Кавендиш исследовал вещество, начиная с 1766 года, и дал ему название «горючий воздух». При сжигании этот газ давал воду. К сожалению, приверженность ученого теории флогистона (гипотетической «сверхтонкой материи») помешала ему прийти к правильным выводам.

Французский химик и естествоиспытатель А. Лавуазье вместе с инженером Ж. Менье и при помощи специальных газометров в 1783 г. провел синтез воды, а после и ее анализ посредством разложения водяного пара раскаленным железом. Таким образом, ученые смогли прийти к правильным выводам. Они установили, что «горючий воздух» не только входит в состав воды, но и может быть получен из нее.

В 1787 году Лавуазье выдвинул предположение, что исследуемый газ является простым веществом и, соответственно, относится к числу первичных химических элементов. Он назвал его hydrogene (от греческих слов hydor - вода + gennao - рождаю), т. е. «рождающий воду».

Русское название «водород» в 1824 году предложил химик М. Соловьев. Определение состава воды ознаменовало конец «теории флогистона». На стыке XVIII и XIX веков было установлено, что атом водорода очень легкий (по сравнению с атомами прочих элементов) и его масса была принята за основную единицу сравнения атомных масс, получив значение, равное 1.

Физические свойства

Водород является легчайшим из всех известных науке веществ (он в 14,4 раз легче воздуха), его плотность составляет 0,0899 г/л (1 атм, 0 °С). Данный материал плавится (затвердевает) и кипит (сжижается), соответственно, при -259,1 °С и -252,8 °С (только гелий обладает более низкими t° кипения и плавления).

Критическая температура водорода крайне низка (-240 °С). По этой причине его сжижение - довольно сложный и затратный процесс. Критическое давление вещества - 12,8 кгс/см², а критическая плотность составляет 0,0312 г/см³. Среди всех газов водород имеет наибольшую теплопроводность: при 1 атм и 0 °С она равняется 0,174 вт/(мхК).

Удельная теплоемкость вещества в тех же условиях - 14,208 кДж/(кгхК) или 3,394 кал/(гх°С). Данный элемент слабо растворим в воде (около 0,0182 мл/г при 1 атм и 20 °С), но хорошо - в большинстве металлов (Ni, Pt, Pa и прочих), особенно в палладии (примерно 850 объемов на один объем Pd).

С последним свойством связана его способность диффундирования, при этом диффузия через углеродистый сплав (к примеру, сталь) может сопровождаться разрушением сплава из-за взаимодействия водорода с углеродом (этот процесс называется декарбонизация). В жидком состоянии вещество очень легкое (плотность - 0,0708 г/см³ при t° = -253 °С) и текучее (вязкость - 13,8 спуаз в тех же условиях).

Во многих соединениях этот элемент проявляет валентность +1 (степень окисления), подобно натрию и прочим щелочным металлам. Обычно он рассматривается в качестве аналога этих металлов. Соответственно он возглавляет I группу системы Менделеева. В гидридах металлов ион водорода проявляет отрицательный заряд (степень окисления при этом -1), то есть Na+H- имеет структуру, подобную хлориду Na+Cl-. В соответствии с этим и некоторыми другими фактами (близость физических свойств элемента «H» и галогенов, способность его замещения галогенами в органических соединениях) Hydrogene относят к VII группе системы Менделеева.

В обычных условиях молекулярный водород имеет низкую активность, непосредственно соединяясь только с самыми активными из неметаллов (с фтором и хлором, с последним - на свету). В свою очередь, при нагревании он взаимодействует со многими химическими элементами.

Атомарный водород имеет повышенную химическую активность (если сравнивать с молекулярным). С кислородом он образует воду по формуле:

Н₂ + ½О₂ = Н₂О,

выделяя 285,937 кДж/моль тепла или 68,3174 ккал/моль (25 °С, 1 атм). В обычных температурных условиях реакция протекает довольно медленно, а при t° >= 550 °С - неконтролируемо. Пределы взрывоопасности смеси водород + кислород по объему составляют 4–94 % Н₂, а смеси водород + воздух - 4–74 % Н₂ (смесь из двух объемов Н₂ и одного объема О₂ называют гремучим газом).

Данный элемент используют для восстановления большинства металлов, так как он отнимает кислород у оксидов:

Fe₃O₄ + 4H₂ = 3Fe + 4Н₂О,

CuO + H₂ = Cu + H₂O и т. д.

С разными галогенами водород образует галогеноводороды, к примеру:

Н₂ + Cl₂ = 2НСl.

Однако при реакции с фтором водород взрывается (это происходит и в темноте, при -252 °С), с бромом и хлором реагирует только при нагревании или освещении, а с йодом - исключительно при нагревании. При взаимодействии с азотом образуется аммиак, но лишь на катализаторе, при повышенных давлениях и температуре:

ЗН₂ + N₂ = 2NН₃.

При нагревании водород активно реагирует с серой:

Н₂ + S = H₂S (сероводород),

и значительно труднее - с теллуром или селеном. С чистым углеродом водород реагирует без катализатора, но при высоких температурах:

2Н₂ + С (аморфный) = СН₄ (метан).

Данное вещество непосредственно реагирует с некоторыми из металлов (щелочными, щелочноземельными и прочими), образуя гидриды, например:

Н₂ + 2Li = 2LiH.

Немаловажное практическое значение имеют взаимодействия водорода и оксида углерода (II). При этом в зависимости от давления, температуры и катализатора образуются разные органические соединения: НСНО, СН₃ОН и пр. Ненасыщенные углеводороды в процессе реакции переходят в насыщенные, к примеру:

С n Н₂ n + Н₂ = С n Н₂ n ₊₂.

Водород и его соединения играют в химии исключительную роль. Он обусловливает кислотные свойства т. н. протонных кислот, склонен образовывать с разными элементами водородную связь, оказывающую значительное влияние на свойства многих неорганических и органических соединений.

Получение водорода

Основными видами сырья для промышленного производства этого элемента являются газы нефтепереработки, природные горючие и коксовые газы. Его также получают из воды посредством электролиза (в местах с доступной электроэнергией). Одним из важнейших методов производства материала из природного газа считается каталитическое взаимодействие углеводородов, в основном метана, с водяным паром (т. н. конверсия). Например:

СН₄ + H₂О = СО + ЗН₂.

Неполное окисление углеводородов кислородом:

СН₄ + ½О₂ = СО + 2Н₂.

Синтезированный оксид углерода (II) подвергается конверсии:

СО + Н₂О = СО₂ + Н₂.

Водород, производимый из природного газа, является самым дешевым.

Для электролиза воды применяется постоянный ток, который пропускается через раствор NaOH или КОН (кислоты не используют во избежание коррозии аппаратуры). В лабораторных условиях материал получают электролизом воды или в результате реакции между соляной кислотой и цинком. Однако чаще применяют готовый заводской материал в баллонах.

Из газов нефтепереработки и коксового газа данный элемент выделяют путем удаления всех остальных компонентов газовой смеси, так как они легче сжижаются при глубоком охлаждении.

Промышленным образом этот материал стали получать еще в конце XVIII века. Тогда его использовали для наполнения воздушных шаров. На данный момент водород широко применяют в промышленности, главным образом - в химической, для производства аммиака.

Массовые потребители вещества - производители метилового и прочих спиртов, синтетического бензина и многих других продуктов. Их получают синтезом из оксида углерода (II) и водорода. Hydrogene используют для гидрогенизации тяжелого и твердого жидкого топлива, жиров и пр., для синтеза HCl, гидроочистки нефтепродуктов, а также в резке/сварке металлов. Важнейшими элементами для атомной энергетики являются его изотопы - тритий и дейтерий.

Биологическая роль водорода

Около 10 % массы живых организмов (в среднем) приходится на этот элемент. Он входит в состав воды и важнейших групп природных соединений, включая белки, нуклеиновые кислоты, липиды, углеводы. Для чего он служит?

Этот материал играет решающую роль: при поддержании пространственной структуры белков (четвертичной), в осуществлении принципа комплиментарности нуклеиновых кислот (т. е. в реализации и хранении генетической информации), вообще в «узнавании» на молекулярном уровне.

Ион водорода Н+ принимает участие в важных динамических реакциях/процессах в организме. В том числе: в биологическом окислении, которое обеспечивает живые клетки энергией, в реакциях биосинтеза, в фотосинтезе у растений, в бактериальном фотосинтезе и азотфиксации, в поддержании кислотно-щелочного баланса и гомеостаза, в мембранных процессах транспорта. Наряду с углеродом и кислородом он образует функциональную и структурную основы явлений жизни.

После работ Дж. Блэка многие химики в различных лабораториях Англии, Швеции, Франции, Германии занялись изучением газов. Больших успехов достиг Г. Кавендиш. Все экспериментальные работы этого скрупулезного ученого были основаны на количественном методе исследования. Он широко использовал взвешивание веществ и измерение газовых объемов, руководствуясь законом сохранения массы. В первой работе Г. Кавенднша по химии газов (1766) описаны способы получения и свойства .

«Горючий воздух» был известен и раньше (Р. Бойль, Н. Лемери). В 1745 г. М. В. Ломоносов, например, отмечал, что «при растворении какого-либо неблагородного металла, особенно , в кислотных спиртах из отверстия склянки вырывается горючий пар, который представляет собой не что иное, как флогистон». Это примечательно в двух отношениях: во-первых, за много лет до Кавендиша М. В. Ломоносов пришел к выводу, что «горючий воздух» (т. е. водород) представляет собой флогистон; во-вторых, из приведенной цитаты следует, что М. В. Ломоносов принимал учение о флогистоне.

Но выделить «горючий воздух» и изучить его свойства никто до Г. Кавендиша не пытался. В химическом трактате «Три работы, содержащие опыты с искусственными видами воздуха» (1766) он показал, что существуют газы, которые отличаются от воздуха, а именно, с одной стороны, «лесной, или связанный, воздух», который, как установил Г. Кавендиш, оказался в 1,57 раза тяжелее обычного воздуха, с другой стороны, «горючий воздух» - водород. Г. Кавендиш получал его действием разбавленных и кислот на различные металлы. Тот факт, что при действии на (цинк, железо) выделялся один и тот же газ (водород), окончательно убедил Г. Кавендиша в том, что все металлы содержат флогистон, который выделяется при превращении металлов в «земли». Английский ученый принимал водород за чистый флогистон, поскольку газ горит, не оставляя остатка, и оксиды металлов, обрабатываемые этим газом, при нагревании восстанавливаются в соответствующие металлы.

Генри Кавендиш

Г. Кавендиш как сторонник теории флогистона считал, что не вытесняется металлом из кислоты, а выделяется вследствие разложения «сложного» металла. Реакцию получения «горючего воздуха» из металлов он представлял так:

Какими способами и приборами пользовался «отец химии газообразных веществ», можно видеть из следующего. Покидая Лидс, Дж. Пристли по просьбе одного из знакомых оставил ему глиняное корыто, которое он применял как пневматическую ванну в своих опытах по изучению состава воздуха и которое, иронически замечает Дж. Пристли, «ничем не отличалось от корыт, в которых прачки стирают белье». В 1772 г. Дж. Пристли заменил в пневматической ванне воду ртутью, что позволило ему впервые получить в чистом виде и изучить растворимые в воде газы: «солянокислый воздух» () и «летучий щелочной воздух» - бесцветный газ с удушливым резким запахом. Это был , который он получил при нагревании хлорида аммония:

2NH 4 Cl + CaO = 2NH 3 + CaCl 2 + H 2

«Золотая россыпь, открытая Пристли, была… ртутная ванна,- писал В. Оствальд. - Один шаг вперед в технической стороне дела-замена воды - вот ключ к большинству открытий Пристли». Дж. Пристли наблюдал, что если через аммиак пропускать электрическую искру, то объем его резко увеличивается. В 1785 г. К.- Л. Бертолле установил, что это объясняется разложением аммиака на азот и водород. Дж. Пристли наблюдал, что при взаимодействии двух резко пахнущих, газов (НСl и NH 3) образуется белый порошок без запаха, (NH 4 Cl). В 1775 г. Дж. Пристли получил , а в. 1796 г. - , который принял за чистый флогистон.