Уравнение первого порядка уравнения бернулли. Уравнения бернулли

Уравнение вида y’ + Р(х)у = Q(x), где Р(х) и Q(x) – известные функции от х, линейные относительно функции у и её производной y’, называется линейным дифференциальным уравнением первого порядка.

Если q(x)=0, уравнение называется линейным однородным уравнением. q(x)=0 – линейное неоднородное уравнение.

Линейное уравнение приводится к двум уравнениям с разделяющимися переменными при помощи подстановки у = u*v, где u = u(х) и v = v(x) – некоторые вспомогательные непрерывные функции.

Итак, у = u*v, у’ = u’*v + u * v’ (1),

тогда исходное уравнение перепишем в виде: u’*v + u * v’ + Р(х)*v = Q(x) (2).

Так как неизвестная функция у ищется в виде произведения двух функций, то одна из них может быть выбрана произвольно, другая – определяться уравнением (2).

Выберем так, чтобы v’ + Р(х)*v = 0 (3). Для этого достаточно, чтобы v(x) была частным решением уравнения (3) (при С = 0). Найдём это решение:

V*P(x) ; = -;ln |v| = -;v = (4)

Подставляя функцию (4) в уравнение (2), получим второе уравнение с разделяющимися переменными, из которого находим функцию u(x):

u’ * = Q(x) ; du = Q(x) *; u =+ C (5)

Окончательно получаем:

y(x) = u(x)*v(x) = *(+C)

Уравнение Бернулли: y ’ + y = x * y 3

Данное уравнение имеет вид: y’ + Р(х)*у = y’’ * Q(x), где Р(х) и Q(x) – непрерывные функции.

Если n = 0, то уравнение Бернулли становится линейным дифф.уравнением. Если n = 1, уравнение преобразуется в уравнение с разделяющимися переменными.

В общем случае, когда n ≠ 0, 1, ур. Бернулли сводится к линейному дифф.уравнению с помощью подстановки: z = y 1- n

Новое дифф.уравнение для ф-ции z(x) имеет вид: z" + (1-n)P(x)z = (1-n)Q(x) и может быть решено теми же способами, что и линейные дифф.уравнения 1-ого порядка.

20. Дифференциальные уравнения высших порядков.

Рассмотрим уравнение, не содержащие функцию в явном виде:

Порядок этого уравнения понижается на единицу с помощью подстановки:

Действительно, тогда:

И мы получили уравнение, в котором порядок понижен на единицу:

Дифф. уравнения порядка выше второго имеют вид и , где - действительные числа, а функция f(x) непрерывна на интервале интегрирования X .

Аналитически решить такие уравнения далеко не всегда возможно и обычно используют приближенные методы. Однако в некоторых случаях возможно отыскать общее решение.

Теорема.

Общим решением y 0 линейного однородного дифференциального уравнения на интервале X с непрерывными коэффициентами на X является линейная комбинация n линейно независимых частных решений ЛОДУ с произвольными постоянными коэффициентами , то есть .

Теорема.

Общее решение y линейного неоднородного дифференциального

уравнения на интервале X с непрерывными на том же

промежутке X коэффициентами и функцией f(x) представляет собой сумму ,

где y 0 - общее решение соответствующего ЛОДУ , а - какое-нибудь частное решение исходного ЛНДУ.

Таким образом, общее решение линейного неоднородного дифференциального уравнения с постоянными

коэффициентами ищем в виде , где - какое-нибудь

его частное решение, а – общее решение соответствующего однородного дифференциального

уравнения .

21. Испытания и события. Виды событий. Примеры.

Испытание – создание определённого комплекса условий для совершения событий. Пример: бросание игральной кости

Событие – появление\непоявление того или иного исхода испытания; результат испытания. Пример: выпадение числа 2

Случайное событие – событие, которое может произойти или не произойти при данном испытании. Пример: выпадение числа, большего чем 5

Достоверное – событие, которое неизбежно происходит при данном испытании. Пример: выпадение числа, большего или равного 1

Возможное – событие, которое может произойти при данном испытании. Пример: выпадение числа 6

Невозможное – событие, которое не может произойти при данном испытании. Пример: выпадение числа 7

Пусть А – некоторое событие. Под событием, противоположным ему, будем понимать событие, состоящее в ненаступлении события А. Обозначение: Ᾱ. Пример: А – выпадение числа 2, Ᾱ - выпадение любого другого числа

События А и В несовместны, если наступление одного из них исключает наступление другого в одном и том же испытании. Пример: выпадение при одном броске чисел 1 и 3.

События А и В называются совместными, если они могут появиться в одном испытании. Пример: выпадение при одном броске числа, большего, чем 2, и числа 4.

22. Полная группа событий. Примеры.

Полная группа событий – события A, B, C, D, …, L, которые принято считать единственно возможными, если в результате каждого испытания хотя бы одно из них обязательно наступит. Пример: выпадение на игральной кости числа 1, числа 2, 3, 4, 5, 6.

23. Частота события. Статистическое определение вероятности.

Пусть проведено n испытаний, причём событие А наступило m раз. Такое отношение m:n является частотой наступления события А.

Опр. Вероятность случайного события – связанное с данным событием постоянное число, вокруг которого колеблется частота наступления этого события в длинных сериях испытаний.

Вероятность вычисляется до опыта, а частота – после него.

24. Классическое определение вероятности. Свойства вероятности события.

Вероятностью события х называется отношение числа исходов, благоприятствующих событию А, к общему числу всех равновозможных попарно несовместных и единственно возможных исходов опыта. Р(А) =

Свойства вероятности события:

Для любого события А 0<=m<=n

Поделив каждый член на n, получим для вероятности любого события А: 0<=Р(А) <=1

Если m=0, то событие невозможно: Р(А)=0

Если m=n, то событие достоверно: Р(А)=1

Если m

25. Геометрическое определение вероятности. Примеры.

Классическое определение вероятности требует рассмотрение конечного числа элементарных исходов, причем равновозможных. Но на практике часто встречаются испытания, число возможных исходов которых бесконечно.

Опр . Если точка случайным образом появляется одномерной\ двумерно\ или 3х мерной области меры S (мера – ее длина, площадь или объём) то вероятность ее появления в части этой области меры S равна

где S – геометрическая мера, выражающая общее число всех возможных и равновозможных исходов данного испытания, а Si – мера, выражающая количество благоприятствующих событию A исходов.

Пример 1. Круг радиусом R помещен меньший круг радиусом г. Найти вероятность того, что точка, наудачу брошенная в больший круг, попадет также и в малый круг.

Пример 2. Пусть отрезок длиной l включается в отрезок длиной L. Най ти вероятность события А «наудачу брошенная точка попала на отрезок длиной l».

Пример 3 . В круге произвольно выбирается точка. Какова вероятность того, что ее расстояние до центра круга больше половины?

Пример 4. Два лица и условились встретиться в определённом месте между двумя и тремя часами дня. Пришедший первым ждет другого в течение 10 минут, после чего уходит. Чему равна вероятность встречи этих лиц, если каждый из них может прийти в любое время в течение указанного часа независимо от другого?

26. Элементы комбинаторики: Размещение, перестановка, сочетания.

1) Перестановкой называется установленный в конечном множестве порядок.

Число всех различных перестановок вычисляется по формуле

2) Размещением из n элементов по m называется всякое упорядоченное подмножество основного множества, содержащее m элементов.

3) Сочетанием из n элементов по m называется всякое неупорядоченное подмножество основного множества, содержащее элементов.

Дифференциальное уравнение y" +a 0 (x)y=b(x)y n называется уравнением Бернулли .
Так как при n=0 получается линейное уравнение, а при n=1 - с разделяющимися переменными, то предположим, что n ≠ 0 и n ≠ 1. Разделим обе части (1) на y n . Тогда Положив , имеем . Подставляя это выражение, получим , или, что то же самое, z" + (1-n)a 0 (x)z = (1-n)b(x). Это линейное уравнение, которое мы решать умеем.

Назначение сервиса . Онлайн калькулятор можно использовать для проверки решения дифференциальных уравнений Бернулли .

=


Пример 1 . Найти общее решение уравнения y" + 2xy = 2xy 3 . Это уравнение Бернулли при n=3. Разделив обе части уравнения на y 3 получаем Делаем замену Тогда и поэтому уравнение переписывается в виде -z" + 4xz = 4x. Решая это уравнение методом вариации произвольной постоянной , получаем откуда или, что то же самое, .

Пример 2 . y"+y+y 2 =0
y"+y = -y 2

Разделим на y 2
y"/y 2 + 1/y = -1

Делаем замену:
z=1/y n-1 , т.е. z = 1/y 2-1 = 1/y
z = 1/y
z"= -y"/y 2

Получаем: -z" + z = -1 или z" - z = 1

Пример 3 . xy’+2y+x 5 y 3 e x =0
Решение.
а) Решение через уравнение Бернулли.
Представим в виде: xy’+2y=-x 5 y 3 e x . Это уравнение Бернулли при n=3 . Разделив обе части уравнения на y 3 получаем: xy"/y 3 +2/y 2 =-x 5 e x . Делаем замену: z=1/y 2 . Тогда z"=-2/y 3 и поэтому уравнение переписывается в виде: -xz"/2+2z=-x 5 e x . Это неоднородное уравнение. Рассмотрим соответствующее однородное уравнение: -xz"/2+2z=0
1. Решая его, получаем: z"=4z/x

Интегрируя, получаем:
ln(z) = 4ln(z)
z=x 4 . Ищем теперь решение исходного уравнения в виде: y(x) = C(x)x 4 , y"(x) = C(x)"x 4 + C(x)(x 4)"
-x/2(4C(x) x 3 +C(x)" x 4)+2y=-x 5 e x
-C(x)" x 5 /2 = -x 5 e x или C(x)" = 2e x . Интегрируя, получаем: C(x) = ∫2e x dx = 2e x +C
Из условия y(x)=C(x)y, получаем: y(x) = C(x)y = x 4 (C+2e x) или y = Cx 4 +2x 4 e x . Поскольку z=1/y 2 , то получим: 1/y 2 = Cx 4 +2x 4 e x

Дифференциальное уравнение Бернулли — это уравнение вида

где n≠0,n≠1.

Это уравнение может быть преобразовано при помощи подстановки

в линейное уравнение

На практике дифференциальное уравнение Бернулли обычно не приводят к линейному, а сразу решают теми же методами, что и линейное уравнение — либо методом Бернулли, либо методом вариации произвольной постоянной.

Рассмотрим, как решить дифференциальное уравнение Бернулли с помощью замены y=uv (метод Бернулли). Схема решения — как и при .

Примеры. Решить уравнения:

1) y’x+y=-xy².

Это дифференциальное уравнение Бернулли. Приведем его к стандартному виду. Для этого поделим обе части на x: y’+y/x=-y². Здесь p(x)=1/x, q(x)=-1, n=2. Но для решения нам не нужен стандартный вид. Будем работать с той формой записи, которая дана в условии.

1) Замена y=uv, где u=u(x) и v=v(x) — некоторые новые функции от x. Тогда y’=(uv)’=u’v+v’u. Подставляем полученные выражения в условие: (u’v+v’u)x+uv=-xu²v².

2) Раскроем скобки: u’vx+v’ux+uv=-xu²v². Теперь сгруппируем слагаемые с v: v+v’ux=-xu²v² (I) (слагаемое со степенью v, стоящее в правой части уравнения, не трогаем). Теперь требуем, чтобы выражение в скобках равнялось нулю: u’x+u=0. А это — уравнение с разделяющимися переменными u и x. Решив его, мы найдем u. Подставляем u=du/dx и разделяем переменные: x·du/dx=-u. Обе части уравнения умножаем на dx и делим на xu≠0:

(при нахождении u С берем равным нулю).

3) В уравнение (I) подставляем =0 и найденную функцию u=1/x. Имеем уравнение: v’·(1/x)·x=-x·(1/x²)·v². После упрощения: v’=-(1/x)·v². Это уравнение с разделяющимися переменными v и x. Заменяем v’=dv/dx и разделяем переменные: dv/dx=-(1/x)·v². Умножаем обе части уравнения на dx и делим на v²≠0:

(взяли -С, чтобы, умножив обе части на -1, избавиться от минуса). Итак, умножаем на (-1):

(можно было бы взять не С, а ln│C│ и в этом случае было бы v=1/ln│Cx│).

2) 2y’+2y=xy².

Убедимся в том, что это — уравнение Бернулли. Поделив на 2 обе части, получаем y’+y=(x/2) y². Здесь p(x)=1, q(x)=x/2, n=2. Решаем уравнение методом Бернулли.

1) Замена y=uv, y’=u’v+v’u. Подставляем эти выражения в первоначальное условие: 2(u’v+v’u)+2uv=xu²v².

2) Раскрываем скобки: 2u’v+2v’u+2uv=xu²v². Теперь сгруппируем слагаемые, содержащие v: +2v’u=xu²v² (II). Требуем, чтобы выражение в скобках равнялось нулю: 2u’+2u=0, отсюда u’+u=0. Это — уравнение с разделяющимися переменными относительно u и x. Решим его и найдем u. Подставляем u’=du/dx, откуда du/dx=-u. Умножив обе части уравнения на dx и поделив на u≠0, получаем: du/u=-dx. Интегрируем:

3) Подставляем во (II) =0 и

Теперь подставляем v’=dv/dx и разделяем переменные:

Интегрируем:

Левая часть равенства — табличный интеграл, интеграл в правой части находим по формуле интегрирования по частям:

Подставляем найденные v и du по формуле интегрирования по частям имеем:

А так как

Сделаем С=-С:

4) Так как y=uv, подставляем найденные функции u и v:

3) Проинтегрировать уравнение x²(x-1)y’-y²-x(x-2)y=0.

Разделим на x²(x-1)≠0 обе части уравнения и слагаемое с y² перенесем в правую часть:

Это — уравнение Бернулли,

1) Замена y=uv, y’=u’v+v’u. Как обычно, эти выражения подставляем в первоначальное условие: x²(x-1)(u’v+v’u)-u²v²-x(x-2)uv=0.

2) Отсюда x²(x-1)u’v+x²(x-1)v’u-x(x-2)uv=u²v². Группируем слагаемые, содержащие v (v² — не трогаем):

v+x²(x-1)v’u=u²v² (III). Теперь требуем равенства нулю выражения в скобках: x²(x-1)u’-x(x-2)u=0, отсюда x²(x-1)u’=x(x-2)u. В уравнении разделяем переменные u и x, u’=du/dx: x²(x-1)du/dx=x(x-2)u. Обе части уравнения умножаем на dx и делим на x²(x-1)u≠0:

В левой части уравнения — табличный интеграл. Рациональную дробь в правой части надо разложить на простейшие дроби:

При x=1: 1-2=A·0+B·1, откуда B=-1.

При x=0: 0-2=A(0-1)+B·0, откуда A=2.

ln│u│=2ln│x│-ln│x-1│. По свойствам логарифмов: ln│u│=ln│x²/(x-1)│, откуда u=x²/(x-1).

3) В равенство (III) подставляем =0 и u=x²/(x-1). Получаем: 0+x²(x-1)v’u=u²v²,

v’=dv/dx, подставляем:

вместо С возьмем — С, чтобы, умножив обе части на (-1), избавиться от минусов:

Теперь приведем выражения в правой части к общему знаменателю и найдем v:

4) Так как y=uv, подставляя найденные функции u и v, получаем:

Примеры для самопроверки:

1) Убедимся, что это — уравнение Бернулли. Поделив на x обе части, имеем:

1) Замена y=uv, откуда y’=u’v+v’u. Эти y и y’ подставляем в первоначальное условие:

2) Группируем слагаемые с v:

Теперь требуем, чтобы выражение в скобках равнялось нулю и находим из этого условия u:

Интегрируем обе части уравнения:

3) В уравнение (*) подставляем =0 и u=1/x²:

Интегрируем обе части получившегося уравнения.

Уравнение Бернулли является одним из наиболее известных нелинейных дифференциальных уравнений первого порядка . Оно записывается в виде

где a (x ) и b (x ) − непрерывные функции. Если m = 0, то уравнение Бернулли становится линейным дифференциальным уравнением. В случае когдаm = 1, уравнение преобразуется в уравнение с разделяющимися переменными. В общем случае, когда m ≠ 0, 1, уравнение Бернулли сводится к линейному дифференциальному уравнению с помощью подстановки

Новое дифференциальное уравнение для функции z (x ) имеет вид

и может быть решено способами, описанными на странице Линейные дифференциальные уравнения первого порядка.

МЕТОД БЕРНУЛИ.

Рассматриваемое уравнение можно решить методом Бернулли. Для этого ищем решение исходного уравнения в виде произведения двух функций: где u, v - функции от x . Дифференцируем: Подставляем в исходное уравнение (1): (2) В качестве v возьмем любое, отличное от нуля, решение уравнения: (3) Уравнение (3) - это уравнение с разделяющимися переменными. После того, как мы нашли его частное решение v = v(x) , подставляем его в (2). Поскольку оно удовлетворяет уравнению (3), то выражение в круглых скобках обращается в нуль. Получаем: Это также уравнение с разделяющимися переменными. Находим его общее решение, а вместе с ним и решение исходного уравнения y = uv .

64. Уравнение в полных дифференциалах. Интегрирующий множитель. Методы решения

Дифференциальное уравнение первого порядка вида

называется уравнением в полных дифференциалах , если его левая часть представляет полный дифференциал некоторой функции , т.е.

Теорема. Для того, чтобы уравнение (1) являлось уравнением в полных дифференциалах, необходимо и достаточно, чтобы в некоторой односвязной области изменения переменныхивыполнялось условие

Общий интеграл уравнения (1) имеет вид или

Пример 1. Решить дифференциальное уравнение .

Решение. Проверим, что данное уравнение является уравнением в полных дифференциалах:

так что т.е. условие (2) выполнено. Таким образом, данное уравнение есть уравнение в полных дифференциалах и

поэтому , гдепока неопределенная функция.

Интегрируя, получаем . Частная производнаянайденной функциидолжна равняться, что даетоткудатак чтоТаким образом,.

Общий интеграл исходного дифференциального уравнения .

При интегрировании некоторых дифференциальных уравнений можно так сгруппировать члены, что получаются легко интегрируемые комбинации.

65. Обыкновенные дифференциальные линейные уравнения высших порядков: однородные и неодно-родные. Линейный дифференциальный оператор, его свойства (с доказательством).

Линейный дифференциальный оператор и его свойства. Множество функций, имеющих на интервале (a , b ) не менее n производных, образует линейное пространство. Рассмотрим оператор L n (y ), который отображает функцию y (x ), имеющую производных, в функцию, имеющуюk - n производных.

Характеристика уравнения Бернулли

Определение 1

Дифференциальное уравнение первого порядка, имеющее стандартный вид $y"+P\left(x\right)\cdot y=Q\left(x\right)\cdot y^{n}$, где $P\left(x\right)$ и $Q\left(x\right)$ - непрерывные функции, а $n$ - некоторое число, называется дифференциальным уравнением Якоба Бернулли.

При этом на число $n$ накладываются ограничения:

  • $n\ne 0$, так как при $n = 0$ дифференциальное уравнение представляет собой линейное неоднородное, и какой-то иной специальный метод решения в этом случае не нужен;
  • $n\ne 1$, так как если мы имеем в качестве $n$ единицу, дифференциальное уравнение представляет собой линейное однородное, метод решения которого также известен.

Кроме того, не рассматривается специально тривиальное решение дифференциального уравнения Бернулли $y=0$.

Не следует путать дифференциальное уравнение математика Якоба Бернулли с законом Бернулли, названным в честь дяди его племянника, известного как Даниил Бернулли.

Замечание 1

Даниил Бернулли - физик, наиболее известная найденная им закономерность состоит в описании взаимосвязи скорости потока жидкости и давления. Закон Бернулли также применим и для ламинарных течений газа. В целом он применяется в гидравлике и гидродинамике.

Решение уравнения Бернулли сведением к линейному неоднородному

Основной метод решения дифференциального уравнения Бернулли состоит в том, что посредством преобразований оно приводится к линейному неоднородному. Эти преобразования следующие:

  1. Умножаем уравнение на число $y^{-n} $ и получаем $y^{-n} \cdot y"+P\left(x\right)\cdot y^{1-n} =Q\left(x\right)$.
  2. Применяем замену $z=y^{1-n} $ и дифференцируем это равенство как сложную степенную функцию; получаем $z"=\left(1-n\right)\cdot y^{-n} \cdot y"$, откуда $\frac{z"}{1-n} =y^{-n} \cdot y"$.
  3. Подставляем значения $y^{1-n} $ и $y^{-n} \cdot y"$ в данное дифференциальное уравнение и получаем $\frac{z"}{1-n} +P\left(x\right)\cdot z=Q\left(x\right)$ или $z"+\left(1-n\right)\cdot P\left(x\right)\cdot z=\left(1-n\right)\cdot Q\left(x\right)$.

Полученное дифференциальное уравнение является линейным неоднородным относительно функции $z$, которое решаем следующим образом:

  1. Вычисляем интеграл $I_{1} =\int \left(1-n\right)\cdot P\left(x\right)\cdot dx $, записываем частное решение в виде $v\left(x\right)=e^{-I_{1} } $, выполняем упрощающие преобразования и выбираем для $v\left(x\right)$ простейший ненулевой вариант.
  2. Вычисляем интеграл $I_{2} =\int \frac{\left(1-n\right)\cdot Q\left(x\right)}{v\left(x\right)} \cdot dx $, посля чего записываем выражение в виде $u\left(x,C\right)=I_{2} +C$.
  3. Записываем общее решение линейного неоднородного дифференциального уравнения в виде $z=u\left(x,C\right)\cdot v\left(x\right)$.
  4. Возвращаемся к функции $y$, заменяя $z$ на $y^{1-n} $, и при необходимости выполняем упрощающие преобразования.

Пример:

Найти общее решение дифференциального уравнения $\frac{dy}{dx} +\frac{y}{x} =y^{2} \cdot \left(4-x^{2} \right)$. Записать частное решение, удовлетворяющее начальному условию $y=1$ при $x=1$.

В данном случае имеем дифференциальное уравнение Бернулли, представленное в стандартном виде.

При этом $n=2$, $P\left(x\right)=\frac{1}{x} $, $Q\left(x\right)=4-x^{2} $.

Представляем его в форме относительно замены $z$:

$z"+\left(1-2\right)\cdot \frac{1}{x} \cdot z=\left(1-2\right)\cdot \left(4-x^{2} \right)$ или $z"-\frac{1}{x} \cdot z=-\left(4-x^{2} \right)$.

Полученное дифференциальное уравнение является линейным неоднородным относительно функции $z$, которое решаем описанным выше методом.

Вычисляем интеграл $I_{1} =\int \left(1-n\right)\cdot P\left(x\right)\cdot dx $.

Имеем $I_{1} =\int \left(1-2\right)\cdot \frac{1}{x} \cdot dx =-\ln \left|x\right|$.

Записываем частное решение в виде $v\left(x\right)=e^{-I_{1} } $ и выполняем упрощающие преобразования: $v\left(x\right)=e^{\ln \left|x\right|} $; $\ln v\left(x\right)=\ln \left|x\right|$; $v\left(x\right)=\left|x\right|$.

Выбираем для $v\left(x\right)$ простейший ненулевой вариант: $v\left(x\right)=x$.

Вычисляем интеграл $I_{2} =\int \frac{\left(1-n\right)\cdot Q\left(x\right)}{v\left(x\right)} \cdot dx $.

Записываем выражение в виде $u\left(x,C\right)=I_{2} +C$, то есть $u\left(x,C\right)=\frac{x^{2} }{2} -4\cdot \ln \left|x\right|+C$.

Окончательно записываем общее решение линейного неоднородного дифференциального уравнения относительно функции $z$ в виде $z=u\left(x,C\right)\cdot v\left(x\right)$, то есть $z=\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+C\cdot x$.

Теперь возвращаемся к функции $y$, заменяя $z$ на $y^{1-n} $:

$y^{1-2} =\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+C\cdot x$ или $\frac{1}{y} =\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+C\cdot x$.

Это и есть общее решение данного дифференциального уравнения Бернулли, записанное в неявной форме.

Для поиска частного решения используем данное начальное условие $y=1$ при $x=1$:

Следовательно, частное решение имеет вид: $\frac{1}{y} =\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+\frac{x}{2} $.

Решение дифференциального уравнения Бернулли методом подстановки

Второе возможное решение уравнения Бернулли состоит в методе подстановки.

Пример:

Найти общее решение дифференциального уравнения $y"+\frac{y}{x} =y^{2} \cdot \left(4-x^{2} \right)$ методом подстановки.

Применяем подстановку $y=u\cdot v$.

После дифференцирования получаем:

Функцию $v\left(x\right)$ находим из уравнения $v"+\frac{v}{x} =0$, для этого переносим второе слагаемое в правую часть.

Получаем:

$\frac{dv}{dx} =-\frac{v}{x} $;

разделяем переменные $\frac{dv}{v} =-\frac{dx}{x} $;

интегрируем $\ln \left|v\right|=-\ln \left|x\right|$, откуда $v=\frac{1}{x} $.

Функцию $u\left(x\right)$ находим из уравнения $u"\cdot \frac{1}{x} =u^{2} \cdot \frac{1}{x^{2} } \cdot \left(4-x^{2} \right)$, в котором учтено $v=\frac{1}{x} $ и $v"+\frac{v}{x} =0$.

После простых преобразований получаем: $u"=u^{2} \cdot \frac{1}{x} \cdot \left(4-x^{2} \right)$.

Разделяем переменные: $\frac{du}{u^{2} } =\frac{1}{x} \cdot \left(4-x^{2} \right)\cdot dx$.

Интегрируем: $-\frac{1}{u} =4\cdot \ln \left|x\right|-\frac{x^{2} }{2} +C$ или $\frac{1}{u} =\frac{x^{2} }{2} -4\cdot \ln \left|x\right|+C$.

Возвращаемся к старой переменной. Учитываем, что $y=u\cdot v$ или $y=u\cdot \frac{1}{x} $, откуда $u=x\cdot y$.

Получаем общее решение данного дифференциального уравнения: $\frac{1}{y} =\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+C\cdot x$.