Никель и его соединения. Комплексные соединение одновалентного никеля

В результате изучения данной темы вы узнаете:

  • Почему молекула воды полярная, углекислого газа – нет.
  • Какова максимальная валентность азота в соединениях.
  • Почему вода имеет аномально высокие температуры плавления и кипения.

В результате изучения данной темы вы научитесь:

  • Определять характер химической связи (ковалентная полярная и неполярная, ионная, водородная, металлическая) в различных соединениях.
  • Определять геометрическую форму молекул на основе анализа их электронного строения с привлечением представлений о гибридизации атомных орбиталей.
  • Прогнозировать свойства веществ на основе сведений о природе химической связи и типах кристаллических решеток.

Учебные вопросы:

5.1. Ковалентная связь

Химическая связь образуется при сближении двух или большего числа атомов, если в результате их взаимодействия происходит понижение полной энергии системы. Наиболее устойчивыми электронными конфигурациями внешних электронных оболочек атомов являются конфигурации атомов благородных газов, состоящие из двух или восьми электронов. Внешние электронные оболочки атомов других элементов содержат от одного до семи электронов, т.е. являются незавершенными. При образовании молекулы атомы стремятся приобрести устойчивую двухэлектронную или восьмиэлектронную оболочки. В образовании химической связи принимают участие валентные электроны атомов.

Ковалентной называется химическая связь между двумя атомами, которая образуется за счет электронных пар, принадлежащих одновременно этим двум атомам.

Существует два механизма образования ковалентной связи: обменный и донорно – акцепторный.

5.1.1. Обменный механизм образования ковалентной связи

Обменный механизм образования ковалентной связи реализуется за счет перекрывания электронных облаков электронов, принадлежащих различным атомам. Например, при сближении двух атомов водорода происходит перекрывание 1s электронных орбиталей. В результате возникает общая пара электронов, одновременно принадлежащая обоим атомам. При этом химическая связь образуется электронами, имеющими антипараллельные спины, рис. 5.1.

Рис. 5.1. Образование молекулы водорода из двух атомов Н

5.1.2. Донорно – акцепторный механизм образования ковалентной связи

При донорно – акцепторном механизме образования ковалентной связи связь также образуется с помощью электронных пар. Однако в этом случае однин атом (донор) предоставляет свою электронную пару, а другой атом (акцептор) участвует в образовании связи своей свободной орбиталью. Примером реализации донорно-акцепторной связи является образование иона аммония NH 4 + при взаимодействии аммиака NH 3 с катионом водорода H + .

В молекуле NH 3 три электронные пары образуют три связи N – H, четвертая, принадлежащая атому азота электронная пара является неподеленной. Эта электронная пара может дать связь с ионом водорода, который имеет свободную орбиталь. В результате получается ион аммония NH 4 + , рис. 5.2.

Рис. 5.2. Возникновение донорно-акцепторной связи при образовании иона аммония

Необходимо отметить, что существующие в ионе NH 4 + четыре ковалентных связи N – H равноценны. В ионе аммония невозможно выделить связь, образованную по донорно-акцепторному механизму.

5.1.3. Полярная и неполярная ковалентная связь

Если ковалентная связь образуется одинаковыми атомами, то электронная пара располагается на одинаковом расстоянии между ядрами этих атомов. Такая ковалентная связь называется неполярной. Примером молекул с неполярной ковалентной связью являются Н 2 , Cl 2 , О 2 , N 2 и др.

В случае полярной ковалентной связи общая электронная пара смещена к атому с большей электроотрицательностью. Этот тип связи реализуется в молекулах, образованных различными атомами. Ковалентная полярная связь имеет место в молекулах HCl, HBr, CO, NO и др. Например, образование полярной ковалентной связи в молекуле HCl можно представить схемой, рис. 5.3:

Рис. 5.3. Образование ковалентной полярной связи в молекуле НС1

В рассматриваемой молекуле электронная пара смещена к атому хлора, поскольку его электроотрицательность (2,83) больше, чем электроотрицательность атома водорода (2,1).

5.1.4. Дипольный момент и строение молекул

Мерой полярности связи является ее дипольный момент μ:

μ = е l ,

где е – заряд электрона, l – расстояние между центрами положительного и отрицательного зарядов.

Дипольный момент – это векторная величина. Понятия «дипольный момент связи» и «дипольный момент молекулы» совпадают только для двухатомных молекул. Дипольный момент молекулы равен векторной сумме дипольных моментов всех связей. Таким образом, дипольный момент многоатомной молекулы зависит от ее строения.

В линейной молекуле СО 2 , например, каждая из связей С–О полярна. Однако молекула СО 2 в целом неполярна, так как дипольные моменты связей компенсируют друг друга (рис. 5.4). Дипольный момент молекулы углекислого газа m = 0.

В угловой молекуле Н 2 О полярные связи Н–О расположены под углом 104,5 o . Векторная сумма дипольных моментов двух связей Н–О выражается диагональю параллелограмма (рис. 5.4). В результате дипольный момент молекулы воды m не равен нулю.

Рис. 5.4. Дипольные моменты молекул СО 2 и Н 2 О

5.1.5. Валентность элементов в соединениях с ковалентной связью

Валентность атомов определяется числом неспаренных электронов, участвующих в образовании общих электронных пар с электронами других атомов. Имеющие один неспаренный электрон на внешнем электронном слое атомы галогенов в молекулах F 2 , НCl, PBr 3 и CCl 4 одновалентны. Элементы подгруппы кислорода содержат два неспаренных электрона на внешнем слое, поэтому в таких соединениях как O 2 , Н 2 О, Н 2 S и SCl 2 они двухвалентны.

Поскольку помимо обычных ковалентных связей в молекулах может образовываться связь по донорно-акцепторному механизму, валентность атомов зависит также от наличия у них неподеленных электронных пар и свободных электронных орбиталей. Количественной мерой валентности является число химических связей, с помощью которых данный атом соединен с другими атомами.

Максимальная валентность элементов как правило не может превышать номер группы, в которой они находятся. Исключение составляют элементы побочной подгруппы первой группы Cu, Ag, Au, валентность которых в соединениях больше единицы. К валентным относятся прежде всего электроны внешних слоев, однако для элементов побочных подгрупп в образовании химической связи принимают участие и электроны предпоследних (предвнешних) слоев.

5.1.6. Валентность элементов в нормальном и возбужденном состояниях

Валентность большинства химических элементов зависит от того, находятся эти элементы в нормальном или возбужденном состоянии. Электронная конфигурация атома Li: 1s 2 2s 1 . Атом лития на внешнем уровне имеет один неспаренный электрон, т.е. литий одновалентен. Необходима очень большая затрата энергии, связанная с переходом 1s-электрона на 2р-орбиталь, чтобы получить трехвалентный литий. Эта затрата энергии настолько велика, что не компенсируется энергией, которая выделится при образовании химических связей. В связи с этим не существует соединений трехвалентного лития.

Конфигурация внешнего электронного слоя элементов подгруппы бериллия ns 2 . Это означает, что на внешнем электронном слое у этих элементов на орбитали ns ячейке находится два электрона с противоположными спинами. Элементы подгруппы бериллия не содержат неспаренных электронов, поэтому их валентность в нормальном состоянии равна нулю. В возбужденном состоянии электронная конфигурация элементов подгруппы бериллия ns 1 nр 1 , т.е. элементы образуют соединения, в которых они двухвалентны.

Валентные возможности атома бора

Рассмотрим электронную конфигурацию атома бора в основном состоянии: 1s 2 2s 2 2р 1 . Атом бора в основном состоянии содержит один неспаренный электрон (рис. 5.5), т.е. он одновалентен. Однако для бора не характерно образование соединений в которых он одновалентен. При возбуждении атома бора происходит переход одного 2s-электрона на 2р-орбиталь (рис. 5.5). Атом бора в возбужденном состоянии имеет 3 неспаренных электрона и может образовывать соединения, в которых его валентность равна трем.

Рис. 5.5. Валентные состояния атома бора в нормальном и возбужденном состояниях

Энергия, затраченная на переход атома в возбужденное состояние в пределах одного энергетического уровня, как правило, с избытком компенсируется энергией, выделяющейся при образовании дополнительных связей.

Благодаря наличию в атоме бора одной свободной 2р-орбитали, бор в соединениях может образовывать четвертую ковалентную связь, выступая в роли акцептора электронной пары. На рис.5.6 показано как происходит взаимодействие молекулы BF с ионом F – , в результате которого образуется ион – , в котором бор образует четыре ковалентных связи.

Рис. 5.6. Донорно-акцепторный механизм образования четвертой ковалентной связи у атома бора

Валентные возможности атома азота

Рассмотрим электронное строение атома азота (рис. 5.7).

Рис. 5.7. Распределение электронов на орбиталях атома азота

Из представленной схемы видно, что азот имеет три неспаренных электрона, он может образовывать три химические связи и его валентность равна трем. Переход атома азота в возбужденное состояние невозможен, поскольку второй энергетический уровень не содержит d–орбиталей. Вместе с тем атом азота может предоставить неподеленную электронную пару внешних электронов 2s 2 атому, имеющему свободную орбиталь (акцептору). В результате возникает четвертая химическая связь атома азота, как это имеет место, например, в ионе аммония (рис. 5.2). Таким образом, максимальная ковалентность (число образованных ковалентных связей) атома азота равна четырем. В своих соединениях азот, в отличие от других элементов пятой группы, не может быть пятивалентным.

Валентные возможности атомов фосфора, серы и галогенов

В отличие от атомов азота, кислорода и фтора, находящиеся в третьем периоде атомы фосфора, серы и хлора имеют свободные 3d-ячейки, на которые могут переходить электроны. При возбуждении атома фосфора (рис. 5.8), у него на внешнем электронном слое оказываются 5 неспаренных электронов. В результате в соединениях атом фосфора может быть не только трех-, но и пятивалентным.

Рис. 5.8. Распределение валентных электронов на орбиталях для атома фосфора, находящегося в возбужденном состоянии

В возбужденном состоянии сера помимо валентности, равной двум, проявляет также валентность, равную четырем и шести. При этом последовательно происходит распаривание 3р и 3s-электронов (рис. 5.9).

Рис. 5.9. Валентные возможности атома серы в возбужденном состоянии

В возбужденном состоянии для всех элементов главной подгруппы V группы, кроме фтора, возможно последовательное распаривание сначала р-, а затем и s-электронных пар. В результате эти элементы становятся трех-, пяти- и семивалентными (рис. 5.10).

Рис. 5.10. Валентные возможности атомов хлора, брома и иода в возбужденном состоянии

5.1.7. Длина, энергия и направленность ковалентной связи

Ковалентная связь, как правило, образуется между атомами неметаллов. Основными характеристиками ковалентной связи являются длина, энергия и направленность.

Длина ковалентной связи

Длина связи – это расстояние между ядрами атомов, образующими эту связь. Ее определяют экспериментальными физическими методами. Оценить величину длины связи можно по правилу аддитивности, согласно которому длина связи в молекуле АВ приблизительно равна полусумме длин связей в молекулах А 2 и В 2:

.

Сверху вниз по подгруппам периодической системы элементов длина химической связи возрастает, поскольку в этом направлении увеличивается радиусы атомов (табл. 5.1). С увеличением кратности связи ее длина уменьшается.

Таблица 5.1.

Длина некоторых химических связей

Химическая связь

Длина связи, пм

Химическая связь

Длина связи, пм

С – С


Энергия связи

Мерой прочности связи является энергия связи. Энергия связи определяется энергией, необходимой для разрыва связи и удаления атомов, образующих эту связь, на бесконечно большое расстояние друг от друга. Ковалентная связь является очень прочной. Ее энергия составляет от нескольких десятков до нескольких сотен кДж/моль. Для молекулы IСl 3 , например, Есвязи ≈40 , а для молекул N 2 и CO Есвязи ≈1000 кДж/моль.

Сверху вниз по подгруппам периодической системы элементов энергия химической связи уменьшается, поскольку в этом направлении увеличивается длина связи (табл. 5.1). С увеличением кратности связи ее энергия возрастает (табл. 5.2).

Таблица 5.2.

Энергий некоторых химических связей

Химическая связь

Энергия связи,

Химическая связь

Энергия связи,

С – С

Насыщаемость и направленность ковалентной связи

Важнейшими свойствами ковалентной связи является ее насыщаемость и направленность. Насыщаемость можно определить как способность атомов образовывать ограниченное число ковалентных связей. Так атом углерода может образовывать только четыре ковалентных связи, а атом кислорода – две. Максимальное число обычных ковалентных связей, которые может образовывать атом (без учета связей, образованных по донорно-акцепторному механизму) равно числу неспаренных электронов.

Ковалентные связи имеют пространственную направленность, поскольку перекрывание орбиталей при образовании одинарной связи происходит по линии, связывающей ядра атомов. Пространственное расположение электронных орбиталей молекулы обуславливают ее геометрию. Углы между химическими связями называют валентными углами.

Насыщаемость и направленность ковалентной связи отличает эту связь от ионной, которая в отличие от ковалентной связи является ненасыщенной и ненаправленной.

Пространственное строение молекул Н 2 O и NH 3

Направленность ковалентной связи рассмотрим на примере молекул Н 2 O и NH 3 .

Молекула H 2 O образуется из атома кислорода и двух атомов водорода. Атом кислорода имеет два неспаренных p-электрона, которые занимают две орбитали, расположенные под прямым углом друг к другу. Атомы водорода имеют неспаренные 1s-электроны. Угол между связями, образованными р-электронами, должен быть близок к углу между орбиталями р-электронов. Экспериментально, однако, найдено, что угол между связями О–Н в молекуле воды равен 104,50. Увеличение угла по сравнению с углом 90 o можно объяснить силами отталкивания, которые действует между атомами водорода, рис. 5.11. Таким образом, молекула Н 2 О имеет угловую форму.

В образовании молекулы NH 3 участвуют три неспаренных p-электрона атома азота, орбитали которых расположены в трех взаимно перпендикулярных направлениях. Следовательно, три связи N–H должны располагаться под углами друг к другу, близкими к 90° (рис. 5.11). Экспериментальное значение угла между связями в молекуле NH 3 равно 107,3°. Отличие значения углов между связями от теоретических обусловлено, как и в случае молекулы воды, взаимным отталкиванием атомов водорода. Кроме того, представленные схемы не учитывают возможность участия двух электронов на орбиталях 2s в образовании химических связей.

Рис. 5.11. Перекрывание электронных орбиталей при образовании химических связей в молекулах Н 2 O (а) и NH 3 (б)

Рассмотрим образование молекулы ВеС1 2 . Атом бериллия в возбужденном состоянии имеет два неспаренных электрона: 2s и 2p. Можно предположить, что атом бериллия должен образовывать две связи: одну связь, образованную s-электроном и одну связь, образованную р-электроном. Эти связи должны иметь различную энергию и различную длину. Молекула ВеС1 2 в таком случае должна быть не линейной, а уголковой. Опыт, однако, показывает, что молекула ВеС1 2 имеет линейное строение и обе химические связи в ней равноценны. Аналогичная ситуация наблюдается при рассмотрении строения молекул BCl 3 и CCl 4 – все связи в этих молекулах равноценны. Молекула ВС1 3 имеет плоское строение, СС1 4 – тетраэдрическое.

Для объяснения строения таких молекул, как ВеС1 2 , BCl 3 и CCl 4 , Полинг и Слейтер (США) ввели представление о гибридизации атомных орбиталей. Они предложили заменить несколько атомных орбиталей, не очень сильно отличающихся своей энергией, таким же числом равноценных орбиталей, называемых гибридными. Эти гибридные орбитали составляются из атомных в результате их линейной комбинации.

Согласно Л. Полингу при образовании химических связей атомом, имеющим электроны различного типа в одном слое и, следовательно, не очень сильно отличающиеся своей энергией (например, s и p) возможно изменение конфигурации орбиталей различных типов, при которой происходит их выравнивание по форме и энергии. В результате образуются гибридные орбитали, имеющие асимметричную форму и сильно вытянутые по одну сторону от ядра. Важно подчеркнуть, что модель гибридизации используется в том случае, когда в образовании связей участвуют электроны различного типа, например s и р.

5.1.8.2. Различные типы гибридизации атомных орбиталей

sp- гибридизация

Гибридизация одной s - и одной р - орбитали (sp - гибридизация) реализуется, например, при образовании хлорида бериллия. Как было показано выше, в возбужденном состоянии атом Be имеет два неспаренных электрона, один из которых занимает 2s-орбиталь, а другой – 2p-орбиталь. При образовании химической связи эти две различные орбитали трансформируются в две одинаковые гибридные орбитали, направленные под углом 180° друг к другу (рис. 5.12). Линейное расположение двух гибридных орбиталей отвечает минимальному их отталкиванию друг от друга. В результате молекула BeCl 2 имеет линейное строение – все три атома расположены на одной линии.

Рис. 5.12. Схема перекрывания электронных орбиталей при образовании молекулы BeCl 2

Строение молекулы ацетилена; сигма- и пи-связи

Рассмотрим схему перекрывания электронных орбиталей при образовании молекулы ацетилена . В молекуле ацетилена каждый атом углерода находится в sp–гибридном состоянии. Две sp–гибридные орбитали расположены под углом 1800 друг к другу; они образуют одну σ -связь между атомами углерода и две σ -связи с атомами водорода (рис. 5.13).

Рис. 5.13. Схема образования s -связей в молекуле ацетилена

σ -связью называют связь, образованную в результате перекрывания электронных орбиталей по линии, соединяющей ядра атомов.

Каждый атом углерода в молекуле ацетилена содержит еще по два р-электрона, которые не принимают участия в образовании σ -связей. Электронные облака этих электронов располагаются во взаимно перпендикулярных плоскостях и, перекрываясь друг с другом, образуют еще две π -связи между атомами углерода за счет бокового перекрывания негибридных р –облаков (рис. 5.14).

π -связь – это ковалентная химическая связь, образованная в результате увеличения электронной плотности по обе стороны от линии, соединяющей ядра атомов.

Рис. 5.14. Схема образования σ - и π -связей в молекуле ацетилена.

Таким образом, в молекуле ацетилена между атомами углерода образуется тройная связь, которая состоит из одной σ - связи и двух π -связей; σ -связи являются более прочными, чем π - связи.

sp2- гибридизация

Строение молекулы BCl 3 можно объяснить с позиций sp 2 - гибридизации . Находящийся в возбужденном состоянии атом бора на внешнем электронном слое содержит один s-электрон и два p-электрона, т.е. три неспаренных электрона. Эти три электронных облака можно преобразовать в три равноценных гибридных орбитали. Минимальному отталкиванию трех гибридных орбиталей друг от друга соответствует их расположение в одной плоскости под углом 120 o друг к другу (рис. 5.15). Таким образом, молекула BCl 3 имеет плоскую форму.

Рис. 5.15. Плоское строение молекулы BCl 3

sp 3 - гибридизация

Валентные орбитали атома углерода (s, р x , р y , р z) можно преобразовать в четыре равноценных гибридные орбитали, которые расположены в пространстве под углом 109,5 o друг к другу и направлены к вершинам тетраэдра, в центре которого находится ядро атома углерода (рис. 5.16).

Рис. 5.16. Тетраэдрическое строение молекулы метана

5.1.8.3. Гибридизация с участием неподеленных электронных пар

Модель гибридизации может использоваться для объяснения строения молекул, в которых помимо связывающих, имеются также и неподеленные электронные пары. В молекулах воды и аммиака общее число электронных пар центрального атома (О и N) равно четырем. При этом в молекуле воды имеются две, а в молекуле аммиака – одна неподеленная электронная пара. Образование химических связей в данных молекулах можно объяснить, предполагая, что неподеленные электронные пары также могут заполнять гибридные орбитали. Неподеленные электронные пары занимают в пространстве значительно больше места, чем связывающие. В результате отталкивания, которое возникает между неподеленными и связывающими электронными парами происходит уменьшение валентных углов в молекулах воды и аммиака, которые оказываются меньше, чем 109,5 o .

Рис. 5.17. sp 3 – гибридизация с участием неподеленных электронных пар в молекулах H 2 O (А) и NH 3 (Б)

5.1.8.4. Установление типа гибридизации и определение строения молекул

Для установления типа гибридизации, а, следовательно, и структуры молекул необходимо использовать следующие правила.

1. Тип гибридизации центрального атома, не содержащего неподеленных электронных пар, определяется числом сигма связей. Если таких связей две имеет место sp-гибридизация, три - sp 2 -гибридизация, четыре - sp 3 -гибридизация. Неподеленные электронные пары (в отсутствии связей, образованных по донорно-акцепторному механизму) отсутствуют в молекулах, образованных атомами бериллия, бора, углерода, кремния, т.е. у элементов главных подгрупп II - IV групп.

2. Если центральный атом содержит неподеленные электронные пары, то число гибридных орбиталей и тип гибридизации определяются суммой числа сигма-связей и числа неподеленных электронных пар. Гибридизация с участием неподеленных электронных пар имеет место в молекулах, образованных атомами азота, фосфора, кислорода, серы, т.е. элементов главных подгрупп V и VI групп.

3. Геометрическая форма молекул определяется типом гибридизации центрального атома (табл. 5.3).

Таблица 5.3.

Валентные углы, геометрическая форма молекул в зависимости от числа гибридных орбиталей и типа гибридизации центрального атома

5.2. Ионная связь

Ионная связь осуществляется путем электростатического притяжения между противоположно заряженными ионами. Эти ионы образуются в результате перехода электронов от одного атома к другому. Ионная связь образуется между атомами, имеющими большие различия электроотрицательностей (обычно больше 1,7 по шкале Полинга), например, между атомами щелочных металлов и галогенов.

Рассмотрим возникновение ионной связи на примере образования NaCl. Из электронных формул атомов Na 1s 2 2s 2 2p 6 3s 1 и Cl 1s 2 2s 2 2p 6 3s 2 3p 5 видно, что для завершения внешнего уровня атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один, чем отдать семь. В химических реакциях атом натрия отдает один электрон, а атом хлора принимает его. В результате электронные оболочки атомов натрия и хлора превращаются в устойчивые электронные оболочки благородных газов (электронная конфигурация катиона натрия Na + 1s 2 2s 2 2p 6 , а электронная конфигурация аниона хлора Cl – - 1s 2 2s 2 2p 6 3s 2 3p 6). Электростатическое взаимодействие ионов приводит к образованию молекулы NaCl.

Основные характеристики ионной связи и свойства ионных соединений

1. Ионная связь является прочной химической связью. Энергия этой связи составляет величины порядка 300 – 700 кДж/моль.

2. В отличие от ковалентной связи, ионная связь является ненаправленной , поскольку ион может притягивать к себе ионы противоположного знака в любом направлении.

3. В отличие от ковалентной связи, ионная связь является ненасыщенной , так как взаимодействие ионов противоположного знака не приводит к полной взаимной компенсации их силовых полей.

4. В процессе образования молекул с ионной связью не происходит полной передачи электронов, поэтому стопроцентной ионной связи в природе не существует. В молекуле NaCl химическая связь лишь на 80% ионная.

5. Соединения с ионной связью – это твердые кристаллические вещества, имеющие высокие температуры плавления и кипения.

6. Большинство ионных соединений растворяются в воде. Растворы и расплавы ионных соединений проводят электрический ток.

5.3. Металлическая связь

Атомы металлов на внешнем энергетическом уровне содержат небольшое число валентных электронов. Поскольку энергия ионизации атомов металлов невелика, валентные электроны слабо удерживаются в этих атомах. В результате в кристаллической решетке металлов появляются положительно заряженные ионы и свободные электроны. При этом катионы металла находятся в узлах кристаллической их решетки, а электроны свободно перемещаются в поле положительных центров образуя так называемый «электронный газ». Наличие между двумя катионами отрицательно заряженного электрона приводит тому, что каждый катион взаимодействует с этим электроном. Таким образом, металлическая связь – это связь между положительными ионами в кристаллах металлов, которая осуществляется путем притяжения электронов, свободно перемещающихся по всему кристаллу.

Поскольку валентные электроны в металле равномерно распределены по всему кристаллу металлическая связь, как и ионная, является ненаправленной связью. В отличие от ковалентной связи, металлическая связь является ненасыщенной связью. От ковалентной связи металлическая связь отличается также и прочностью. Энергия металлической связи примерно в три – четыре раза меньше энергии ковалентной связи.

Вследствие большой подвижности электронного газа металлы характеризуются высокой электро- и теплопроводностью.

5.4. Водородная связь

В молекулах соединениях HF, H 2 O, NH 3 существуют связи водорода с сильно электроотрицательным элементом (Н–F, Н–O, Н–N). Между молекулами таких соединений могут образовываться межмолекулярные водородные связи . В некоторых органических молекулах, содержащих связи Н–O, Н–N, могут возникать внутримолекулярные водородные связи .

Механизм образования водородной связи имеет частично электростатический, частично донорно – акцепторный характер. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором - атомы водорода, соединенные с этими атомами. Как и для ковалентной связи, для водородной связи характерны направленность в пространстве и насыщаемость .

Водородную связь принято обозначать точками: Н ··· F. Водородная связь проявляется тем сильнее, чем больше электроотрицательность атома-партнера и чем меньше его размеры. Она характерна прежде всего для соединений фтора, а также кислорода, в меньшей степени азота, в еще меньшей степени для хлора и серы. Соответственно меняется и энергия водородной связи (табл. 5.4).

Таблица 5.4.

Средние значения энергий водородных связей

Межмолекулярная и внутримолекулярная водородная связь

Благодаря водородным связям молекулы объединяются в димеры и более сложные ассоциаты. Например, образование димера муравьиной кислоты можно представить следующей схемой (рис. 5.18).

Рис. 5.18. Образование межмолекулярных водородных связей в муравьиной кислоте

В воде могут возникать длинные цепи ассоциатов (Н 2 О) n (рис. 5.19).

Рис. 5.19. Образование цепи ассоциатов в жидкой воде за счет межмолекулярных водородных связей

Каждая молекула Н 2 О может образовать четыре водородных связи, а молекула HF – только две.

Водородные связи могут возникать как между различными молекулами (межмолекулярная водородная связь), так и внутри молекулы (внутримолекулярная водородная связь). Примеры образования внутримолекулярной связи для некоторых органических веществ представлены на рис. 5.20.

Рис. 5.20. Образование внутримолекулярной водородной связи в молекулах различных органических соединений

Влияние водородной связи на свойства веществ

Наиболее удобным индикатором существования межмолекулярной водородной связи является температура кипения вещества. Более высокая температура кипения воды (100 o C по сравнению с водородными соединениями элементов подгруппы кислорода (H 2 S, H 2 Se, H 2 Te) объясняется наличием водородных связей: на разрушение межмолекулярных водородных связей в воде необходимо затратить дополнительную энергию.

Водородная связь существенным образом может влиять на структуру и свойства веществ. Существование межмолекулярной водородной связи повышает температуры плавления и кипения веществ. Наличие внутримолекулярной водородной связи приводит к тому, что молекула дезоксирибонуклеиновой кислоты (ДНК) оказывается свернутой в воде двойной спирали.

Водородная связь также играет важную роль в процессах растворения, поскольку растворимость зависит и от способности соединения давать водородные связи с растворителем. В результате содержащие ОН-группы такие вещества, как сахар, глюкоза, спирты, карбоновые кислоты, как правило, хорошо растворимы в воде.

5.5. Типы кристаллических решеток

Твердые вещества, как правило, имеют кристаллическое строение. Частицы, из которых состоят кристаллы (атомы, ионы или молекулы) располагаются в строго определенных точках пространства, образуя кристаллическую решетку. Кристаллическая решетка состоит из элементарных ячеек, которые сохраняют особенности структуры, характерные для данной решетки. Точки, в которых находятся частицы, называются узлами кристаллической решетки . В зависимости от вида частиц, находящихся в узлах решетки и от характера связи между ними различают 4 типа кристаллических решеток.

5.5.1. Атомная кристаллическая решетка

В узлах атомных кристаллических решеток находятся атомы, соединенные между собой ковалентными связями. К веществам, имеющим атомную решетку, относятся алмаз, кремний, карбиды, силициды и т.д. В структуре атомного кристалла невозможно выделить отдельные молекулы, весь кристалл рассматривается как одна гигантская молекула. Структура алмаза показана на рис. 5.21. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Вследствие того, что ковалентные связи прочные, все вещества, имеющие атомные решетки, являются тугоплавкими, твердыми и малолетучими. Они мало растворимы в воде.

Рис. 5.21. Кристаллическая решетка алмаза

5.5.2. Молекулярная кристаллическая решетка

В узлах молекулярных кристаллических решеток находятся молекулы, связанные между собой слабыми межмолекуляриыми силами. Поэтому вещества с молекулярной решеткой имеют малую твердость, они легкоплавки, характеризуются значительной летучестью, мало растворимы в воде, их растворы, как правило, не проводят электрический ток. Веществ c молекулярной кристаллической решеткой известно очень много. Это твердые водород, хлор, оксид углерода(IV) и другие вещества, которые при обычной температуре находятся в газообразном состоянии. Большинство кристаллических органических соединений имеют молекулярную решетку.

5.5.3. Ионная кристаллическая решетка

Кристаллические решетки, в узлах которых находятся ионы, называются ионными . Их образуют вещества с ионной связью, например, галогениды щелочных металлов. В ионных кристаллах нельзя выделить отдельные молекулы, весь кристалл можно рассматривать как одну макромолекулу. Связи между ионами прочные, поэтому вещества с ионной решеткой обладают малой летучестью, высокими температурами плавления и кипения. Кристаллическая решетка хлорида натрия представлена на рис. 5.22.

Рис. 5.22. Кристаллическая решетка хлорида натрия

На этом рисунке светлые шары – ионы Na + , темные – ионы Сl – . Слева на рис. 5.22 показана элементарная ячейка NaCI.

5.5.4. Металлическая кристаллическая решетка

Металлы в твердом состоянии образуют металлические кристаллические решетки. В узлах таких решеток находятся положительные ионы металлов, а валентные электроны свободно перемещаются между ними. Электроны электростатически притягивают катионы, тем самым придавая устойчивость металлической решетке. Такое строение решетки обусловливает высокую теплопроводность, электропроводность и пластичность металлов - при механическом деформировании не происходит разрыва связей и разрушения кристалла, поскольку составляющие его ионы как бы плавают в облаке электронного газа. На рис. 5.23 представлена кристаллическая решетка натрия.

Рис. 5.23. Кристаллическая решетка натрия

Никель сернокислый представляет собой кристаллическое вещество изумрудно-зеленого или бирюзового цвета, растворимое в воде, выветривающееся на воздухе. Это один из видов солей никеля.
Никель сернокислый сильно токсическое вещество, поэтому при работе с ним необходимо соблюдать правила обращения с опасными веществами.
Химическая формула: NiSO4 7H2O.
Никель сернокислый используют в гальванике для никелирования изделий и металлов.
А также - для изготовления аккумуляторов, катализаторов, ферритов в электронной и электротехнической промышленности, в металлургии для приготовления сплавов. Никель нашел широкое применение в парфюмерной, жировой и химической промышленности в качестве реактива.
При производстве керамики никель сернокислый применяется в качестве красителя.

Требования безопасности никеля сернокислого (сульфата никеля гептагидрата, никелевого купороса) ГОСТ 4465-74.
7-водный сернокислый никель (II) является кристаллическим веществом. При попадании внутрь организма человека оказывает канцерогенное и общетоксичное действие. При попадании на кожу и слизистые оболочки верхних дыхательных путей и глаз продукт действует раздражающе и вызывает повышенную чувствительность к никелю.
При растворении 7-водного сернокислого никеля (II) в воде образуется гидроаэрозоль, который по степени воздействия на организм относится к веществам 1-го класса опасности.
Предельно допустимая концентрация гидроаэрозоля 7-водного сернокислого никеля в пересчете на никель в воздухе рабочей зоны - 0,005 мг/м³.
Предельно допустимая концентрация иона никеля в воде водоемов санитарно-бытового пользования - 0,1 мг/дм³.
Обезвреживанию и уничтожению 7-водный сернокислый никель не подлежит. Просыпавшийся продукт после сухой и последующей влажной уборки утилизируют в технологических процессах получения или потребления сернокислого никеля.
В воздушной среде и сточных водах сернокислый никель токсичных веществ не образует.
7-водный сернокислый никель (II) не горюч, пожаро- и взрывобезопасен.
Все работающие с сернокислым никелем должны быть обеспечены специальной одеждой, специальной обувью и другими средствами защиты. Для защиты органов дыхания должен применяться респиратор ШБ-1 «Лепесток». Во избежание контакта с кожей рук рекомендуется пользоваться защитной пастой ИЭР-2 и ланолиново-касторовой мазью. При попадании сернокислого никеля в глаза их следует промыть обильным количеством воды.
Производственные и лабораторные помещения, в которых проводится работа с 7-водным сернокислым никелем, должны быть оборудованы приточно-вытяжной вентиляцией, оборудование должно быть герметизировано.

Задолго до открытия никеля саксонские горняки знали минерал, который походил на медную руду и применялся в стекловарении для окраски стёкол в зелёный цвет. Все попытки получить из него медь оказались неудачными, в связи с чем он получил название "купферникель", что приблизительно означает "Медный дьявол" (ср. нем. Nickel - озорник). Этот минерал (красный никелевый колчедан NiAs) в 1751 г. исследовал шведский минералог и химик Кронштедт. Ему удалось получить зелёный оксид и путём восстановления последнего - новый металл, названный никелем.

Нахождение в природе, получение:

Никель довольно распространён в природе - его содержание в земной коре составляет 0,01 %(масс.). В железных метеоритах (до 8 %). В растениях в среднем 5*10 -5 весовых процентов, в морских животных - 1,6*10 -4 , в наземных - 1*10 -6 , в человеческом организме - 1…2*10 -6
Основную массу никеля получают из гарниерита и магнитного колчедана несколькими способами:
1. Силикатную руду восстанавливают угольной пылью во вращающихся трубчатых печах до железо-никелевых окатышей (5-8% Ni), которые затем очищают от серы, прокаливают и обрабатывают раствором аммиака. После подкисления раствора из него электролитически получают металл.
2. Карбонильный способ (метод Монда). Вначале из сульфидной руды получают медно-никелевый штейн, над которым пропускают СО под высоким давлением. Образуется легколетучий тетракарбонилникель , термическим разложением, которого выделяют особо чистый металл.
3. Алюминотермический способ. Восстановления никеля из оксидной руды алюминием: 3NiO + 2Al = 3Ni +Al 2 O 3 .

Физические свойства:

Металлический никель имеет серебристый цвет с желтоватым оттенком, очень твёрд, вязкий и ковкий, хорошо полируется, притягивается магнитом. Плотность простого вещества при н.у. 8,902 г/см 3 , Тпл.=1726К, Ткип.=3005К.

Химические свойства:

При обычных температурах никель характеризуется высокой коррозионной стойкостью - устойчив на воздухе, в воде, в щелочах, в ряде кислот. Реагирует с азотной кислотой, образуя нитрат никеля(II) Ni(NO 3) 2 и соответствующий оксид азота.
При нагревании никель взоимодействует со многими неметаллами: галогенами, серой, фосфором, углеродом. С кислородом воздуха при 800°С никель образует оксид NiO.
Никель способен поглощать большие объемы водорода, причем в результате образуются твердые растворы водорода в никеле.
С оксидом углерода(II) никель легко образует летучий и весьма ядовитый карбонил Ni(CO) 4 .

Важнейшие соединения:

В соединениях кобальт проявляет степень окисления +3, +2, 0.
Оксид никеля(II), NiO - твердое вещество от светло- до тёмно-зелёного или чёрного цвета. Преобладают основные свойства, водородом и другими восстановителями восстанавливается до металла.
Гидроксид никеля(II), Ni(OH) 2 - зеленого цвета, мало растворим в воде, и щелочах, хорошо во многих кислотах, преобладают основные свойства. При нагревании разлагается, образуя NiO.
Соли никеля(II) - обычно получают взаимодействием NiO или Ni(OH) 2 с различными кислотами. Растворимые в воде соли никеля обычно образуют кристаллогидраты, например, NiSO 4 *7Н 2 О, Ni(NO 3) 2 *6Н 2 О. К числу нерастворимых соединений никеля относятся фосфат Ni 3 (PO 4) 2 и силикат Ni 2 SiO 4 . Кристаллогидраты и растворы окрашены обычно в зелёный цвет, а безводные соли - жёлтые или коричнево-жёлтые.
Комплексные соединения никеля(II) весьма многочислены (к.ч.=6). Их образованием объясняется например растворение оксида никеля в растворе аммиака. Диметилглиоксимат никеля Ni(C 4 H 6 N 2 O 2) 2 , дающий чёткую красную окраску в кислой среде, используется как качественная реакция на ионы никеля (II).
Соединения никеля(III) - менее характерны. Известен, напиример оксид Ni 2 O 3 *H 2 O , вещество чёрного цвета, получается при окислении гидроксида никеля(II) в щелочной среде гипохлоритом или галогенами:
2Ni(OH) 2 + 2NaOH + Br 2 = Ni 2 O 3 *H 2 O + 2NaBr + H 2 O
Сильный окислитель.
Существуют также комплексные соединения никеля(III) , например, K 3 .
Карбонил никеля, Ni(CO) 4 . Диамагнитная бесцветная жидкость, очень летучая и токсичная. Затвердевает при -23°С, при нагревании до 180-200°С разлагается на металлический никель и оксид углерода(II). Ni(CO) 4 мало растворим в воде, хорошо в органических растворителях, не реагирует с разбавленными кислотами и щелочами.

Применение:

Никель является компонентом многих сплавов - жаропрочных, сплавов сопротивления (нихром: 60% Ni + 40% Cr), ювелирных (белое золото, мельхиор), монетных.
Никель используется также для никелирования - создания корозионностойкого покрытия на поверхности другого металла. Еще используют также для производства аккумуляторов, обмотки струн музыкальных инструментов...
Никель относится к числу микроэлементов, необходимых для нормального развития живых организмов. Известно, что он принимает участие в ферментативных реакциях у животных и растений.
Никель может служить причиной аллергии (контактного дерматита) на металлы, контактирующие с кожей (украшения, часы, джинсовые заклепки). В Евросоюзе ограничено содержание никеля в продукции, контактирующей с кожей человека.

Рудагина Ольга
ХФ ТюмГУ, 581гр., 2011 г.

Источники: Википедия: http://ru.wikipedia.org/wiki/Ni и др.,
Популярная библиотека химических элементов. Никель. http://n-t.ru/ri/ps/pb028.htm
Сайт кафедры общей и неорганической химии РХТУ им. Д.И. Менделеева. Таблица Д.И. Менделеева: Никель

Раздел 1. Характеристики.

Раздел 2. Нахождение в природе.

Раздел 3. Получение.

Раздел 4. Применение.

- Подраздел 1. Сплавы.

- Подраздел 2. Никелирование.

Раздел 5. Монетное дело.

Ni — это элемент побочной подгруппы восьмой группы, четвертого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 28.

Характеристики никеля

Ni - это серебристо белый , не тускнеет на воздухе. Имеет гранецентрированную кубическую решетку с периодом a = 0,35238 НМ, пространственная группа Fm3m. В чистом виде поддается обработке давлением. Является ферромагнетиком с точкой Кюри 358 C.

Удельное электрическое сопротивление 0,0684 мк Ом∙м.

Коэффициент линейного теплового расширения α=13,5∙10-6 K-1 при 0 C

Коэффициент объёмного теплового расширения β=38—39∙10-6 K-1

Модуль упругости 196-210 ГПа.

Атомы никеля имеют внешнюю электронную конфигурацию 3d84s2. Наиболее устойчивым для никеля является состояние окисления никель(II).

Ni образует соединения со степенью окисления +2 и +3. При этом Ni со степенью окисления +3 только в виде комплексных солей. Для соединений никеля +2 известно большое количество обычных и комплексных соединений. Оксид никеля Ni2O3 является сильным окислителем.

Ni характеризуется высокой коррозионной стойкостью — устойчив на воздухе, в воде, в щелочах, в ряде кислот. Химическая стойкость обусловлена его склонностью к пассивированию — образованию на его поверхности плотной оксидной плёнки, обладающей защитным действием. Ni активно растворяется в азотной кислоте.

С оксидом углерода CO Ni легко образует летучий и весьма ядовитый карбонит никель (CO)4.

Тонкодисперсный порошок никеля пирофорный (самовоспламеняется на воздухе).

Ni горит только в виде порошка. Образует два оксида никельO и Ni2O3 и соответственно два гидроксида никель(OH)2 и никель(OH)3. Важнейшие растворимые соли никеля — ацетат, хлорид, нитрат и сульфат.

Растворы окрашены обычно в зелёный цвет, а безводные соли — жёлтые или коричнево-жёлтые. К нерастворимым солям относятся оксалат и фосфат (зелёные), три сульфида:

никельS (черный)

Ni3S2 (желтовато-бронзовый)

Ni3S4 (серебристо-белый).

Ni также образует многочисленные координационные и комплексные соединения.

Водные растворы солей никеля(II) содержат ион гексаакваникеля (II) никель(H2O)62+. При добавлении к раствору, содержащему эти ионы, аммиачного раствора происходит осаждение гидроксида никеля (II), зелёного желатинообразного вещества. Этот осадок растворяется при добавлении избыточного количества аммиака вследствие образования ионов гексамминникеля (II) никель(NH3)62+.

Ni образует комплексы с тетраэдрической и с плоской квадратной структурой. Например, комплекс тетрахлороникелат (II) NiCl42− имеет тетраэдрическую структуру, а комплекс тетрацианоникелат (II) никель(CN)42− имеет плоскую квадратную структуру.

В качественном и количественном анализе для обнаружения ионов никеля (II) используется щелочной раствор бутандиондиоксима, известного также под названием диметилглиоксима. При его взаимодействии с ионами никеля (II) образуется красное координационное соединение бис (бутандиондиоксимато) Ni (II). Это хелатное соединение и бутандиондиоксимато-лиганд является бидентатным.

Природный Ni состоит из 5 стабильных изотопов,58никель,60никель,61никель,62никель является наиболее распространенным (68,077% природного изобилия).

Нахождение в природе

Ni довольно распространён в природе — его содержание в земной коре составляет около 0,01 %(масс.). В земной коре встречается только в связанном виде, в железных метеоритах содержится самородный Ni (до 8 %). Содержание его в ультраосновных породах примерно в 200 раз выше, чем в кислых (1,2 кг/т и 8г/т). В ультраосновных породах преобладающее количество никеля связано с оливинами, содержащими 0,13 — 0,41 % никель. Он изоморфно замещает и магний.

Небольшая часть никеля присутствует в виде сульфидов. Ni проявляет сидерофильные и халькофильные свойства. При повышенном содержании в магме серы возникают сульфиды никеля вместе с медью, кобальтом, железом и платиноидами. В гидротермальном процессе совместно с кобальтом, мышьяком и серой и иногда с висмутом, ураном и серебром, Ni образует повышенные концентрации в виде арсенидов и сульфидов никеля. Ni обычно содержится в сульфидных и мышьяк-содержащих медно-никелевых рудах.

Никелин (красный никелевый колчедан, купферникель) никель As.

Хлоантит (белый никелевый колчедан) (никель, Co, Fe)As2

Гарниерит (Mg, никель)6(Si4O11)(OH)6 c H2O и другие силикаты.

Магнитный колчедан (Fe, никель, Cu)S

Мышьяково-никелевый блеск (герсдорфит) никель As S,

Пентландит (Fe, никель)9S8

О никеле в организмах известно уже немало. Установлено, например, что содержание его в крови человека меняется с возрастом, что у животных количество никеля в организме повышено, наконец, что существуют некоторые растения и микроорганизмы — «концентраторы» никеля, содержащие в тысячи и даже в сотни тысяч раз больше никеля, чем окружающая среда.

Получение

Общие запасы никеля в рудах на начало 1998 г. оцениваются в количестве 135 млн. т., в том числе достоверные — 49 млн. т. Основные руды никеля — никелин (купферникель) никель As, миллерит никель S, пентландит (Fe никель)9S8 — содержат также мышьяк, железо и серу ; в магматическом пирротине также встречаются включения пентландита. Другие руды, из которых тоже добывают никель, содержат примеси Co, Cu , Fe и Mg. Иногда Ni является основным товаром процесса рафинирования, но чаще его получают как побочный товар в технологиях других металлов. Из достоверных запасов, по разным данным, от 40 до 66 % никеля находится в окисленных никелевых рудах (ОНР),

33 % в сульфидных. По состоянию на 1997 г. доля никеля, произведённого переработкой ОНР, составила порядка 40 % от общемирового объёма производства. В промышленных условиях ОНР делят на два типа: магнезиальные и железистые.

Тугоплавкие магнезиальные руды, как правило, подвергают электроплавке на ферроникель (5-50 % никель+Co, в зависимости от состава сырья и технологических особенностей).

Наиболее железистые — латеритовые руды перерабатывают гидрометаллургическими методами с применением аммиачно-карбонатного выщелачивания или сернокислотного автоклавного выщелачивания. В зависимости от состава сырья и применяемых технологических схем конечными продуктами этих технологий являются: закись никеля (76-90 % никель), синтер (89 % никель), сульфидные концентраты различного состава, а также металлические Ni электролитный, никелевые порошки и кобальт.

Менее железистые — нонтронитовые руды плавят на штейн. На предприятиях, работающих по полному циклу, дальнейшая схема переработки включает конвертирование, обжиг файнштейна, электроплавку закиси никеля с получением металлического никеля. Попутно извлекаемый кобальт выпускают в виде металла и/или солей. Ещё один источник никеля: в золе углей Южного Уэльса в Британии — до 78 кг никеля на тонну. Повышенное содержание никеля в некоторых каменных углях, пефтях, сланцах говорит о возможности концентрации никеля ископаемым органическим веществом. Причины этого явления пока не выяснены.

«Ni долгое время не могли получить в пластичном виде вследствие того, что он всегда имеет небольшую примесь серы в форме сульфида никеля, расположенного тонкими, хрупкими прослойками на границах металла . Добавление к расплавленному никелю небольшого количества магния переводит серу в форму соединения с магнием, которое выделяется в виде зерен, не нарушая пластичности металла ».

Основную массу никеля получают из гарниерита и магнитного колчедана.

Силикатную руду восстанавливают угольной пылью во вращающихся трубчатых печах до железоникелевых окатышей (5—8 % никель), которые затем очищают от серы, прокаливают и обрабатывают раствором аммиака. После подкисления раствора из него электролитически получают металл.

Карбонильный способ (метод Монда). Вначале из сульфидной руды получают медно-никелевый штейн, над которым пропускают кобальт под высоким давлением. Образуется легколетучий тетракарбонилникель никель(CO)4, термическим разложением выделяют особо чистый металл.

Алюминотермический способ восстановления никеля из оксидной руды: 3NiO + 2Al = 3Ni +Al2O.

Применение

Сплавы

Ni является основой большинства супер сплавов — жаропрочных материалов, применяемых в аэрокосмической промышленности для деталей силовых установок.

монель-металл (65 — 67 % никель + 30 — 32 % Cu + 1 % Mn), жаростойкий до 500°C, очень коррозионно-устойчив;

белое (585 содержит 58,5 % золота и сплав (лигатуру) из серебра и никеля (или палладия));

Нихром, сплав сопротивления (60 % никель + 40 % Cr);

Пермаллой (76 % никель + 17 %Fe + 5 % Cu + 2 % Cr), обладает высокой магнитной восприимчивостью при очень малых потерях на гистерезис;

Инвар (65 % Fe + 35 % никель), почти не удлиняется при нагревании;

Кроме того, к сплавам никеля относятся никелевые и хромоникелевые стали, нейзильбер и различные сплавы сопротивления типа константана, никелина и манганина.

Никелевые трубы применяют для изготовления конденсаторов в производстве водорода, для перекачки щелочей в химическом производстве. Никелевые химически стойкие инструменты широко используют в медицине и научно-исследовательской работе. Ni применяется для приборов радиолокации, телевидения, дистанционного управления процессами в атомной технике.

Из чистого никеля изготовляют химическую посуду, различные аппараты, приборы, котлы с высокой коррозионной стойкостью и постоянством физических свойств, а из никелевых материалов — резервуары и цистерны для хранения в них пищевых продуктов, химических реагентов, эфирных масел, для транспортирования щелочей, для плавления едких щелочей.

На основе порошков чистого никеля изготовляют пористые фильтры для фильтрования газов, топлива и других продуктов в химической промышленности . Порошкообразный Ni потребляют также в производстве никелевых сплавов и в качестве связки при изготовлении твёрдых и сверхтвёрдых материалов.

Биологическая роль никеля относится к числу микроэлементов, необходимых для нормального развития живых организмов. Однако о его роли в живых организмах известно немного. Известно, что Ni принимает участие в ферментативных реакциях у животных и растений. В организме животных он накапливается в ороговевших тканях, особенно в перьях. Повышенное содержание никеля в почвах приводят к эндемическим заболеваниям — у растений появляются уродливые формы, у животных — заболевания глаз, связанные с накоплением никеля в роговице. Токсическая доза (для крыс) — 50 мг. Особенно вредны летучие соединения никеля, в частности, его тетракарбонил никель(CO)4. ПДК соединений никеля в воздухе составляет от 0,0002 до 0,001 мг/м3 (для различных соединений).

Ni основная причина аллергии (контактного дерматита) на металлы, контактирующие с кожей (украшения, часы, джинсовые заклепки).

В Евро союзе ограничено содержание никеля в продукции, контактирующей с кожей человека.

Карбонит никеля никель(CO) — очень ядовит. Предельно допустимая концентрация его паров в воздухе производственных помещений 0,0005 мг/мі.

В XX веке было установлено, что поджелудочная железа очень богата никелем. При введении вслед за инсулином никеля продлевается действие инсулина и тем самым повышается гипогликемическая активность. Ni оказывает влияние на ферментативные процессы, окисление аскорбиновой кислоты, ускоряет переход сульфгидрильных групп в дисульфидные. Ni может угнетать действие адреналина и снижать артериальное давление. Избыточное поступление никеля в организм вызывает витилиго. Депонируется Ni в поджелудочной и околощитовидной железах.

Никелирование

Никелирование — это создание никелевого покрытия на поверхности другого металла с целью предохранения его от коррозии. Проводится гальваническим способом с использованием электролитов, содержащих сульфат никеля(II), хлорид натрия, гидроксид бора, поверхностно-активные и глянцующие вещества, и растворимых никелевых анодов. Толщина получаемого никелевого слоя составляет 12 — 36 мкм. Устойчивость блеска поверхности может быть обеспечена последующим хромированием (толщина слоя хрома 0,3 мкм).

Никелирование без тока проводится в растворе смеси хлорида никеля(II) и гипофосфитной смесью натрия в присутствии цитрата натрия:

NiCl2 + NaH2PO2 + H2O = никель + NaH2PO3 + 2HCl

процесс проводят при рН 4 — 6 и 95°C

Наиболее распространено электролитическое и химическое никелирование. Чаще никелирование (так называемое матовое) производится электролитическим способом. Наиболее изучены и устойчивы в работе сернокислые электролиты. При добавлении в электролит блеск образователей осуществляется так называемое блестящее никелирование. Электролитические покрытия обладают некоторой пористостью, которая зависит от тщательности подготовки поверхности основы и от толщины покрытия. Для защиты от коррозии необходимо полное отсутствие пор, поэтому наносят многослойное покрытие, которое при равной толщине надёжнее однослойного (например, стальные предмета торговли часто покрывают по схеме Cu — никель — Cr).

Недостатки электролитического никелирования — неравномерность осаждения никеля на рельефной поверхности и невозможность покрытия узких и глубоких отверстий, полостей и т.п. Химическое никелирование несколько дороже электролитического, но обеспечивает возможность нанесения равномерного по толщине и качеству покрытия на любых участках рельефной поверхности при условии доступа к ним раствора. В основе процесса лежит реакция восстановления ионов никеля из его солей с помощью гипофосфитной смеси натрия (или др. восстановителей) в водных растворах.

Никелирование используется, например, для покрытия деталей химической аппаратуры, автомобилей, велосипедов, медицинского инструмента, приборов.

Также Ni используется для производства обмотки струн музыкальных инструментов.

Монетное дело

Ni широко применяется при производстве монет во многих странах. В США монета достоинством в 5 центов носит разговорное название «Ni»

Ni был компонентом монет, начиная с середины 19 века. В Соединенных Штатах, термин "Ni" или "ник" первоначально был применен в медно-никелевых монетах (летающий орел), который пришел на смену купрума с 12% никеля 1857-58.

Еще позже в 1865 году, срок назначенного на три процента никеля увеличился на 25%. В 1866 году пять процентов никеля (25% никеля, 75% купрума). Наряду со сплавом пропорции, этот термин был использован в настоящее время в Соединенных Штатах. Монеты из почти чистого никеля впервые были использованы в 1881 году в Швейцарии, и в частности более 99,9% Ni из пяти центовых монет были отчеканены в Канаде (крупнейший производитель никеля в мире в то время).

пенни, сделанные из никеля" height="431" src="/pictures/investments/img778307_14_Britanskie_monetyi_v_5_i_10_penni_sdelannyie_iz_nikelya.jpg" title="14. Британские монеты в 5 и 10 пенни, сделанные из никеля" width="682" />

Италия 1909 год" height="336" src="/pictures/investments/img778308_15_Monetyi_iz_nikelya_Italiya_1909_god.jpg" title="15. Монеты из никеля, Италия 1909 год" width="674" />

Источники

Википедия - Свободная энциклопедия, WikiPedia

hyperon-perm.ru - Производство Гиперон

cniga.com.ua - Книжный портал

chem100.ru - Справочник Химика

bse.sci-lib.com - Значение слов в Большой Советской Энциклопедии

chemistry.narod.ru - Мир Химии

dic.academic.ru - Словари и энциклопедии


Энциклопедия инвестора . 2013 .

Синонимы :
  • Никарагуа

Смотреть что такое "Никель" в других словарях:

    НИКЕЛЬ - (симв. Ni), металл с атомным весом 58,69, порядковый номер 28, принадлежит вместе с кобальтом и железом к VIII группе и 4 му ряду периодической системы Менделеева. Уд. в. 8,8, t° плавления 1 452°. В своих обычных соединениях Н.… … Большая медицинская энциклопедия

    НИКЕЛЬ - (символ Ni), серебристо белый металл, ПЕРЕХОДНЫЙ ЭЛЕМЕНТ, открытый в 1751 г. Его основные руды: сульфидные никеле железные руды (пентландит) и ар сенид никеля (никелин). У никеля сложный процесс очищения, включающий дифференцированное разложение… … Научно-технический энциклопедический словарь

    НИКЕЛЬ - (нем. Nickel). Металл серебристо белого цвета, в чистом виде не встречается. В последнее время употребляется на выделку столовой и кухонной посуды. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. НИКЕЛЬ нем. Nickel … Словарь иностранных слов русского языка

    Никель - представляет собой относительно твердый серовато белый металл с температурой плавления 1453 град. С. Он является ферромагнетиком, отличается ковкостью, пластичностью, прочностью, а также стойкостью к коррозии и окислению. Никель в основном… … Официальная терминология

    никель - я,м. nickel m. < , нем. Nickel. 1. Серебристо белый тугоплавкий металл. БАС 1. Никель вредный спутник серебряных руд получил свое название от имени злого гнома, якобы жившего в саксонских рудниках. Ферсман Заним. геохимия. 2. Верхний слой из… … Исторический словарь галлицизмов русского языка

    НИКЕЛЬ - (лат. Niccolum) Ni, химический элемент VIII группы периодической системы, атомный номер 28, атомная масса 58,69. Название от немецкого Nickel имя злого духа, якобы мешавшего горнякам. Серебристо белый металл; плотность 8,90 г/см³, tпл 1455… … Большой Энциклопедический словарь

    НИКЕЛЬ - НИКЕЛЬ, никеля, муж. (нем. Nickel). Серебристо белый тугоплавкий металл, употр. для изготовления инструментов, посуды и т.п. (По имени горного божества в скандинавской мифологии.) Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова


(в скобках указаны координац. числа) Ni 2+ 0,069 нм (4), 0,077 нм (5), 0,083 нм (6).

Среднее содержание никеля в земной коре 8-10 -3 % по массе, в воде океанов 0,002 мг/л. Известно ок. 50 минералов никеля, из них важнейшие: пентландит (Fe,Ni) 9 S 8 , миллерит NiS, гарниерит (Ni,Mg) 3 Si 4 O 10 (OH) 10 . 4H 2 O, ревдинскит (не-пуит) (Ni,Mg) 3 Si 2 O 5 (OH) 4 , никелин NiAs, аннабергит Ni 3 (AsO 4) 2 8Н 2 О. В основном никель добывают из сульфидных медно-никелевых руд (Канада, Австралия, Юж. Африка) и из силикатно-окисленных руд (Новая Каледония, Куба, Филиппины, Индонезия и др.). Мировые запасы никеля на суше оцениваются в 70 млн. т.

Свойства. Никель-серебристо-белый металл . Кристаллич. решетка гранецентрир. кубическая, а = 0,35238 нм, z = 4, пространств. группа Рт3т. Т. пл. 1455 °С. т. кип. 2900 °С; плота. 8,90 г/см 3 ; C 0 p 26,l Дж/(моль . К); DH 0 пл 17,5 кДж/моль , DH 0 исп 370кДж/моль ; S 0 298 29,9 ДжДмоль К); ур-ние температурной зависимости давления пара для твердого никеля lgp(гПа) = 13,369-23013/T+0,520lgT+0,395T (298-1728К), для жидкого lgp(гПа)=11,742-20830/T+ 0,618 lg Т (1728- 3170 К); температурный коэф. линейного расширения 13,5 . 10 -6 К -1 (273-373 К); теплопроводность 94,1 Вт/(м х х К) при 273 К, 90,9 Вт/(м. К) при 298 К; g 1,74 Н/м (1520 °С); r 7,5 10 -8 Ом м, температурный коэф. r 6,75 . 10 -3 К -1 (298-398 К); ферромагнетик , точка Кюри 631 К. Модуль упругости 196-210 ГПа; s раст 280-720 МПа; относит. удлинение 40-50%; твердость по Бринеллю (отожженного) 700-1000 МПа. Чистый никель- весьма пластичный металл , хорошо обрабатывается в холодном и горячем состоянии, поддается прокатке, волочению, ковке.

Н икель химически малоактивен, но тонкодисперсный порошок , полученный восстановлением соединений никеля водородом при низких т-рах, пирофорен. Стандартный электродный потенциал Ni 0 /Ni 2+ - 0,23 В. При обычных т-рах никель на воздухе покрывается тонкой защитной пленкой никеля оксида . Не взаимод. с водой и влагой воздуха . При нагр. окисление никеля с пов-сти начинается при ~ 800 °С. С соляной, серной, фосфорной, фтористоводородной к-тами никель реагирует очень медленно. Практически на него не действуют уксусная и др. орг. к-ты, особенно в отсутствие воздуха . Хорошо реагирует с разб. HNO 3 , конц. HNO 3 пассивируется. Р-ры и расплавы щелочей и карбонатов щелочных металлов , а также жидкий NH 3 на никель не действуют. Водные р-ры NH 3 в присут. воздуха коррелируют никель.

Н икель в дисперсном состоянии обладает большой каталитич. активностью в р-циях гидрирования , дегидрирования , окисления , изомеризации , конденсации . Используют либо скелетный никель (никель Ренея), получаемый сплавлением с Аl или Si с послед. выщелачиванием щелочью , либо никель на носителе .

Н икель поглощает Н 2 и образует с ним твердые р-ры. Гидриды NiH 2 (устойчив ниже 0°С) и более стабильный NiH получены косвенными путями. Азот почти не поглощается никелем вплоть до 1400 °С, р-римость N 2 в металле 0,07% при 450 °С. Компактный никель не реагирует с NH 3 , дисперсный при 300-450 °С образует с ним н и т р и д Ni 3 N.

Расплавленный никель растворяет С с образованием к а р б и д а Ni 3 C, к-рый при кристаллизации расплава разлагается с выделением графита ; Ni 3 C в виде серо-черного порошка (разлагается при ~ 450°С) получают науглероживанием никеля в атмосфере СО при 250-400 °С. Дисперсный никель с СО дает летучий никеля тетракарбонил Ni(CO) 4 . При сплавлении с Si образует с и л и ц и д ы; Ni 5 Si 2 , Ni 2 Si и NiSi плавятся конгруэнтно соотв. при 1282, 1318 и 992 °С, Ni 3 Si и NiSi 2 -инконг-руэнтно соотв. при 1165 и 1125°С, Ni 3 Si 2 разлагается, не плавясь, при 845 °С. При сплавлении с В дает б о р и д ы: Ni 3 B (т. пл. 1175°С), Ni 2 B (1240 °С), Ni 3 B 2 (1163°C), Ni 4 B 3 (1580 °С), NiB 12 (2320 °С), NiB (разлагается при 1600 °С). С парами Se никель образует с е л е н и д ы: NiSe (т. пл. 980 °С), Ni 3 Se 2 и NiSe 2 (разлагаются соотв. при 800 и 850 °С), Ni 6 Se 5 и Ni 21 Se 20 (существуют только в твердом состоянии). При сплавлении никеля с Те получают т е л л у р и д ы: NiTe и NiTe 2 (между ними образуется, по-видимому, широкая область твердых р-ров) и др.

А р с е н а т Ni 3 (AsO 4) 2 . 8H 2 O-зеленые кристаллы ; р-римость в воде 0,022%; к-тами разлагается; выше 200 °С обезвоживается, при ~ 1000°С разлагается; катализатор получения твердого мыла .

С и л и к а т Ni 2 SiO 4 -светло-зеленые кристаллы с ромбич. решеткой; плотн. 4,85 г/см 3 ; разлагается, не плавясь, при 1545°С; в воде не раств.; минер. к-тами медленно разлагается при нагревании. А л ю м и н а т NiAl 2 O 4 (никелевая шпи-нель)-голубые кристаллы с кубич. решеткой; т. пл. 2110°С; плотн. 4,50 г/см 3 ; не раств. в воде ; медленно разлагается к-тами; катализатор гидрирования .

Важнейшие комплексные соед. никеля-а м м и н ы. Наиб. характерны гексааммины и акватетраммины с катионами соотв. 2+ и 2+ . Это голубые или фиолетовые кристаллич. в-ва, обычно раств. в воде , в р-рах ярко-синего цвета; при кипячении р-ров и при действии к-т разлагаются; образуются в р-рах при аммиачной переработке никелевых и кобальтовых руд .

В комплексах Ni(III) и Ni(IV) координац. число никеля равно 6. Примеры-фиолетовый K 3 и красный K 2 , образующиеся при действии F 2 на смеси NiCl 2 и КСl; сильные окислители . Из др. типов известны соли гетеро-поликислот, напр. (NH 4) 6 H 7 . 5H 2 O, большое число внутрикомплексных соед. Ni(II). См. также Никель-органические соединения.

Получение. Руды перерабатывают пиро- и гидромстал-лургич. путем. Для силикатно-окисленных руд (не поддаются обогащению) используют либо восстановит. плавку с получением ферроникеля, к-рый далее подвергают продувке в конвертере с целью рафинирования и обогащения, либо плавку на штейн с серосодержащими добавками (FeS 2 или CaSO 4). Полученный штейн продувают в конвертере для удаления Fe, а затем дробят и обжигают, из образовавшегося NiO восстановит. плавкой получают металлический никель. Никелевые концентраты, получаемые при обогащении сульфидных руд , плавят на штейн с послед. продувкой в конвертере. Из медно-никелевого штейна после его медленного охлаждения флотацией выделяют концентрат Ni 3 S 2 , к-рый, аналогично штейнам из окисленных руд , обжигают и восстанавливают.

Один из путей гидропереработки окисленных руд-восстановление руды генераторным газом или смесью Н 2 и N 2 с послед. выщелачиванием р-ром NH 3 и СО 2 с продувкой воздуха . Р-р очищают от Со сульфидом аммония . При разложении р-ра с отгонкой NH 3 осаждается гидроксо-карбонат никеля, к-рый либо прокаливают и из образовавшегося NiO восстановит. плавкой получают никель, либо повторно раств. в р-ре NH 3 и после отгонки NH 3 из пульпы восстановлением Н 2 получают никель. Др. путь - выщелачивание окисленной руды серной к-той в автоклаве . Из образовавшегося р-ра после его очистки и нейтрализации никель осаждают сероводородом под давлением и полученный концентрат NiS перерабатывают подобно штейнам.

Гидропереработка сульфидных никелевых материалов (концентратов, штейнов) сводится к автоклавному окислит. выщелачиванию либо р-рами NH 3 (при низком содержании Со), либо H 2 SO 4 . Из аммиачных р-ров после отделения CuS никель осаждают водородом под давлением . Для разделения Ni, Со и Сu из аммиачных р-ров применяют также экстракц. способы с использованием, в первую очередь, хелатообразу-ющих экстрагентов.

Автоклавное окислитю выщелачивание с получением сульфатных р-ров применяют как к обогащенным материалам (штейнам) с переводом никеля и др. металлов в р-р, так и к бедным пирротииовым Fe 7 S 8 концентратам. В последнем случае окисляется преим. пирротин, что позволяет выделить элементарную S и сульфидный концентрат, переплавляемый далее на никелевый штейн.