Дискретный вариационный ряд в статистике определение. Вариационные ряды

Совокупность значений изученного в данном эксперименте или наблюдении параметра, проранжированных по величине (возрастания или убывания) называется вариационным рядом.

Предположим, что мы измерили артериальное давление у десяти пациентов с целью получить верхний порог АД: систолическое давление, т.е. только одно число.

Представим, что серия наблюдений (статистическая совокупность) артериального систолического давления в 10-ти наблюдениях имеет следующий вид (табл. 1):

Таблица 1

Составляющие вариационного ряда называются вариантами. Варианты представляют собой числовое значение изучаемого признака.

Построение из статистической совокупности наблюдений вариационного ряда - только первый шаг к осмыслению особенностей всей совокупности. Далее необходимо определить средний уровень изучаемого количественного признака (средний уровень белка крови, средний вес пациентов, среднее время наступления наркоза и т.д.)

Средний уровень измеряют с помощью критериев, которые носят название средних величин. Средняя величина - обобщающая числовая характеристика качественно однородных величин, характеризующая одним числом всю статистическую совокупность по одному признаку. Средняя величина выражает то общее, что характерно для признака в данной совокупности наблюдений.

Общеупотребительными являются три вида средних величин: мода (), медиана () и среднеарифметическая величина ().

Для определения любой средней величины необходимо использовать результаты индивидуальных наблюдений, записав их в виде вариационного ряда (табл. 2).

Мода - значение, наиболее часто встречающееся в серии наблюдений. В нашем примере мода = 120. Если в вариационном ряду нет повторяющихся значений, то говорят, что мода отсутствует. Если несколько значений повторяются одинаковое количество раз, то в качестве моды берут наименьшее из них.

Медиана - значение, делящее распределение на две равные части, центральное или срединное значение серии наблюдений, упорядоченных по возрастанию или убыванию. Так, если в вариационном ряду 5 значений, то его медиана равна третьему члену вариационного ряда, если в ряду четное количество членов, то медиана представляет собой среднее арифметическое двух его центральных наблюдений, т.е. если в ряду 10 наблюдений, то медиана равна среднему арифметическому 5 и 6 наблюдения. В нашем примере.

Заметим важную особенность моды и медианы: на их величины не оказывают влияние числовые значения крайних вариант.

Средняя арифметическая величина рассчитывается по формуле:

где - наблюденная величина в -том наблюдении, а - число наблюдений. Для нашего случая.

Средняя арифметическая величина обладает тремя свойствами:

Средняя занимает серединное положение в вариационном ряду. В строго симметричном ряду.

Средняя является обобщающей величиной и за средней не видны случайные колебания, различия в индивидуальных данных. Она отражает то типичное, что характерно для всей совокупности.

Сумма отклонений всех вариант от средней равна нулю: . Отклонение вариант от средней обозначается.

Вариационный ряд состоит из вариант и соответствующих им частот. Из десяти полученных значений цифра 120 встретилась 6 раз, 115 - 3 раза, 125 - 1 раз. Частота () - абсолютная численность отдельных вариант в совокупности, указывающая, сколько раз встречается данная варианта в вариационном ряду.

Вариационный ряд может быть простым (частоты = 1) или сгруппированным укороченным, по 3-5 вариант. Простой ряд используется при малом числе наблюдений (), сгруппированный - при большом числе наблюдений ().

Вариационные ряды: определение, виды, основные характеристики. Методика расчета
моды, медианы, средней арифметической в медико-статистических исследованиях
(показать на условном примере).

Вариационный ряд – это ряд числовых значений изучаемого признака, отличающихся друг от друга по своей величине и расположенных в определенной последовательности(в восходящем или убывающем порядке). Каждое числовое значение ряда называют вариантой (V), а числа, показывающие, как часто встречается та или иная варианта в составе данного ряда, называется частотой (р).

Общее число случаев наблюдений, из которых вариационный ряд состоит, обозначают буквой n. Различие в значении изучаемых признаков называется вариацией. В случае если варьирующий признак не имеет количественной меры, вариацию называют качественной, а ряд распределения – атрибутивным (например, распределение по исходу заболевания, по состоянию здоровья и т.д.).

Если варьирующий признак имеет количественное выражение, такую вариацию называют количественной, а ряд распределения – вариационным.

Вариационные ряды делятся на прерывные и непрерывные – по характеру количественного признака, простые и взвешенные – по частоте встречаемости вариант.

В простом вариационном ряду каждая варианта встречается только один раз (р=1), во взвешенном – одна и та же варианта встречается несколько раз (р>1). Примеры таких рядов будут рассмотрены далее по тексту. Если количественный признак носит непрерывный характер, т.е. между целыми величинами имеются промежуточные дробные величины, вариационный ряд называется непрерывным.

Например: 10,0 – 11,9

14,0 – 15,9 и т.д.

Если количественный признак носит прерывный характер, т.е. отдельные его значения (варианты) отличаются друг от друга на целое число и не имеют промежуточных дробных значений, вариационный ряд называют прерывным или дискретным.

Используя данные предыдущего примера о частоте пульса

у 21 студентов, построим вариационный ряд (табл. 1).

Таблица 1

Распределение студентов-медиков по частоте пульса (уд/мин)

Таким образом, построить вариационный ряд – означает имеющиеся числовые значения (варианты) систематизировать, упорядочить, т.е. расположить в определенной последовательности (в восходящем или убывающем порядке) с соответствующими им частотами. В рассматриваемом примере варианты расположены в восходящем порядке и выражены в виде целых прерывных (дискретных) чисел, каждая варианта встречается несколько раз, т.е. мы имеем дело со взвешенным, прерывным или дискретным вариационным рядом.

Как правило, если число наблюдений в изучаемой нами статистической совокупности не превышает 30, то достаточно все значения изучаемого признака расположить в вариационном ряду в нарастающем, как в табл. 1, или убывающем порядке.

При большом количестве наблюдений (n>30) число встречающихся вариант может быть очень большим, в этом случае составляется интервальный или сгруппированный вариационный ряд, в котором для упрощения последующей обработки и выяснения характера распределения варианты объединены в группы.

Обычно число групповых вариант колеблется от 8 до 15.

Их должно быть не меньше 5, т.к. иначе это будет слишком грубое, чрезмерное укрупнение, что искажает общую картину варьирования и сильно сказывается на точности средних величин. При числе групповых вариант более 20-25 увеличивается точность вычисления средних величин, но существенно искажаются особенности варьирования признака и усложняется математическая обработка.

При составлении сгруппированного ряда необходимо учесть,

− группы вариант должны располагаться в определенном порядке (в восходящем или нисходящем);

− интервалы в группах вариант должны быть одинаковыми;

− значения границ интервалов не должны совпадать, т.к. неясно будет, в какие группы относить отдельные варианты;

− необходимо учитывать качественные особенности собираемого материала при установлении пределов интервалов (например, при изучении веса взрослых людей интервал 3-4 кг допустим, а для детей первых месяцев жизни он не должен превышать 100 г.)

Построим сгруппированный (интервальный) ряд, характеризующий данные о частоте пульса (число ударов в минуту) у 55 студентов-медиков перед экзаменом: 64, 66, 60, 62,

64, 68, 70, 66, 70, 68, 62, 68, 70, 72, 60, 70, 74, 62, 70, 72, 72,

64, 70, 72, 76, 76, 68, 70, 58, 76, 74, 76, 76, 82, 76, 72, 76, 74,

79, 78, 74, 78, 74, 78, 74, 74, 78, 76, 78, 76, 80, 80, 80, 78, 78.

Для построения сгруппированного ряда необходимо:

1. Определить величину интервала;

2. Определить середину, начало и конец групп вариант вариационного ряда.

● Величина интервала (i) определяется по числу предполагаемых групп (r), количество которых устанавливается в зависимости от числа наблюдений (n) по специальной таблице

Число групп в зависимости от числа наблюдений:

В нашем случае, для 55 студентов, можно составить от 8 до 10 групп.

Величина интервала (i) определяется по следующей формуле –

i = V max-V min/r

В нашем примере величина интервала равна 82- 58/8= 3.

Если величина интервала представляет собой дробное число, полученный результат следует округлить до целого числа.

Различают несколько видов средних величин:

● средняя арифметическая,

● средняя геометрическая,

● средняя гармоническая,

● средняя квадратическая,

● средняя прогрессивная,

● медиана

В медицинской статистике наиболее часто пользуются средними арифметическими величинами.

Средняя арифметическая величина (М) является обобщающей величиной, которая определяет то типичное, что характерно для всей совокупности. Основными способами расчета М являются: среднеарифметический способ и способ моментов (условных отклонений).

Среднеарифметический способ применяется для вычисления средней арифметической простой и средней арифметической взвешенной. Выбор способа расчета средней арифметической величины зависит от вида вариационного ряда. В случае простого вариационного ряда, в котором каждая варианта встречается только один раз, определяется средняя арифметическая простая по формуле:

где: М – средняя арифметическая величина;

V – значение варьирующего признака (варианты);

Σ – указывает действие – суммирование;

n – общее число наблюдений.

Пример расчета средней арифметической простой. Частота дыхания (число дыхательных движений в минуту) у 9 мужчин в возрасте 35 лет: 20, 22, 19, 15, 16, 21, 17, 23, 18.

Для определения среднего уровня частоты дыхания у мужчин в возрасте 35 лет необходимо:

1. Построить вариационный ряд, расположив все варианты в возрастающем или убывающем порядке Мы получили простой вариационный ряд, т.к. значения вариант встречаются только один раз.

M = ∑V/n = 171/9 = 19 дыхательных движений в минуту

Вывод. Частота дыхания у мужчин в возрасте 35 лет в среднем равна 19 дыхательным движениям в минуту.

Если отдельные значения вариант повторяются, незачем выписывать в линию каждую варианту, достаточно перечислить встречающиеся размеры вариант (V) и рядом указать число их повторений (р). такой вариационный ряд, в котором варианты как бы взвешиваются по числу соответствующих им частот, носит название – взвешенный вариационный ряд, а рассчитываемая средняя величина – средней арифметической взвешенной.

Средняя арифметическая взвешенная определяется по формуле: M= ∑Vp/n

где n – число наблюдений, равное сумме частот – Σр.

Пример расчета средней арифметической взвешенной.

Длительность нетрудоспособности (в днях) у 35 больных острыми респираторными заболеваниями (ОРЗ), лечившихся у участкового врача на протяжении I-го квартала текущего года составила: 6, 7, 5, 3, 9, 8, 7, 5, 6, 4, 9, 8, 7, 6, 6, 9, 6, 5, 10, 8, 7, 11, 13, 5, 6, 7, 12, 4, 3, 5, 2, 5, 6, 6, 7 дней.

Методика определения средней длительности нетрудоспособности у больных с ОРЗ следующая:

1. Построим взвешенный вариационный ряд, т.к. отдельные значения вариант повторяются несколько раз. Для этого можно расположить все варианты в возрастающем или убывающем порядке с соответствующими им частотами.

В нашем случае варианты расположены в возрастающем порядке

2. Рассчитаем среднюю арифметическую взвешенную по формуле: M = ∑Vp/n = 233/35 = 6,7 дней

Распределение больных с ОРЗ по длительности нетрудоспособности:

Длительность нетрудоспособности (V) Число больных (p) Vp
∑p = n = 35 ∑Vp = 233

Вывод. Длительность нетрудоспособности у больных с острыми респираторными заболеваниями составила в среднем 6,7 дней.

Мода (Мо) – наиболее часто встречающаяся варианта в вариационном ряду. Для распределения, представленного в таблице, моде соответствует варианта, равная 10, она встречается чаще других – 6 раз.

Распределение больных по длительности пребывания на больничной койке (в днях)

V
p

Иногда точную величину моды установить трудно, поскольку в изучаемых данных может существовать несколько наблюдений, встречающихся «наиболее часто».

Медиана (Ме) – непараметрический показатель, делящий вариационный ряд на две равные половины: в обе стороны от медианы располагается одинаковое число вариант.

Например, для распределения, указанного в таблице, медиана равна 10, т.к. по обе стороны от этой величины располагается по 14 вариант, т.е. число 10 занимает центральное положение в этом ряду и является его медианой.

Учитывая, что число наблюдений в этом примере четное (n=34), медиану можно определить таким образом:

Me = 2+3+4+5+6+5+4+3+2/2 = 34/2 = 17

Это означает, что середина ряда приходится на семнадцатую по счету варианту, которой соответствует медиана, равная 10. Для распределения, представленного в таблице, средняя арифметическая равна:

M = ∑Vp/n = 334/34 = 10,1

Итак, для 34 наблюдений из табл. 8, мы получили: Мо=10, Ме=10, средняя арифметическая (М) равна 10,1. В нашем примере все три показателя оказались равными или близкими друг к другу, хотя они совершенно различны.

Средняя арифметическая является результативной суммой всех влияний, в формировании ее принимают участие все без исключения варианты, в том числе и крайние, часто нетипичные для данного явления или совокупности.

Мода и медиана, в отличие от средней арифметической, не зависят от величины всех индивидуальных значений варьирующего признака (значений крайних вариант и степени рассеяния ряда). Средняя арифметическая характеризует всю массу наблюдений, мода и медиана – основную массу

Метод группировок позволяет также измерить вариацию (изменчивость, колеблемость) признаков. При относительно малом числе единиц совокупности вариация измеряется на основе ранжированного ряда единиц, образующих совокупность. Ряд называется ранжированным, если единицы расположены по возрастанию (убыванию) признака.

Однако ранжированные ряды довольно малопоказательны тогда, когда необходима сравнительная характеристика вариации. Кроме того, во многих случаях приходится иметь дело со статистическими совокупностями, состоящими из большого числа единиц, которые практически трудно представить в виде конкретного ряда. В связи с этим для первоначального общего ознакомления со статистическими данными и особенно для облегчения изучения вариации признаков исследуемые явления и процессы обычно объединяют в группы, а результаты группировки оформляют в виде групповых таблиц.

Если в групповой таблице имеется всего две графы - группы по выделенному признаку (варианты) и численности групп (частоты или частости), она называется рядом распределения.

Ряд распределения - простейшая разновидность структурной группировки по одному признаку, отображенная в групповой таблице с двумя графами, в которых содержатся варианты и частоты признака. Во многих случаях с такой структурной группировки, т.е. с составления рядов распределения, начинается изучение исходного статистического материала.

Структурная группировка в виде ряда распределения может быть превращена в подлинную структурную группировку, если выделенные группы будут охарактеризованы не только частотами, но и другими статистическими показателями. Главное предназначение рядов распределения - изучение вариации признаков. Теорию рядов распределения подробно разрабатывает математическая статистика.

Ряды распределения делят на атрибутивные (группировка по атрибутивным признакам, например деление населения по полу, национальности, семейному положению и т.д.) и вариационные (группировка по количественным признакам).

Вариационный ряд представляет собой групповую таблицу, которая содержит две графы: группировку единиц по одному количественному признаку и численность единиц в каждой группе. Интервалы в вариационном ряду образуются обычно равные и закрытые. Вариационным рядом является следующая группировка населения России по величине среднедушевых денежных доходов (табл. 3.10).

Таблица 3.10

Распределение численности населения России по величине среднедушевых доходов в 2004-2009 гг.

Группы населения по величине среднедушевых денежных доходов, руб./мес

Численность населения в группе, в % к итогу

8 000,1-10 000,0

10 000,1-15 000,0

15 000,1-25 000,0

Свыше 25 000,0

Все население

Вариационные ряды в свою очередь подразделяются на дискретные и интервальные. Дискретные вариационные ряды объединяют варианты дискретных признаков, изменяющихся в узких пределах. Примером дискретного вариационного ряда может служить распределение российских семей по числу имеющихся детей.

Интервальные вариационные ряды объединяют варианты либо непрерывных признаков, либо изменяющихся в широких пределах дискретных признаков. Интервальным является вариационный ряд распределения населения России по величине среднедушевых денежных доходов.

Дискретные вариационные ряды на практике применяются не слишком часто. Между тем составление их несложно, поскольку состав групп определяется конкретными вариантами, которыми реально обладают изучаемые группировочные признаки.

Более широко распространены интервальные вариационные ряды. При их составлении возникает сложный вопрос о количестве групп, а также о величине интервалов, которые должны быть установлены.

Принципы решения этого вопроса изложены в главе о методологии построения статистических группировок (см. параграф 3.3).

Вариационные ряды представляют собой средство свертывания или сжатия многообразной информации в компактную форму, по ним можно составить достаточно ясное суждение о характере вариации, изучить различия признаков явлений, входящих в исследуемую совокупность. Но важнейшее значение вариационных рядов состоит в том, что на их основе исчисляются особые обобщающие характеристики вариации (см. главу 7).

Особое место в статистическом анализе принадлежит определению среднего уровня изучаемого признака или явления. Средний уровень признака измеряют средними величинами.

Средняя величина характеризует общий количественный уровень изучаемого признака и является групповым свойством статистической совокупности. Она нивелирует, ослабляет случайные отклонения индивидуальных наблюдений в ту или иную сторону и выдвигает на первый план основное, типичное свойство изучаемого признака.

Средние величины широко используются:

1. Для оценки состояния здоровья населения: характеристики физического развития (рост, вес, окружность грудной клетки и пр.), выявления распространенности и длительности различных заболеваний, анализа демографических показателей (естественного движения населения, средней продолжительности предстоящей жизни, воспроизводства населения, средней численности населения и др.).

2. Для изучения деятельности лечебно-профилактических учреждений, медицинских кадров и оценки качества их работы, планирования и определения потребности населения в различных видах медицинской помощи (среднее число обращений или посещений на одного жителя в год, средняя длительность пребывания больного в стационаре, средняя продолжительность обследования больного, средняя обеспеченность врачами, койками и пр.).

3. Для характеристики санитарно-эпидемиологического состояния (средняя запыленность воздуха в цехе, средняя площадь на одного человека, средние нормы потребления белков, жиров и углеводов и т. д.).

4. Для определения медико-физиологических показателей в норме и патологии, при обработке лабораторных данных, для установления достоверности результатов выборочного исследования в социально-гигиенических, клинических, экспериментальных исследованиях.

Вычисление средних величин выполняется на основе вариационных рядов. Вариационный ряд – это однородная в качественном отношении статистическая совокупность, отдельные единицы которой характеризуют количественные различия изучаемого признака или явления.

Количественная вариация может быть двух типов: прерывная (дискретная) и непрерывная.

Прерывный (дискретный) признак выражается только целым числом и не может иметь никаких промежуточных значений (например, число посещений, численность населения участка, число детей в семье, степень тяжести болезни в баллах и др.).

Непрерывный признак может принимать любые значения в определенных пределах, в том числе и дробные, и выражается лишь приближенно (например, вес – для взрослых можно ограничиться килограммами, а для новорожденных – граммами; рост, артериальное давление, время, потраченное на прием больного, и т. д.).



Цифровое значение каждого отдельного признака или явления, входящего в вариационный ряд, называется вариантой и обозначается буквой V . В математической литературе встречаются и другие обозначения, например x или y.

Вариационный ряд, где каждая варианта указана один раз, называется простым. Такие ряды используются в большинстве статистических задач в случае компьютерной обработки данных.

При увеличении числа наблюдений, как правило, встречаются повторяющиеся значения вариант. В этом случае создается сгруппированный вариационный ряд , где указывается число повторений (частота, обозначается буквой «р »).

Ранжированный вариационный ряд состоит из вариант, расположенных в порядке возрастания или убывания. Как простой, так и сгруппированный ряды могут быть составлены с ранжированием.

Интервальный вариационный ряд составляют с целью упрощения последующих вычислений, выполняемых без использования компьютера, при очень большом числе единиц наблюдения (более 1000).

Непрерывный вариационный ряд включает значения вариант, которые могут выражаться любыми значениями.

Если в вариационном ряде значения признака (варианты) заданы в виде отдельных конкретных чисел, то такой ряд называют дискретным .

Общими характеристиками значений признака, отражаемого в вариационном ряду, являются средние величины. Среди них наиболее применяемые: средняя арифметическая величина М, мода Мо и медиана Me. Каждая из этих характеристик своеобразна. Они не могут подменить друг друга и лишь в совокупности достаточно полно и в сжатой форме представляют собой особенности вариационного ряда.

Модой (Мо) называют значение наиболее часто встречающейся варианты.

Медиана (Me) – это значение варианты, делящей ранжированный вариационный ряд пополам (с каждой стороны медианы находится половина вариант). В редких случаях, когда имеется симметричный вариационный ряд, мода и медиана равны между собой и совпадают со значением средней арифметической.

Наиболее типичной характеристикой значений вариант является средняя арифметическая величина(М ). В математической литературе она обозначается .

Средняя арифметическая величина (M, ) – это общая количественная характеристика определенного признака изучаемых явлений, составляющих качественно однородную статистическую совокупность. Различают среднюю арифметическую простую и взвешенную. Средняя арифметическая простая вычисляется для простого вариационного ряда путем суммирования всех вариант и делением этой суммы на общее количество вариант, входящих в данный вариационный ряд. Вычисления проводятся по формуле:

,

где: М - средняя арифметическая простая;

ΣV - сумма вариант;

n - число наблюдений.

В сгруппированном вариационном ряду определяют взвешенную среднюю арифметическую. Формула ее вычисления:

,

где: М - средняя арифметическая взвешенная;

ΣVp - сумма произведений вариант на их частоты;

n - число наблюдений.

При большом числе наблюдений в случае ручных вычислений может применяться способ моментов.

Средняя арифметическая имеет следующие свойства:

· сумма отклонений вариант от средней (Σd ) равна нулю (см. табл. 15);

· при умножении (делении) всех вариант на один и тот же множитель (делитель) средняя арифметическая умножается (делится) на тот же множитель (делитель);

· если прибавить (вычесть) ко всем вариантам одно и то же число, средняя арифметическая увеличивается (уменьшается) на это же число.

Средние арифметические величины, взятые сами по себе, без учета вариабельности рядов, из которых они вычислены, могут не в полной мере отражать свойства вариационного ряда, в особенности когда необходимо сопоставление с другими средними. Близкие по значению средние могут быть получены из рядов с различной степенью рассеяния. Чем ближе друг к другу отдельные варианты по своей количественной характеристике, тем меньше рассеяние (колеблемость, вариабельность) ряда, тем типичнее его средняя.

Основными параметрами, которые позволяют оценить вариабельность признака, являются:

· Размах;

· Амплитуда;

· Среднее квадратическое отклонение;

· Коэффициент вариации.

Приблизительно о колеблемости признака можно судить по размаху и амплитуде вариационного ряда. Размах указывает на максимальную (V max) и минимальную (V min) варианты в ряду. Амплитуда (A m) является разностью этих вариант: A m = V max - V min .

Основной, общепринятой мерой колеблемости вариационного ряда являются дисперсия (D ). Но наиболее часто применяется более удобный параметр, вычисляемый на основе дисперсии - среднее квадратическое отклонение (σ ). Оно учитывает величину отклонения (d ) каждой варианты вариационного ряда от его средней арифметической (d=V - M ).

Поскольку отклонения вариант от средней могут быть положительными и отрицательными, то при суммировании они дают значение «0» (Sd=0 ). Чтобы избежать этого, величины отклонения (d ) возводятся во вторую степень и усредняются. Таким образом, дисперсия вариационного ряда является средним квадратом отклонений вариант от средней арифметической и вычисляется по формуле:

.

Она является важнейшей характеристикой вариабельности и применяется для вычисления многих статистических критериев.

Поскольку дисперсия выражается квадратом отклонений, ее величина не может использоваться в сопоставлении со средней арифметической. Для этих целей применяется среднее квадратическое отклонение , которое обозначается знаком «Сигма» (σ ). Оно характеризует среднее отклонение всех вариант вариационного ряда от средней арифметической величины в тех же единицах, что и сама средняя величина, поэтому они могут использоваться совместно.

Среднее квадратическое отклонение определяют по формуле:

Указанная формула применяется при числе наблюдений (n ) больше 30. При меньшем числе n значение среднего квадратического отклонения будет иметь погрешность, связанную с математическим смещением (n - 1). В связи с этим, более точный результат может быть получен с помощью учета такого смещения в формуле расчета стандартного отклонения:

стандартное отклонение (s ) – это оценка среднеквадратического отклонения случайной величины Х относительно её математического ожидания на основе несмещённой оценки её дисперсии.

При значениях n > 30 среднее квадратическое отклонение (σ ) и стандартное отклонение (s ) будут одинаковыми (σ =s ). Поэтому в большинстве практических пособий эти критерии рассматриваются как разнозначные. В программе Excel вычисление стандартного отклонения может быть выполнено функцией =СТАНДОТКЛОН(диапазон). А с целью расчета среднего квадратического отклонения требуется создать соответствующую формулу.

Среднее квадратическое или стандартное отклонение позволяет определить, насколько значения признака могут отличаться от среднего значения. Предположим, существуют два города с одинаковой средней дневной температурой в летний период. Один их этих городов расположен на побережье, а другой на континенте. Известно, что в городах, расположенных на побережье, различия дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднее квадратическое отклонение дневных температур у прибрежного города будет меньше, чем у второго города. На практике это означает, что средняя температура воздуха каждого конкретного дня в городе, расположенного на континенте будет сильнее отличаться от среднего значения, чем в городе на побережье. Кроме того стандартное отклонение позволяет оценить возможные отклонения температуры от средней с требуемым уровнем вероятности.

Согласно теории вероятности, в явлениях, подчиняющихся нормальному закону распределения, между значениями средней арифметической, среднего квадратического отклонения и вариантами существует строгая зависимость (правило трех сигм ). Например, 68,3% значений варьирующего признака находятся в пределах М ± 1σ , 95,5% - в пределах М ± 2σ и 99,7% - в пределах М ± 3σ .

Величина среднего квадратического отклонения позволяет судить о характере однородности вариационного ряда и исследуемой группы. Если величина среднего квадратического отклонения небольшая, то это свидетельствует о достаточно высокой однородности изучаемого явления. Среднюю арифметическую в таком случае следует признать вполне характерной для данного вариационного ряда. Однако слишком малая величина сигмы заставляет думать об искусственном подборе наблюдений. При очень большой сигме средняя арифметическая в меньшей степени характеризует вариационный ряд, что говорит о значительной вариабельности изучаемого признака или явления или о неоднородности исследуемой группы. Однако сопоставление величины среднего квадратического отклонения возможно только для признаков одинаковой размерности. Действительно, если сравнивать разнообразие веса новорожденных детей и взрослых, мы всегда получим более высокие значения сигмы у взрослых.

Сравнение вариабельности признаков различной размерности может быть выполнено с помощью коэффициента вариации . Он выражает разнообразие в процентах от средней величины, что позволяет производить сравнение различных признаков. Коэффициент вариации в медицинской литературе обозначается знаком «С », а в математической «v » и вычисляемого по формуле:

.

Значения коэффициента вариации менее 10% свидетельствует о малом рассеянии, от 10 до 20% – о среднем, более 20% – о сильном рассеянии вариант вокруг средней арифметической.

Средняя арифметическая величина, как правило, вычисляется на основе данных выборочной совокупности. При повторных исследованиях под влиянием случайных явлений средняя арифметическая может изменяться. Это обусловлено тем, что исследуется, как правило, только часть возможных единиц наблюдения, то есть выборочная совокупность. Информация обо всех возможных единицах, представляющих изучаемое явление, может быть получена при изучении всей генеральной совокупности, что не всегда возможно. В то же время с целью обобщения данных эксперимента представляет интерес величина средней в генеральной совокупности. Поэтому для формулировки общего вывода об изучаемом явлении, результаты, полученные на основе выборочной совокупности, должны быть, перенесены на генеральную совокупность статистическими методами.

Чтобы определить степень совпадения выборочного исследования и генеральной совокупности, необходимо оценить величину ошибки, которая неизбежно возникает при выборочном наблюдении. Такая ошибка называется «Ошибкой репрезентативности » или «Средней ошибкой средней арифметической». Она фактически является разностью между средними, полученными при выборочном статистическом наблюдении, и аналогичными величинами, которые были бы получены при сплошном исследовании того же объекта, т.е. при изучении генеральной совокупности. Поскольку выборочная средняя является случайной величиной, такой прогноз выполняется с приемлемым для исследователя уровнем вероятности. В медицинских исследованиях он составляет не менее 95%.

Ошибку репрезентативности нельзя смешивать с ошибками регистрации или ошибками внимания (описки, просчеты, опечатки и др.), которые должны быть сведены до минимума адекватной методикой и инструментами, применяемыми при проведении эксперимента.

Величина ошибки репрезентативности зависит как от объема выборки, так и от вариабельности признака. Чем больше число наблюдений, тем ближе выборка к генеральной совокупности и тем меньше ошибка. Чем более изменчив признак, тем больше величина статистической ошибки.

На практике для определения ошибки репрезентативности в вариационных рядах пользуются следующей формулой:

,

где: m – ошибка репрезентативности;

σ – среднее квадратическое отклонение;

n – число наблюдений в выборке.

Из формулы видно, что размер средней ошибки прямо пропорционален среднему квадратическому отклонению, т. е. вариабельности изучаемого признака, и обратно пропорционален корню квадратному из числа наблюдений.

При выполнении статистического анализа на основе вычисления относительных величин построение вариационного ряда не является обязательным. При этом определение средней ошибки для относительных показателей может выполняться по упрощенной формуле:

,

где: Р – величина относительного показателя, выраженного в процентах, промилле и т.д.;

q – величина, обратная Р и выраженная как (1-Р), (100-Р), (1000-Р) и т. д., в зависимости от основания, на которое рассчитан показатель;

n – число наблюдений в выборочной совокупности.

Однако, указанная формула вычисления ошибки репрезентативности для относительных величин может применяться только в том случае, когда значение показателя меньше его основания. В ряде случаев расчета интенсивных показателей такое условие не соблюдается, и показатель может выражаться числом более 100% или 1000%о. В такой ситуации выполняется построение вариационного ряда и вычисление ошибки репрезентативности по формуле для средних величин на основе среднего квадратического отклонения.

Прогнозирование величины средней арифметической в генеральной совокупности выполняется с указанием двух значений – минимального и максимального. Эти крайние значения возможных отклонений, в пределах которых может колебаться искомая средняя величина генеральной совокупности, называются «Доверительные границы ».

Постулатами теории вероятностей доказано, что при нормальном распределении признака с вероятностью 99,7%, крайние значения отклонений средней будут не больше величины утроенной ошибки репрезентативности (М ± 3m ); в 95,5% – не больше величины удвоенной средней ошибки средней величины (М ± 2m ); в 68,3% – не больше величины одной средней ошибки (М ± 1m ) (рис. 9).

P%

Рис. 9. Плотность вероятностей нормального распределения.

Отметим, что приведенное выше утверждение справедливо только для признака, который подчиняется нормальному закону распределения Гаусса.

Большинство экспериментальных исследований, в том числе и в области медицины, связано с измерениями, результаты которых могут принимать практически любые значения в заданном интервале, поэтому, как правило, описываются моделью непрерывных случайных величин. В связи с этим в большинстве статистических методов рассматриваются непрерывные распределения. Одним из таких распределений, имеющим основополагающую роль в математической статистике, является нормальное, или гауссово, распределение .

Это объясняется целым рядом причин.

1. Прежде всего, многие экспериментальные наблюдения можно успешно описать с помощью нормального распределения. Следует сразу же отметить, что не существует распределений эмпирических данных, которые были бы в точности нормальными, поскольку нормально распределенная случайная величина находится в пределах от до , чего никогда не встречается на практике. Однако нормальное распределение очень часто хорошо подходит как приближение.

Проводятся ли измерения веса, роста и других физиологических параметров организма человека - везде на результаты оказывает влияние очень большое число случайных факторов (естественные причины и ошибки измерения). Причем, как правило, действие каждого из этих факторов незначительно. Опыт показывает, что результаты именно в таких случаях будут распределены приближенно нормально.

2. Многие распределения, связанные со случайной выборкой, при увеличении объема последней переходят в нормальное.

3. Нормальное распределение хорошо подходит в качестве приближенного описания других непрерывных распределений (например, асимметричных).

4. Нормальное распределение обладает рядом благоприятных математических свойств, во многом обеспечивших его широкое применение в статистике.

В то же время следует отметить, что в медицинских данных встречается много экспериментальных распределений, описание которых моделью нормального распределения невозможно. Для этого в статистке разработаны методы, которые принято называть «Непараметрическими».

Выбор статистического метода, который подходит для обработки данных конкретного эксперимента, должен производиться в зависимости от принадлежности полученных данных к нормальному закону распределения. Проверка гипотезы на подчинение признака нормальному закону распределения выполняется с помощью гистограммы распределения частот (графика), а также ряда статистических критериев. Среди них:

Критерий асимметрии (b );

Критерий проверки на эксцесс (g );

Критерий Шапиро – Уилкса (W ) .

Анализ характера распределения данных (его еще называют проверкой на нормальность распределения) осуществляется по каждому параметру. Чтобы уверенно судить о соответствии распределения параметра нормальному закону, необходимо достаточно большое число единиц наблюдения (не менее 30 значений).

Для нормального распределения критерии асимметрии и эксцесса принимают значение 0. Если распределение смещено вправо b > 0 (положительная асимметрия), при b < 0 - график распределения смещен влево (отрицательная асимметрия). Критерий асимметрии проверяет форму кривой распределения. В случае нормального закона g =0. При g > 0 кривая распределения острее, если g < 0 пик более сглаженный, чем функция нормального распределения.

Для проверки на нормальность по критерию Шапиро – Уилкса требуется найти значение этого критерия по статистическим таблицам при необходимом уровне значимости и в зависимости от числа единиц наблюдения (степеней свободы). Приложение 1. Гипотеза о нормальности отвергается при малых значениях этого критерия, как правило, при w <0,8.

(определение вариационного ряда; составляющие вариационного ряда; три формы вариационного ряда; целесообразность построения интервального ряда; выводы, которые можно сделать по построенному ряду)

Вариационным рядом называется последовательность всех элементов выборки, расположенных в неубывающем порядке. Одинаковые элементы повторяются

Вариационные – это ряды, построенные по количественному признаку.

Вариационные ряды распределения состоят из двух элементов: вариантов и частот:

Варианты – это числовые значения количественного признака в вариационном ряду распределения. Они могут быть положительными и отрицательными, абсолютными и относительными. Так, при группировке предприятий по результатам хозяйственной деятельности варианты положительные – это прибыль, а отрицательные числа – это убыток.

Частоты – это численности отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности и определяется числом элементов всей совокупности.

Частости – это частоты, выраженные в виде относительных величин (долях единиц или процентах). Сумма частостей равна единице или 100%. Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений.

Выделяют три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.

Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.

Другие формы вариационного ряда - групповые таблицы, составленные по характеру вариации значений изучаемого признака. По характеру вариации различают дискретные (прерывные) и непрерывные признаки.

Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести тарифный разряд, количество детей в семье, число работников на предприятии и т.д. Эти признаки могут принимать только конечное число определенных значений.

Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака.

Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака нужно строить интервальный вариационный ряд.



Групповая таблица здесь также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота).

Частота (частота повторения) - число повторений отдельного варианта значений признака, обозначается fi , а сумма частот, равная объему исследуемой совокупности, обозначается

Где k - число вариантов значений признака

Очень часто таблица дополняется графой, в которой подсчитываются накопленные частоты S, которые показывают, какое количество единиц совокупности имеет значение признака не большее, чем данное значение.

Дискретный вариационный ряд распределения – это ряд, в котором группы составлены по признаку, изменяющемуся дискретно и принимающему только целые значения.

Интервальный вариационный ряд распределения – это ряд, в котором группировочный признак, составляющий основание группировки, может принимать в определенном интервале любые значения, в том числе и дробные.

Интервальным вариационным рядом называется упорядоченная совокупность интервалов варьирования значений случайной величины с соответствующими частотами или частостями попаданий в каждый из них значений величины.

Интервальный ряд распределения целесообразно строить, прежде всего, при непрерывной вариации признака, а также, если дискретная вариация проявляется в широких пределах, т.е. число вариантов дискретного признака достаточно велико.

По этому ряду уже можно сделать несколько выводов. Например, средний элемент вариационного ряда (медиана) может быть оценкой наиболее вероятного результата измерения. Первый и последний элемент вариационного ряда (т.е. минимальный и максимальный элемент выборки) показывают разброс элементов выборки. Иногда если первый или последний элемент сильно отличаются от остальных элементов выборки, то их исключают из результатов измерений, считая, что эти значения получены в результате какого-то грубого сбоя, например, техники.