Решение неравенств с моделями. Уравнения с модулем

Решение неравенств онлайн

Перед тем как решать неравенства, необходимо хорошо усвоить как решаются уравнения .

Не важно каким является неравенство – строгим () или нестрогим (≤, ≥), первым делом приступают к решению уравнения, заменив знак неравенства на равенство (=).

Поясним что означает решить неравенство?

После изучения уравнений в голове у школьника складывается следующая картина: нужно найти такие значения переменной, при которых обе части уравнения принимают одинаковые значения. Другими словами, найти все точки, в которых выполняется равенство. Всё правильно!

Когда говорят о неравенствах, имеют в виду нахождение интервалов (отрезков), на которых выполняется неравенство. Если в неравенстве две переменные, то решением будут уже не интервалы, а какие-то площади на плоскости. Догадайтесь сами, что будет решением неравенства от трех переменных?

Как решать неравенства?

Универсальным способом решения неравенств считают метод интервалов (он же метод промежутков), который заключается в определении всех интервалов, в границах которых будет выполняться заданное неравенство.

Не вдаваясь в тип неравенства, в данном случае это не суть, требуется решить соответствующее уравнение и определить его корни с последующим обозначением этих решений на числовой оси.

Как правильно записывать решение неравенства?

Когда вы определили интервалы решений неравенства, нужно грамотно выписать само решение. Есть важный нюанс – входят ли границы интервалов в решение?

Тут всё просто. Если решение уравнения удовлетворяет ОДЗ и неравенство является нестрогим, то граница интервала входит в решение неравенства. В противном случае – нет.

Рассматривая каждый интервал, решением неравенства может оказаться сам интервал, либо полуинтервал (когда одна из его границ удовлетворяет неравенству), либо отрезок – интервал вместе с его границами.

Важный момент

Не думайте, что решением неравенства могут быть только интервалы, полуинтервалы и отрезки. Нет, в решение могут входить и отдельно взятые точки.

Например, у неравенства |x|≤0 всего одно решение – это точка 0.

А у неравенства |x|

Для чего нужен калькулятор неравенств?

Калькулятор неравенств выдает правильный итоговый ответ. При этом в большинстве случаев приводится иллюстрация числовой оси или плоскости. Видно, входят ли границы интервалов в решение или нет – точки отображаются закрашенными или проколотыми.

Благодаря онлайн калькулятору неравенств можно проверить правильно ли вы нашли корни уравнения, отметили их на числовой оси и проверили на интервалах (и границах) выполнение условия неравенства?

Если ваш ответ расходится с ответом калькулятора, то однозначно нужно перепроверить свое решение и выявить допущенную ошибку.

Модулем числа называется само это число, если оно неотрицательное, или это же число с противоположным знаком, если оно отрицательное.

Например, модулем числа 6 является 6, модулем числа -6 тоже является 6.

То есть под модулем числа понимается абсолютная величина, абсолютное значение этого числа без учета его знака.

Обозначается так: |6|, |х |, |а | и т.д.

(Подробнее - в разделе «Модуль числа»).

Уравнения с модулем.

Пример 1 . Решить уравнение |10 х - 5| = 15.

Решение .

В соответствии с правилом, уравнение равносильно совокупности двух уравнений:

10х - 5 = 15
10х - 5 = -15

Решаем:

10х = 15 + 5 = 20
10х = -15 + 5 = -10

х = 20: 10
х = -10: 10

х = 2
х = -1

Ответ : х 1 = 2, х 2 = -1.

Пример 2 . Решить уравнение |2 х + 1| = х + 2.

Решение .

Поскольку модуль - число неотрицательное, то х + 2 ≥ 0. Соответственно:

х ≥ -2.

Составляем два уравнения:

2х + 1 = х + 2
2х + 1 = -(х + 2)

Решаем:

2х + 1 = х + 2
2х + 1 = -х - 2

2х - х = 2 - 1
2х + х = -2 - 1

х = 1
х = -1

Оба числа больше -2. Значит, оба являются корнями уравнения.

Ответ : х 1 = -1, х 2 = 1.

Пример 3 . Решить уравнение

|х + 3| - 1
————— = 4
х - 1

Решение .

Уравнение имеет смысл, если знаменатель не равен нулю - значит, если х ≠ 1. Учтем это условие. Наше первое действие простое - не просто освобождаемся от дроби, а преобрахуем ее так, чтобы получить модуль в чистом виде:

|х + 3| - 1 = 4 · (х - 1),

|х + 3| - 1 = 4х - 4,

|х + 3| = 4х - 4 + 1,

|х + 3| = 4х - 3.

Теперь у нас в левой части уравнения только выражение под модулем. Идем дальше.
Модуль числа есть неотрицательное число - то есть он должен быть больше нуля или равен нулю. Соответственно, решаем неравенство:

4х - 3 ≥ 0

4х ≥ 3

х ≥ 3/4

Таким образом, у нас появилось второе условие: корень уравнения должен быть не меньше 3/4.

В соответствии с правилом, составляем совокупность двух уравнений и решаем их:

х + 3 = 4х - 3
х + 3 = -(4х - 3)

х + 3 = 4х - 3
х + 3 = -4х + 3

х - 4х = -3 - 3
х + 4х = 3 - 3

х = 2
х = 0

Мы получили два ответа. Проверим, являются ли они корнями исходного уравнения.

У нас было два условия: корень уравнения не может быть равен 1, и он должен быть не меньше 3/4. То есть х ≠ 1, х ≥ 3/4. Обоим этим условиям соответствует только один из двух полученных ответов - число 2. Значит, только оно и является корнем исходного уравнения.

Ответ : х = 2.

Неравенства с модулем.

Пример 1 . Решить неравенство | х - 3| < 4

Решение .

Правило модуля гласит:

|а | = а , если а ≥ 0.

|а | = -а , если а < 0.

Модуль может иметь и неотрицательное, и отрицательное число. Значит, мы должны рассмотреть оба случая: х - 3 ≥ 0 и х - 3 < 0.

1) При х - 3 ≥ 0 наше исходное неравенство остается как есть, только без знака модуля:
х - 3 < 4.

2) При х - 3 < 0 в исходном неравенстве надо поставить знак минус перед всем подмодульным выражением:

-(х - 3) < 4.

Раскрыв скобки, получаем:

-х + 3 < 4.

Таким образом, от этих двух условий мы пришли к объединению двух систем неравенств:

х - 3 ≥ 0
х - 3 < 4

х - 3 < 0
-х + 3 < 4

Решим их:

х ≥ 3
х < 7

х < 3
х > -1

Итак, у нас в ответе объединение двух множеств:

3 ≤ х < 7 U -1 < х < 3.

Определяем наименьшее и наибольшее значения. Это -1 и 7. При этом х больше -1, но меньше 7.
Кроме того, х ≥ 3. Значит, решением неравенства является все множество чисел от -1 до 7, исключая эти крайние числа.

Ответ : -1 < х < 7.

Или: х ∈ (-1; 7).

Дополнения .

1) Есть более простой и короткий способ решения нашего неравенства - графический. Для этого надо нарисовать горизонтальную ось (рис.1).

Выражение |х - 3| < 4 означает, что расстояние от точки х до точки 3 меньше четырех единиц. Отмечаем на оси число 3 и отсчитываем влево и вправо от от него 4 деления. Слева мы придем к точке -1, справа - к точке 7. Таким образом, точки х мы просто увидели, не вычисляя их.

При этом, согласно условию неравенства, сами -1 и 7 не включены во множество решений. Таким образом, получаем ответ:

1 < х < 7.

2) Но есть еще одно решение, которое проще даже графического способа. Для этого наше неравенство надо представить в следующем виде:

4 < х - 3 < 4.

Ведь так оно и есть по правилу модуля. Неотрицательное число 4 и аналогичное отрицательное число -4 являются границами решения неравенства.

4 + 3 < х < 4 + 3

1 < х < 7.

Пример 2 . Решить неравенство | х - 2| ≥ 5

Решение .

Этот пример существенно отличается от предыдущего. Левая часть больше 5 либо равна 5. С геометрической точки зрения, решением неравенства являются все числа, которые от точки 2 отстоят на расстоянии 5 единиц и больше (рис.2). По графику видно, что это все числа, которые меньше или равны -3 и больше или равны 7. А значит, мы уже получили ответ.

Ответ : -3 ≥ х ≥ 7.

Попутно решим это же неравенство способом перестановки свободного члена влево и вправо с противоположным знаком:

5 ≥ х - 2 ≥ 5

5 + 2 ≥ х ≥ 5 + 2

Ответ тот же: -3 ≥ х ≥ 7.

Или: х ∈ [-3; 7]

Пример решен.

Пример 3 . Решить неравенство 6 х 2 - | х | - 2 ≤ 0

Решение .

Число х может быть и положительным числом, и отрицательным, и нулем. Поэтому нам надо учесть все три обстоятельства. Как вы знаете, они учитываются в двух неравенствах: х ≥ 0 и х < 0. При х ≥ 0 мы просто переписываем наше исходное неравенство как есть, только без знака модуля:

6х 2 - х - 2 ≤ 0.

Теперь о втором случае: если х < 0. Модулем отрицательного числа является это же число с противоположным знаком. То есть пишем число под модулем с обратным знаком и опять же освобождаемся от знака модуля:

6х 2 - (-х ) - 2 ≤ 0.

Раскрываем скобки:

6х 2 + х - 2 ≤ 0.

Таким образом, мы получили две системы уравнений:

6х 2 - х - 2 ≤ 0
х ≥ 0

6х 2 + х - 2 ≤ 0
х < 0

Надо решить неравенства в системах - а это значит, надо найти корни двух квадратных уравнений. Для этого приравняем левые части неравенств к нулю.

Начнем с первого:

6х 2 - х - 2 = 0.

Как решается квадратное уравнение - см. раздел «Квадратное уравнение». Мы же сразу назовем ответ:

х 1 = -1/2, х 2 = 2/3.

Из первой системы неравенств мы получаем, что решением исходного неравенства является все множество чисел от -1/2 до 2/3. Пишем объединение решений при х ≥ 0:
[-1/2; 2/3].

Теперь решим второе квадратное уравнение:

6х 2 + х - 2 = 0.

Его корни:

х 1 = -2/3, х 2 = 1/2.

Вывод: при х < 0 корнями исходного неравенства являются также все числа от -2/3 до 1/2.

Объединим два ответа и получим итоговый ответ: решением является все множество чисел от -2/3 до 2/3, включая и эти крайние числа.

Ответ : -2/3 ≤ х ≤ 2/3.

Или: х ∈ [-2/3; 2/3].

РАССМОТРЕНО

Педагогическим советом МОУ

«Зашижемская СОШ»

Протокол № 1

СОГЛАСОВАНО

Заместитель директора по УВР

_______ /Сидоркина Р.Л./

УТВЕРЖДАЮ

Директор школы:

А.П.Конаков

Приказ №63


Решение уравнений и неравенств с модулем

Исследовательская работа

Программу составила:

учитель математики высшей

Сидоркина Р.Л.

с.Зашижемье, 2014 г.

Оглавление

    Введение…………………………………………………………………3

    Простейшие уравнения и неравенства с модулем……………………5

    Графическое решение уравнений и неравенств с модулем………….8

    Иные способы решения уравнений и неравенств с модулем……......10

    Заключение ……………………………………………………………..16

    Список литературы………………………………………………………18

  1. Введение

Понятие абсолютной величины (модуля) является одной из важнейших характеристик числа как в области действительных, так и в области комплексных чисел.

Это понятие широко применяется не только в различных разделах школьного курса математики, но и в курсах высшей математики, физики и технических наук, изучаемых в вузах. Например, в теории приближенных вычислений используются понятия абсолютной и относительной погрешностей приближенного числа. В механике и геометрии изучаются понятия вектора и его длины (модуля вектора). В математическом анализе понятие абсолютной величины числа содержится в определениях таких основных понятий, как предел, ограниченная функция и др. Задачи, связанные с абсолютными величинами, часто встречаются на математических олимпиадах, вступительных экзаменах в вузы и на ЕГЭ. И поэтому для нас стало важно изучить некоторые аспекты этой темы.

Главной целью в нашей работе является изучение различных методов решения уравнений и неравенств с модулями.

Данная цель должна быть достигнута при решении следующих задач :

    Изучить определение и некоторые свойства модуля.

    Освоить решение простейших уравнений и неравенств с модулем через равносильные переходы

    Рассмотреть различные методы решения уравнений и неравенств с модулем.

Объектом исследования являются некоторые типы уравнений и неравенств с модулем.

Предмет исследования – различные методы решения уравнений и неравенств с модулем, а именно: графический способ, метод геометрической интерпретации, использование тождества , применение теоремы о знаках, метод перехода к следствию, метод интервалов, метод домножения на положительный множитель,метод раскрытия модулей.

В ходе исследования применялись такие методы, как изучение литературы по данному вопросу и практический метод.

В ходе работы мы исследовал такие источники, как:

1. «Большая математическая энциклопедия» для школьников и студентов;

    Математика. ЕГЭ – 2011-2012. Типовые экзаменационные варианты. / Под редакцией А.Л. Семенова, И.В. Ященко.

    Энциклопедия «Я познаю мир» Математика;

    ;

    1. Простейшие уравнения и неравенства с модулем

К простейшим уравнениям мы будем относить уравнения, решаемые одним из нижеприведенных равносильных переходов:

Примеры решения простейших уравнений.

Пример 1 Решим уравнение
.

Решение.

Ответ.
.

Пример 2 Решим уравнение .

Решение.

Ответ.
.

Пример 3 Решим уравнение
.

Решение.

Ответ.
.

Ряд уравнений решается с использованием следующей теоремы.

Теорема.4 Сумма модулей равна алгебраической сумме подмодульнх величин тогда и только тогда, когда каждая величина имеет тот знак, с которым она входит в алгебраическую сумму.

Пример 5 Решить уравнение

Решение. Так как , то мы имеем равенство вида , где
,
. Поэтому исходное уравнение равносильно системе:

Ответ.
.

Примеры решения простейших неравенств.

Пример 6 Решим неравенство
.

Решение.

Ответ.
.

Пример 7 Решим неравенство
.

Решение.

Ответ.
.

Как ни странно, но
достаточно, чтобы избавиться от знака модуля в любых неравенствах.

Пример 8 Решить неравенство

Решение.

Ответ.
.

3. Графическое решение уравнений и неравенств с модулем

Решение уравнений, содержащих знак абсолютной величины часто гораздо удобнее решать не аналитически, а графически (особенно уравнения содержащие параметры).

Пример 9 (С5, ЕГЭ - 2010)

C 5. Для каждого значения a укажите число решений уравнения

Решение. Построим график функции
. Для этого выделим полный квадрат:

Число точек пересечения графика функции у =
с горизонтальными прямыми у = а равно числу решений уравнения.

Ответ: если < 0, то решений нет; если а= 0, то два решения, если 0 < а < 4, то четыре решения; если а=4, то три решения; если а > 4, то два решения.

Иные способы решения уравнений и неравенств с модулем

  • Метод раскрытия модулей

Метод раскрытия модулей рассмотрим на примере:

Пример 10 Решить уравнение

Решение. Это уравнение содержит более одного модуля.

Метод решения уравнений, содержащих переменные под знаком двух и более модулей, состоит в следующем.

1. Найти значения переменной, при которых каждый из модулей обращается в нуль:
,
;
,
;
,
.

2. Отметить эти точки на числовой прямой.

3. Рассматриваем уравнение на каждом из промежутков и устанавливаем знак выражений, которые находятся под модулями.

1) При
или
. Чтобы определить знак каждого из выражений под модулем на этом промежутке, достаточно взять любое значение из этого промежутка и подставить в выражение. Если полученное значение отрицательно, значит, при всех из этого промежутка выражение будет отрицательным; если полученное числовое значение положительно, значит, при всех значениях из этого промежутка выражение будет положительным.

Возьмем значение
из промежутка
и подставим его значение в выражение
, получаем
, значит на этом промежутке
отрицательно, а следовательно ``выйдет"" из под модуля со знаком ``минус"", получим:
.

При этом значении , выражение
получит значение
, значит, оно на промежутке
также принимает отрицательные значения и ``выйдет"" из модуля со знаком ``минус"", получим:
.

Выражение
получит значение
и «выйдет» из под модуля со знаком ``минус"":
.

Уравнение на этом промежутке получится таким: , решая его, находим:
.

Выясняем, входит ли это значение в промежуток
. Оказывается входит, значит
является корнем уравнения.

2) При
. Выбираем любое значение из этого промежутка. Пусть
. Определяем знак каждого из выражений под модулем при этом значении . Оказывается, что выражение
положительно, а два других отрицательны.

Уравнение на этом промежутке примет вид: . Решая его, находим
. Это значение не входит в промежуток
, а значит, не является корнем уравнения.

3) При
. Выбираем произвольное значение из этого промежутка, скажем,
и подставляем в каждое из выражений. Находим, что выражения
и
положительны, а
- отрицательно. Получим следующее уравнение: .

После преобразования, получим:
, а значит, уравнение не имеет корней на этом промежутке.

4) При
. Нетрудно установить, что все выражения на этом промежутке положительны, а значит получим уравнение: ,
,
которое входит в промежуток и является корнем уравнения.

Ответ.
,
.

  • Решение уравнений содержащих модули неотрицательных выражений

Пример 11 Чему равна сумма корней уравнения (корень, если он один) уравнения

Решение. Рассмотрим выражение

и преобразуем его к виду

Очевидно, что числитель дроби при любых значениях переменной является положительным числом. Значит дробное выражение положительно, если
(т.к.
). Преобразуем полученное выражение, при условии
. Получим уравнение, равносильное исходному:

Ответ.
.

Пример 12 Решить уравнение

Решение. Поскольку левая часть уравнения неотрицательна, при всех допустимых значениях переменной, на множестве корней уравнения правая его часть тоже должна быть неотрицательной, отсюда условие
, на этом промежутке знаменатели обеих дробей равны, и остается решить уравнение
. Решая его и учитывая ограничение
, получаем

Ответ.
.

  • Решение уравнений с использованием геометрической интерпретации

Геометрический смысл выражения
- длина отрезка координатной оси, соединяющего точки с абсциссами и . Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких выкладок.

Пример 13 Решим уравнение
.

Решение. Будем рассуждать следующим образом: исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки с абсциссой до двух фиксированных точек с абсциссами 1 и 2. Тогда все точки с абсциссами из отрезка
обладают требуемым свойством, а точки, расположенные вне этого отрезка, - нет.

Ответ.
.

Пример 14 Решить неравенство
.

Решение. Изобразим на координатной прямой точки, сумма расстояний от которых до точек
и в точности равна . Это все точки отрезка
. Для всех чисел вне данного отрезка сумма расстояний будет больше двух.

Ответ.
.

Пример (С3, ЕГЭ - 2010)15 Решить уравнение

Решение. Дважды применяя тождество
, получим уравнение

решением которого является интервал
.

Ответ.
.

Пример (С3, ЕГЭ - 2011)16 17 Решить уравнение

Решение. .

Ответ.
.

  • Применение теоремы о знаках при решении уравнений

Сформулируем теорему, удобную при решении неравенств, относительно произведений или частных разности модулей:

Теорема 18 Знак разности модулей двух выражений совпадает со знаком разности квадратов этих выражений. не обращается в нуль ни при каком значении переменной. Это означает, что на всей области определения функция является знакопостоянной. Вычисляя, например,
, получаем, что функция принимает только положительные значения.

Ответ.
.

Метод интервалов позволяет решать более сложные уравнения и неравенства с модулями, но в этом случае он имеет несколько иное назначение. Суть состоит в слудующем. Находим корни всех подмодульных выражений и разбиваем числовую ось на промежутки знакопостоянства этих выражений. Это позволяет, последовательно перебирая эти промежутки, одновременно избавляться от всех модулей и решать обычное уравнение или неравенство (проверяя при этом, что найденный ответ входит в данный промежуток).

  • Решение уравнений домножением на положительный множитель

Заключение.

Подводя итог нашей работы, можно сказать следующее.

Целью работы было изучение различных методов решения уравнений и неравенств с модулями.

Рассмотрены некоторые разновидности простейших уравнений и неравенств с модулем, решаемых с помощью равносильных переходов,а также теоремы о сумме модулей; графический способ решения уравнений. Нужно сказать, что в школьном курсе математики именно эти методы решения наиболее часто используются. Графический метод особо актуален при решении задач C 5 из контрольно-измерительных материалов ЕГЭ.

Далее мы изучили на нескольких примерах иные способы решения уравнений и неравенств с модулями, а именно: метод раскрытия модулей; решение уравнений, содержащих модули неотрицательных выражений; решение уравнений с использованием геометрической интерпретации; с использованием тождества
; применение теоремы о знаках; решение уравнений переходом к следствию, домножением на положительный множитель,а также решение неравенств методом интервалов.

Таким образом, в ходе исследования мы пришли к следующим выводам.

Наиболее универсальными и применимыми к наибольшему количеству задач мы считаем метод раскрытия модулей, графический метод и метод интервалов. Это убеждение возникло в результате решения большого числа задач из контрольно-измерительных материалов ЕГЭ, предметных чемпионатов, олимпиадных задач, а также изучение литературы по данному вопросу. Также очень важным мы считаем знание и применение тождества
, так как оно используется не только при решении уравнений и неравенств, но и для преобразования многих выражений с радикалами. Остальные методы решения, которые мы рассмотрели, безусловно, представляют большой интерес в плане расширения математического кругозора и общего математического развития. Поэтому мы планируем использовать их для подготовки к государственной итоговой аттестации в форме ЕГЭ и подготовке к обучению в высшем учебном заведении.

Список используемой литературы.

    «Большая математическая энциклопедия» для школьников и студентов;

    Математика. ЕГЭ – 2011, 2012. Типовые экзаменационные варианты. / Под редакцией А.Л. Семенова, И.В. Ященко.

    М.Я. Выгодский. Справочник по элементарной математике

    «Новейший справочник школьника»;

    Энциклопедия «Я познаю мир. Математика»;

    ;

Математика является символом мудрости науки ,

образцом научной строгости и простоты ,

эталоном совершенства и красоты в науке.

Российский философ, профессор А.В. Волошинов

Неравенства с модулем

Наиболее сложно решаемыми задачами школьной математики являются неравенства , содержащие переменные под знаком модуля. Для успешного решения таких неравенств необходимо хорошо знать свойства модуля и иметь навыки их использования.

Основные понятия и свойства

Модуль (абсолютная величина) действительного числа обозначается и определяется следующим образом:

К простым свойствам модуля относятся следующие соотношения:

И .

Отметим , что последние два свойства справедливы для любой четной степени.

Кроме того , если , где , то и

Более сложные свойства модуля , которые можно эффективно использовать при решении уравнений и неравенств с модулями , формулируются посредством следующих теорем:

Теорема 1. Для любых аналитических функций и справедливо неравенство .

Теорема 2. Равенство равносильно неравенству .

Теорема 3. Равенство равносильно неравенству .

Наиболее распространенными в школьной математике неравенствами , содержащие неизвестные переменные под знаком модуля , являются неравенства вида и , где некоторая положительная константа.

Теорема 4. Неравенство равносильно двойному неравенству , а решение неравенства сводится к решению совокупности неравенств и .

Данная теорема является частным случаем теорем 6 и 7.

Более сложными неравенствами , содержащие модуль, являются неравенства вида , и .

Методы решения таких неравенств можно сформулировать посредством следующих трех теорем.

Теорема 5. Неравенство равносильно совокупности двух систем неравенств

И (1)

Доказательство. Так как , то

Отсюда вытекает справедливость (1).

Теорема 6. Неравенство равносильно системе неравенств

Доказательство. Так как , то из неравенства следует , что . При таком условии неравенство и при этом вторая система неравенств (1) окажется несовместной.

Теорема доказана.

Теорема 7. Неравенство равносильно совокупности одного неравенства и двух систем неравенств

И (3)

Доказательство. Поскольку , то неравенство всегда выполняется , если .

Пусть , тогда неравенство будет равносильно неравенству , из которого вытекает совокупность двух неравенств и .

Теорема доказана.

Рассмотрим типовые примеры решения задач на тему «Неравенства , содержащие переменные под знаком модуля».

Решение неравенств с модулем

Наиболее простым методом решения неравенств с модулем является метод , основанный на раскрытии модулей. Этот метод является универсальным , однако в общем случае его применение может привести к весьма громоздким вычислениям. Поэтому учащиеся должны знать и другие (более эффективные) методы и приемы решения таких неравенств. В частности , необходимо иметь навыки применения теорем , приведенных в настоящей статье.

Пример 1. Решить неравенство

. (4)

Решение. Неравенство (4) будем решать «классическим» методом – методом раскрытия модулей. С этой целью разобьем числовую ось точками и на интервалы и рассмотрим три случая.

1. Если , то , , , и неравенство (4) принимает вид или .

Так как здесь рассматривается случай , то является решением неравенства (4).

2. Если , то из неравенства (4) получаем или . Так как пересечение интервалов и является пустым , то на рассматриваемом интервале решений неравенства (4) нет.

3. Если , то неравенство (4) принимает вид или . Очевидно , что также является решением неравенства (4).

Ответ: , .

Пример 2. Решить неравенство .

Решение. Положим , что . Так как , то заданное неравенство принимает вид или . Поскольку , то и отсюда следует или .

Однако , поэтому или .

Пример 3. Решить неравенство

. (5)

Решение. Так как , то неравенство (5) равносильно неравенствам или . Отсюда , согласно теореме 4 , имеем совокупность неравенств и .

Ответ: , .

Пример 4. Решить неравенство

. (6)

Решение. Обозначим . Тогда из неравенства (6) получаем неравенства , , или .

Отсюда , используя метод интервалов , получаем . Так как , то здесь имеем систему неравенств

Решением первого неравенства системы (7) является объединение двух интервалов и , а решением второго неравенства – двойное неравенство . Отсюда следует , что решение системы неравенств (7) представляет собой объединение двух интервалов и .

Ответ: ,

Пример 5. Решить неравенство

. (8)

Решение. Преобразуем неравенство (8) следующим образом:

Или .

Применяя метод интервалов , получаем решение неравенства (8).

Ответ: .

Примечание. Если в условии теоремы 5 положить и , то получим .

Пример 6. Решить неравенство

. (9)

Решение. Из неравенства (9) следует . Преобразуем неравенство (9) следующим образом:

Или

Так как , то или .

Ответ: .

Пример 7. Решить неравенство

. (10)

Решение. Так как и , то или .

В этой связи и неравенство (10) принимает вид

Или

. (11)

Отсюда следует, что или . Так как , то и из неравенства (11) вытекает или .

Ответ: .

Примечание. Если к левой части неравенства (10) применить теорему 1 , то получим . Отсюда и из неравенства (10) следует , что или . Так как , то неравенство (10) принимает вид или .

Пример 8. Решить неравенство

. (12)

Решение. Так как , то и из неравенства (12) следует или . Однако , поэтому или . Отсюда получаем или .

Ответ: .

Пример 9. Решить неравенство

. (13)

Решение. Согласно теореме 7 решением неравенства (13) являются или .

Пусть теперь . В таком случае и неравенство (13) принимает вид или .

Если объединить интервалы и , то получим решение неравенства (13) вида .

Пример 10. Решить неравенство

. (14)

Решение. Перепишем неравенство (14) в равносильном виде: . Если к левой части данного неравенства применить теорему 1, то получим неравенство .

Отсюда и из теоремы 1 следует , что неравенство (14) выполняется для любых значений .

Ответ: любое число.

Пример 11. Решить неравенство

. (15)

Решение. Применяя теорему 1 к левой части неравенства (15) , получаем . Отсюда и из неравенства (15) вытекает уравнение , которое имеет вид .

Согласно теореме 3 , уравнение равносильно неравенству . Отсюда получаем .

Пример 12. Решить неравенство

. (16)

Решение . Из неравенства (16), согласно теореме 4, получаем систему неравенств

При решении неравенства воспользуемся теоремой 6 и получим систему неравенств из которой следует .

Рассмотрим неравенство . Согласно теореме 7 , получаем совокупность неравенств и . Второе неравенство совокупности справедливо для любого действительного .

Следовательно , решением неравенства (16) являются .

Пример 13. Решить неравенство

. (17)

Решение. Согласно теореме 1 можно записать

(18)

Принимая во внимание неравенство (17), делаем вывод о том, что оба неравенства (18) обращаются в равенства, т.е. имеет место система уравнений

По теореме 3 данная система уравнений равносильна системе неравенств

или

Пример 14. Решить неравенство

. (19)

Решение. Так как , то . Умножим обе части неравенства (19) на выражение , которое для любых значений принимает только положительные значения. Тогда получим неравенство, которое равносильно неравенству (19), вида

Отсюда получаем или , где . Так как и , то решением неравенства (19) являются и .

Ответ: , .

Для более глубокого изучения методов решения неравенств с модулем можно посоветовать обратиться к учебным пособиям , приведенных в списке рекомендованной литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование , 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: методы решения и доказательства неравенств. – М.: Ленанд / URSS , 2018. – 264 с.

3. Супрун В.П. Математика для старшеклассников: нестандартные методы решения задач. – М.: КД «Либроком» / URSS , 2017. – 296 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.