Роль hox генов в индивидуальном развитии. Новое в науке о знаменитых Hox-генах, регуляторах развития


Многокилограммовые тороидальные трансформаторы — главные бойцы с сетевыми помехами

Для истинного аудиофила конденсаторы характеризуются не только емкостью, но и звуком


Только мощные радиаторы, опоясывающие корпус усилителя, спасают 30 выходных транзисторов от перегрева

В 1972 году талантливый американский музыкант и инженер Марк Левинсон основал в Коннектикуте одноименную компанию Mark Levinson. И вот уже 30 лет вокруг этого имени фанатики Hi-End"а слагают огромное количество легенд и историй. Одна из них гласит, что даже слово «Hi-End» придумал сам Марк Левинсон. А вот то, что все высококлассные усилители в мире сравниваются с Mark Levinson № 33 Reference Mono Power Amplifier, — уже не легенда, а факт. Недаром усилитель так и называется — эталонный.

Может ли играть конденсатор

Левинсон одним из первых задумался о качестве звука и причинах, которые его формируют. До него считалось, что чем лучше технические параметры аппаратуры (шире полоса пропускания и меньше нелинейные искажения), тем лучше звук. Марк же высказал почти крамольную для инженеров, но понятную для музыканта мысль — во главу угла нужно ставить не технические характеристики, а человеческое восприятие звука, живое прослушивание. Никому же в голову не приходит оценивать скрипку Страдивари по ее возможности воспроизвести частоту в 35 кГц. И свои усилители Левинсон стал создавать не по техническим параметрам, а по критерию «звучит — не звучит». Критерий выбраковки деталей (этот конденсатор играет, а этот нет) для традиционных электронщиков был кощунственным. Звучали у Марка не только радиодетали, но и схемотехнические решения. В итоге, после многочисленных проб и ошибок, Левинсон пришел к тем решениям, многие из которых сохраняются по сей день.

Горячий, но классный

Наиболее известными усилителями компании стала модель Mark Levinson № 20.6 (кстати, вся аппаратура легендарной марки выпускается только под номерами), появившаяся в конце 80-х годов. Усилитель состоял из двух неподъемных раздельных блоков — по одному на канал. Помимо большого веса и размеров, усилитель имел не очень большую выходную мощность, грелся как печка, но звучал как Бог. Это было похоже на звучание лучших ламповых усилителей, но при транзисторной основательности — бархатный бас и открытый среднечастотный диапазон. № 20.6 даже по прошествии десятилетия никто не думает сдавать в утиль — он до сих пор услаждает слух своих владельцев.

Грелся усилитель неспроста. Инженеры Mark Levinson используют схемотехнику чистого класса A, при котором выходные транзисторы открыты постоянно, то есть ток течет через них даже в то время, когда нет сигнала. Подобный режим имеет наименьший КПД из возможных (до 20%), зато позволяет добиться минимальных искажений. Для примера, транзисторы, применяемые в аппаратуре класса D (обычно это цифровые усилители), работают в ключевом режиме, а сами усилители имеют КПД более 90%.

Так же неслучайна высокая масса усилителей Mark Levinson. Наибольшее влияние на звук оказывает, как это ни странно, обычное сетевое питание.

Идеальный синус

Даже по Москве стандартные 220 В разные — разброс составляет, в зависимости от района, от 160 до 260 В. Но даже не это самое страшное — напряжение сильно загрязнено, то есть отличается от стандартного синуса.

В него проникает куча всяких бытовых искажений: сосед бреется этажом выше, ребенок играет в Nintendo, жена сушит волосы феном. Точно так же, как некачественный бензин может стать причиной перебоев отлично отрегулированного японского двигателя, так и искажения, вместе с электричеством попавшие в усилитель, портят выходной сигнал. Кстати, именно по этой причине истинные аудиофилы лучшим временем для прослушивания называют ночные часы — с 23:00 до часу ночи, когда большинство «постановщиков помех» уже спят.

С загрязненным напряжением, как, впрочем, и грязным бензином, борются при помощи фильтров. Например, на нынешнем флагмане Mark Levinson № 33 стоят регенераторы напряжения, принцип работы которых заключается в выпрямлении напряжения и дальнейшей генерации идеального синуса при помощи эталонного задающего генератора. И никаких компактных импульсных источников тока на входе, которые вносят хоть небольшие, но собственные искажения. Только тороидальные трансформаторы, обладающие наименьшими электромагнитными излучениями, причем очень тяжелые и мощные — в пиковые моменты усилитель может потреблять до нескольких киловатт электроэнергии. Причем трансформаторов должно быть не менее двух — по одному на канал. Традиционно усилители Mark Levinson строятся по принципу «двойного моно»: схемы ничем не связаны, а во флагманских моделях даже заключены в разные корпуса. Сделано это для лучшего разделения между каналами — они разделены абсолютно.

Еще один параметр, который влияет на звук, — выходное сопротивление усилителя. Чем ниже выходное сопротивление, тем лучше усилитель справляется со сложной нагрузкой акустических систем. Написанное на колонках сопротивление (4 или 8 Ом) — усредненное. На самом деле, для каждой частоты сопротивление свое, причем на некоторых частотах оно может падать ниже допустимого. И если у усилителя собственное высокое выходное сопротивление, то он плохо обрабатывает эту полосу частот.

Транзисторный хор

Обеспечить низкое сопротивление можно двумя способами. Например, увеличить глубину обратной связи усилителя. Чем глубже обратная связь, тем ниже выходное сопротивление усилителя. Но это негативно влияет на восприятие звука — он получается более ровным, но «мертвым», как выражаются знатоки.

В усилителях Mark Levinson низкое выходное сопротивление достигается путем запараллеливания транзисторов выходного каскада. Это хорошо известно из школьного курса физики — при параллельном включении общее сопротивление падает. Количество выходных транзисторов может достигать трех десятков на канал, тогда как обычной нормой являются два. Причем, чтобы эти десятки работали вместе, необходим жесткий подбор — они должны, как хор, петь вместе. Если обычно транзисторы отбирают по одной-двум статическим характеристикам, то в Mark Levinson — по шести динамическим. И все равно при этом последнее слово остается за слухом — заиграют вместе или нет. Hi-End никакими приборами не меряется — в этом его суть.

Эволюция [Классические идеи в свете новых открытий] Марков Александр Владимирович

Hox -гены обрели свободу - и змеи потеряли ноги

Hox -гены обрели свободу - и змеи потеряли ноги

Напоследок рассмотрим исследование, проливающее свет на роль Hox -генов в эволюции позвоночных. Как известно, важнейшая функция Hox -генов состоит в том, что они подробно размечают эмбрион вдоль передне-задней оси. Дальнейшая судьба эмбриональных клеток, оказавшихся в той или иной части эмбриона, зависит от набора Hox -генов, экспрессирующихся в этой части. Для каждого Hox -гена характерна своя область экспрессии. Например, гены Hox12 и Hox13 , как правило, работают только в задней части эмбриона, которая в дальнейшем станет хвостом; гены Hox10 у некоторых позвоночных работают от заднего конца эмбриона до той черты, которая станет границей между грудным отделом (где на позвонках есть ребра) и поясничным, где ребра не развиваются. «Hox -код», определяющий план строения организма, сложен и не совсем одинаков у разных групп позвоночных. Вряд ли можно сомневаться в том, что многие крупные эволюционные преобразования, затрагивающие план строения, были связаны с изменениями в структуре и экспрессии Hox -генов. Однако хорошо изученных примеров, иллюстрирующих эту связь, пока немного.

Hox-гены дрозофилы и человека. Прямоугольниками обозначены гены в том порядке, в каком они расположены в хромосомах. У мухи один набор Hox-генов, у человека - четыре, частично дублирующие друг друга (они образовались из одного в результате двух полногеномных дупликаций). Кластеры A, B, C, D находятся на разных хромососмах (у мыши это хромосомы № 6, 11, 15 и 2, у человека - № у, 17, 2, 12). У змей, в отличие от мыши и человека, в кластере D отсутствует 12-й ген (Hoxd12). На изображениях мухи и зародыша человека области экспрессии соответствующих генов окрашены теми же цветами, что и сами гены. По последним данным, соответствие между Hox-генами членистоногих и позвоночных несколько менее однозначно, чем показано на этой схеме.

У многих животных, в том числе у позвоночных, Hox -гены в геноме располагаются кластерами, т. е. группами вплотную друг другу. Самое удивительное, что порядок расположения генов в Hox -кластерах часто (хотя и не всегда) совпадает с распределением областей экспрессии вдоль передне-задней оси: впереди находятся «головные» гены, за ними следуют гены, отвечающие за формирование средних участков тела, а замыкают кластер «задние» гены, управляющие развитием задних частей туловища. По-видимому, это связано со способом регуляции экспрессии Hox -генов: участок ДНК, где находится Hox -кластер, постепенно «раскрывается», становясь доступным для транскрипции по мере движения от переднего конца тела к заднему. Поэтому у переднего конца тела экспрессируются только передние Hox -гены, а чем ближе к хвосту, тем более задние гены включаются в работу. Удобный способ регуляции генов, отвечающих за разметку эмбриона вдоль передне-задней оси!

У предков позвоночных, как у современного ланцетника, в геноме был один Hox -кластер, включающий 14 генов. На ранних этапах эволюции позвоночных произошло две полногеномные дупликации. В результате позвоночные приобрели четыре Hox -кластера вместо одного. Это открыло перед позвоночными большие эволюционные возможности (см. главу 5). Отдельные Hox -гены в некоторых кластерах были утрачены, но в целом их набор и порядок расположения остался сходным во всех четырех кластерах. Паралогичные гены (т. е. копии одного и того же Hox -гена в разных Hox -кластерах) приобрели немного различающиеся функции, что дало возможность тонко регулировать эмбриональное развитие и облегчило развитие новых планов строения.

Биологи из Швейцарии, Новой Зеландии и США изучили работу Hox -генов у чешуйчатых рептилий (отряд Squamata ) (Di-Poi et al., 2010 ). Этот отряд, объединяющий ящериц и змей, интересен разнообразием планов строения и вариабельностью признаков, связанных с передне-задней дифференцировкой туловища (относительная длина отделов тела, число позвонков в них и т. п.) Поэтому логично было предположить, что Hox -кластеры чешуйчатых должны обладать специфическими особенностями и что Hox -гены ящериц и змей должны различаться.

Ранее было показано, что области экспрессии передних Hox -генов у змей расширились в заднем направлении по сравнению с другими позвоночными. Это хорошо согласуется с общим удлинением тела. Кроме того, было установлено, что правило колинеарности (т. е. одинаковый порядок расположения генов в кластере и областей их экспрессии в эмбрионе) у змей строго соблюдается.

Исследователи сосредоточились на задних Hox -генах (от 10-го до 13-го). Главными объектами исследования были хлыстохвостая ящерица Aspidoscelis uniparens и маисовый полоз Elaphe guttata . Кроме того, были отсеквенированы Hox -кластеры нескольких других ящериц, гаттерии и черепахи. Для сравнения использовались Hox -кластеры курицы, человека, мыши и лягушки.

Набор задних Hox -генов у всех исследованных видов оказался одинаковым, если не считать того, что у змей и лягушек «потерялся» ген Hoхd12 (12-й Hox -ген из кластера D ). Важные изменения были обнаружены в регуляторных участках Hox -кластеров. Оказалось, что все чешуйчатые рептилии утратили регуляторный участок между генами Hoхd13 и Evх2 , а змеи вдобавок потеряли консервативный некодирующий элемент между Hoхd12 и Hoхd13 и некоторые регуляторные участки в других Hox -кластерах. Неожиданным результатом оказалось присутствие в Hox -кластерах чешуйчатых множества встроившихся мобильных генетических элементов. В результате общая длина задней части Hox -кластеров у чешуйчатых значительно выросла по сравнению с другими наземными позвоночными.

Все это, по-видимому, говорит о том, что у чешуйчатых ослабли эволюционные ограничения, препятствующие накоплению изменений в задней части Hox -кластеров. Очищающий отбор, отбраковывающий подобные изменения у других позвоночных, в эволюции ящериц и змей действовал менее эффективно. Этот вывод подтвердился и в ходе анализа кодирующих участков Hox -генов. В этих участках у ящериц, и особенно у змей, по сравнению с другими позвоночными накопилось много значимых замен. Одни из них, по-видимому, зафиксировались случайно, из-за ослабления очищающего отбора, тогда как другие закрепились под действием положительного отбора, т. е. были полезными.

Изучение характера экспрессии задних Hox -генов у эмбрионов ящерицы и полоза подтвердило предположение о том, что изменения плана строения в эволюции чешуйчатых были тесно связаны с изменениями в работе задних Hox -генов.

У ящерицы, как и у других наземных позвоночных, передний край области экспрессии генов Hoxa10 и Hoxc10 в точности соответствует границе между грудным и поясничным отделами. Одной из функций этих генов является подавление развития ребер. У змей нет поясничного отдела, а на бывших крестцовых позвонках (у змей они называются клоакальными) имеются особые раздвоенные ребра. По-видимому, эти особенности связаны с тем, что Hox -гены у предков змей утратили способность останавливать рост ребер.

Область экспрессии Hoxa10 и Hoxc10 у полоза заходит далеко в грудной отдел. Эти гены отвечают также за своевременное прекращение роста грудного отдела. По-видимому, эта их функция у змей тоже ослаблена, что могло быть одной из причин удлинения грудного отдела у змей по сравнению с их предками - ящерицами. Удлинение хвостового отдела у змей связано с тем, что из четырех генов, «тормозящих» рост хвоста у ящериц (Hoxa13 , Hoxc13 , Hoxd13 , Hoxd12 ) один ген у змей полностью утрачен (Hoxd12 ), а два других (Hoxa13 , Hoxd13 ) не участвуют в передне-задней «разметке» эмбриона и используются только в формировании половых органов.

Многочисленные случаи независимой утраты и частичной редукции конечностей у чешуйчатых тоже могут быть связаны с тем, что в этом отряде задние Hox -гены получили нетипичную для других животных эволюционную «свободу». На них стал слабее действовать очищающий отбор, что позволило быстро накапливать мутации.

Области экспрессии задних Hox-генов у ящерицы и змеи. У ящерицы перед хвостовыми позвонками расположены два крестцовых (показаны темно-серым цветом), затем следует один рудиментарный поясничный позвонок (белый), а дальше идут грудные позвонки (серые). У змеи нет поясничного отдела, а вместо крестцовых имеются четыре клоакальных позвонка с раздвоенными ребрами (темно-серые). Вертикальными прямоугольниками показаны области экспрессии задних Hox-генов. Из Di-Poi et al., 2010.

Известно, что задние Hox -гены играют ключевую роль не только в оформлении задних отделов туловища, но и в развитии конечностей. Поэтому некоторые мутации этих генов, ведущие, например, к удлинению тела или к редукции поясничного отдела, теоретически могут приводить и к таким побочным эффектам, как редукция конечностей. Удлинение тела в сочетании с редукцией конечностей встречается и в других группах позвоночных (например, у некоторых амфибий). Было ли это связано с такими же изменениями в работе Hox -генов, как у змей, или с другими, покажут дальнейшие исследования.

Эволюционная биология развития - быстро развивающаяся дисциплина, от которой следует ожидать важнейших научных прорывов. Расшифровка генно-регуляторных сетей, управляющих развитием, - одна из самых насущных задач биологии. Ее решение позволит понять не только соотношение между генотипом и фенотипом, но и важнейшие правила и закономерности эволюции сложных организмов. Когда эти правила, известные нам сегодня лишь в общих чертах, будут изучены досконально, вплоть до построения строгих математических моделей, перед человечеством откроются небывалые возможности. Проектирование «с чистого листа» биологических систем с нужными нам свойствами - лишь одна из них. Другая - совершенствование нашей собственной природы. Все это будет. Нужно лишь четко уяснить, для каких целей это нужно будущему человечеству, и надеяться, что культурное, социальное и морально-этическое развитие человечества к тому времени исключит возможность использования этих открытий во вред.

Из книги Удивительная биология автора Дроздова И В

Морские змеи Около 350 млн лет тому назад дышащий воздухом сородич целаканта – латимерий выкарабкался из воды на своих неуклюжих кистеперых плавниках и стал первым позвоночным, начавшим жить на суше. Растения и беспозвоночные уже успели распространиться там, проникнув с

Из книги Экспериментальные исследования способностей животных к количественным оценкам предметного мира автора Резникова Жанна Ильинична

Две ноги … Правда, с протестом выступили птицы, поскольку им показалось, что и у них лишь две ноги. Дж. Оруэлл «Скотный двор» Значительная часть исследований, посвященных изучению способности животных к счету, была проведена на птицах. Первая детальная работа принадлежит

Из книги Наши знакомые незнакомцы автора Воловник Семен Вениаминович

Четыре ноги Он, казалось, был чем-то удивлен. Глаза его возвращались к моим рукам. Он вытянул свою руку и стал медленно считать свои пальцы. Герберт Уэллс «Остров доктора Моро». Первые опыты, выявляющие способность к счету у четвероногих, были проведены на макаках резусах

Из книги Семена разрушения. Тайная подоплека генетических манипуляций автора Энгдаль Уильям Фредерик

Умелые ноги Образ паука в нашем представлении тесно связан с паутиной (хотя тенета строит лишь треть всех пауков). Остановимся перед ловчей сетью паука-крестовика. Она растянулась над лесной тропинкой, слегка пружинит от дуновений ветра, сияет каплями росы… Красота, да и

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения (без иллюстраций) автора Волович Виталий Георгиевич

ЧАСТЬ IV. СЕМЕНА ГМО ВЫРЫВАЮТСЯ НА СВОБОДУ

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения [с иллюстрациями] автора Волович Виталий Георгиевич

Из книги Антропологический детектив. Боги, люди, обезьяны... [с иллюстрациями] автора Белов Александр Иванович

Из книги С утра до вечера автора Акимушкин Игорь Иванович

У КОГО НОГИ КАК РУКИ? Но спросим себя сами: существуют ли какие-либо научные основания считать предком животных антропоморфное существо? Такие основания нам дает теория биологической энтропии. Вот некоторые выдержки из неё.У человека опорой тела является стопа -

Из книги Тропическая природа автора Уоллес Альфред Рассел

Дай бог ноги! Органы чувств обеспечивают животным, так сказать, превентивную, то есть предупредительную, оборону. Это их разведчики. Но когда враг замечен (учуян или услышан), животные, подпустив его на известное расстояние, обычно удирают. Эту критическую дистанцию, ближе

Из книги Бегство от одиночества автора Панов Евгений Николаевич

Змеи К счастью, змеи не так многочисленны и назойливы, как ящерицы, а то едва ли можно было бы жить в тропиках. Сначала путешественник удивляется, не видя этих животных, но скоро приходит к убеждению, что их вокруг него множество. Человек, питающий к змеям обычное отвращение

Из книги Человек дарует имя автора Краснопевцев Валентин Павлович

Медузы - получившие свободу зооиды До сих пор мы не ставили вопроса, способны ли те или иные из множества прошедших перед нами «коллективных» образований самопроизвольно делиться на составные части и добровольно отпускать от себя отдельных зооидов или какие-либо их

Из книги Эволюция человека. Книга 1. Обезьяны, кости и гены автора Марков Александр Владимирович

Голова, ноги, хвост… Не только внешность в целом, форма тела животного, но и приметные особенности строения отдельных частей его или органов нашли отражение в кличках. Да и как не обратить самое пристальное внимание при первом же, пусть даже мимолетном знакомстве на такие

Из книги Мир животных автора Ситников Виталий Павлович

Гены, которые мы потеряли Эволюция гоминид сопровождалась не только приобретениями, но и потерями. Некоторые гены, которые у шимпанзе и других обезьян нормально работают, у человека выключились, превратились в молчащие псевдогены. В 1999 году Мэйнард Олсон из

Hox-гены определяют схему тела животных. Очень важно, чтобы они экспрессировались в правильном количестве, в правильном месте и в правильный момент эмбрионального развития — иначе вся схема тела нарушится. Оказывается, для этих генов существует особый вид регуляции трансляции, позволяющий отделить один вид белков от всех прочих. На их мРНК есть IRES-подобные участки, которые могут запускать трансляцию. При этом кэп-зависимая трансляция для этих белков выключается.

Нох-гены - важный объект для изучения

Инициация трансляции бывает разная

Итак, генетический материал клетки закодирован в ДНК. С ДНК считывается определенный вид РНК, а с РНК - белок. Такой вид РНК называется матричной РНК, у он имеет определенное строение . Это линейная молекула, соответственно, у нее есть 2 конца, которые называются 5′- и 3′-концы. На 5′-конце есть особая структура - . Она необходима для начала синтеза белка на матрице РНК, так как привлекает фабрику белка - .

Так происходит у нас, но не у вирусов. Точнее, не у всех вирусов. У некоторых есть другие структуры в РНК, которые инициируют синтез белка - . Так вот оказывается, что в РНК млекопитающих иногда обнаруживают структуры, похожие на IRES вирусов. При этом кэп тоже присутствует. Получается РНК с двумя сигналами привлечения рибосомы. Это интересное явление часто имеет важный биологический смысл. Например, при стрессе кэп-зависимая инициация трансляции подавлена . Но некоторые белки должны синтезироваться и при стрессе. Вот тогда клетка и использует IRES. А как работает такая смешанная система в нормальных, не шоковых условиях - большая загадка. Клеточные IRES не похожи друг на друга , их роль в развитии организма не ясна. Найти ответ на этот вопрос попытались ученые, изучающие регуляцию Нох-генов .

У мРНК Hox-генов есть IRES вирусов?

Интересно, что в мРНК некоторых Нох-генов предполагают наличие IRES. Причем именно IRES привлекает рибосому и запускает синтез белков. Уже приведены первые экспериментальные доказательства в пользу этой гипотезы . Также ученые открыли еще один специальный регуляторный элемент - translation inhibitory element (TIE), который блокирует кэп-зависимый синтез белка . Появление блокирующего элемента объясняет, почему при наличии и кэп-структуры, и IRES работает только IRES.

Почему IRES лучше, чем кэп?

Важность того участка РНК, где находится предполагаемый IRES, в данном случае подтвердили экспериментально. Показали, что если подвергнуть мутации один из Нох-генов мышей, удалив IRES, то мышь будет развиваться ненормально (см. рисунок 1).

Рисунок 1. Патологии в развитии скелета мышей с делециями в 5′-нетранслируемой области в одном из Hox-генов - Ноха9. Ученые вывели линию мышей, у которых поврежден IRES в одном из Нох-генов. Такие мыши развиваются ненормально. У них нарушается строение скелета: например, не хватает ребер (на недостающие ребра указывают черные стрелочки). Также наблюдаются и другие патологии. Картинка из .

Предполагают, что для очень важных белков, которые закодированы в Нох-генах, IRES лучше, чем кэп. Это может быть связано с тем, что кэп-структура у всех мРНК одинаковая. А IRES разные. То есть к белкам, которые определяют строение тела, нужен индивидуальный подход. Даже начало синтеза является важным этапом регуляции и должно быть уникальным для каждого такого белка.

Словарь терминов:

  • IRES (Internal Ribosome Entry Site) - участок внутренней посадки рибосомы.
  • Hox-гены - семейство генов, которые кодируют транскрипционные факторы, регулирующие формирование органов и тканей в ходе развития организма.
  • Делеция - удаление фрагмента молекулы ДНК.
  • Кэп - 7-метилгуанозин - структура на 5′-конце матричных РНК.
  • Рибосома - комплекс, состоящий из РНК и белков и служащий для синтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК).
  • Трансляция - синтез белка на матрице РНК.
  • Хромосома - структура, состоящая из ДНК и белков, находящаяся в ядре эукариотической клетки. Предназначена для хранения, реализации и передачи генетической информации.
  • Эукариоты - живые организмы, клетки которых содержат ядра.

Литература

  1. Alexander, T., Nolte, C. & Krumlauf, R. (2009). Hox genes and segmentation of the hindbrain and axial skeleton . Annu. Rev. Cell Dev. Biol. 25 , 431–456 ;
  2. Гены, от которых вырастают крылья. И ноги. И всё остальное ;
  3. Википедия : «