Конспект урока понятие уравнения следствия атанасян. Презентация "Равносильность уравнений

Разработка урока алгебры в 11 профильном классе

Урок проводила учитель математики МБОУ СОШ № 6 Тупицына О.В.

Тема и номер урока в теме: «Применение нескольких преобразований, приводящих к уравнению-следствию», урок № 7, 8 в теме: «Уравнение – следствие»

Учебный предмет: Алгебра и начала математического анализа– 11 класс (профильное обучение по учебнику С.М.Никольского)

Вид урока: «систематизация и обобщения знаний и умений»

Тип урока: практикум

Роль учителя: направить познавательную активность учащихся на выработку умений самостоятельно применять знания в комплексе для выбора нужного способа или способов преобразования, приводящие к уравнению – следствию и применение способа в решении уравнения, в новых условиях.

Необходимое техническое оборудование: мультимедиа оборудование, веб-камера.

На уроке использовались :

  1. дидактическая модель обучения – создание проблемной ситуации,
  2. педагогические средства – листы с указанием учебных модулей, подборка заданий для решения уравнений,
  3. вид деятельности учащихся – групповая (группы формируются на уроках – «открытия» новых знаний, уроки № 1и 2 из учащихся с разной степенью обученности и обучаемости), совместное или индивидуальное решение задач,
  4. личностно – ориентированные образовательные технологии : модульное обучение, проблемное обучение, поисковый и исследовательский методы, коллективный диалог, деятельностный метод, работа с учебником и различными источниками,
  5. здоровьесберегающие технологии - для снятия напряжения проводится физкультминутка,
  6. компетенции:

- учебно – познавательная на базовом уровне - учащиеся знают понятие уравнения – следствия, корня уравнения и способы преобразования, приводящие к уравнению - следствию, умеют находить корни уравнений и выполнять их проверку на продуктивном уровне;

- на продвинутом уровне – учащиеся могут решать уравнения с помощью известных способов преобразований проверять корни уравнений, используя область допустимых значений уравнений; вычислять логарифмы с помощью свойств на основе исследования; информационная – учащиеся самостоятельно ищут, извлекают и отбирают необходимую для решения учебных задач информацию в источниках различного типа.

Дидактическая цель:

создание условий для :

Формирование представления об уравнениях – следствиях, корнях и способах преобразований;

Формирования опыта смыслотворчества на основе логического следствия из ранее изученных способов преобразования уравнений: возведения уравнения в чётную степень, потенцирование логарифмических уравнений, освобождение уравнения от знаменателей, приведение подобных членов;

Закрепление умений по определению выбора способа преобразования, дальнейшему решению уравнения и выбору корней уравнения;

Овладение навыками постановки задачи на основе известной и усвоенной информации, формирование запросов на выяснение того, что еще не известно;

Формирование познавательных интересов, интеллектуальных и творческих способностей учащихся;

Развитие логического мышления, творческой активности учащихся, проектных умений, умений излагать свои мысли;

Формирование чувства толерантности, взаимовыручки при работе в группе;

Пробуждения интереса к самостоятельному решению уравнений;

Задачи:

Организовать повторение и систематизацию знаний о способах преобразования уравнений;

- обеспечить овладение методами решения уравнений и проверки их корней;

- способствовать развитию аналитического и критического мышления учащихся; сравнивать и выбирать оптимальные методы решения уравнений;

- создать условия для развития исследовательских навыков, умений работы в группе;

Мотивировать учащихся на применение изученного материала для подготовки к ЕГЭ;

Проанализировать и оценить свою работу и работу своих товарищей по выполнению данной работы.

Планируемые результаты:

*личностные:

Навыки постановки задачи на основе известной и усвоенной информации, формирования запросов на выяснение того, что еще не известно;

Умение выбирать источники информации, необходимые для решения задачи; развитие познавательных интересов, интеллектуальных и творческих способностей учащихся;

Развитие логического мышления, творческой активности, умений излагать свои мысли, умение выстраивать аргументацию;

Самооценка результатов деятельности;

Умение работать в команде;

*метапредметные:

Умение выделять главное, сравнивать, обобщать, проводить аналогию, применять индуктивные способы рассуждений, выдвигать гипотезы при решении уравнений,

Способность к интерпретации и применению полученных знаний при подготовке к ЕГЭ;

*предметные:

Знания о способах преобразования уравнений,

Умение устанавливать закономерность, связанную с различными видами уравнений и использовать её при решении и отборе корней,

Интегрирующие цели урока:

  1. (для учителя) Формирование у учащихся целостного представления о способах преобразования уравнений и методах их решений;
  2. (для учащихся) Развитие умения наблюдать, сравнивать, обобщать, анализировать математические ситуации, связанные с видами уравнений, содержащими различные функции. Подготовка к ЕГЭ.

І этап урока:

Актуализация знаний для повышения мотивации в области применения различных способов преобразований уравнений (входная диагностика)

Этап актуализации знаний проводится в виде проверочной работы с самопроверкой. Предлагаются задания развивающего характера, опирающиеся на знания приобретённые на прошлых уроках, требующие от учащихся активной мыслительной деятельности и необходимые для выполнения задания на данном уроке.

Проверочная работа

  1. Выберите уравнения, требующие ограничения неизвестных на множестве всех действительных чисел:

а) = Х-2; б)3 = Х-2; в) =1;

г) ( = (; д) = ; е) +6 =5 ;

ж) = ; з) = .

(2) Укажите область допустимых значений каждого уравнения, где имеются ограничения.

(3) Выберите пример такого уравнения, где при преобразовании может произойти потеря корня (используйте материалы прошлых уроков по данной теме).

Ответы каждый сверяет самостоятельно по готовым, высвеченным на экране. Разбираются наиболее сложные задания и обращается особое внимание учащихся на примеры а, в, ж, з, где ограничения существуют.

Делаются выводы о том, что при решении уравнений, необходимо проводить определение области допустимых уравнением значений или делать проверку корней, чтобы избежать посторонних значений. Повторяются ранее изученные способы преобразования уравнений, приводящих к уравнению – следствию. То есть ученики тем самым смотивированны для поиска верно выбранного способа решения уравнения, предложенного им в дальнейшей работе.

ІІ этап урока:

Практическое применение своих знаний, умений и навыков при решении уравнений.

Группам раздаются листы с модулем, составленным по вопросам данной темы. В модуль входят пять учебных элементов, каждый из которых нацелен на выполнение определённых задач. Учащиеся, имеющие разные степени обученности и обучаемости самостоятельно определяют объём своей деятельности на уроке, но так как все работают в группах, происходит непрерывный процесс корректировки знаний и умений, подтягивание отстающих до обязательного, других до продвинутого и творческого уровней.

В середине урока проводится обязательная физминутка.

№ учебного элемента

Учебный элемент с указанием заданий

Руководство по освоению учебным материалом

УЭ-1

Цель: Определить и обосновать основные методы решения уравнений, основываясь на свойствах функций.

  1. Задание:

Укажите способ преобразования для решения следующих уравнений:

А) )= -8);

б) =

в) ( = (

г) ctg +х 2 -2х = ctg +24;

д) = ;

е) = sin x.

2) Задание:

Решите не менее двух уравнений из предложенных.

Опишите, какие способы применялись в решённых уравнениях.

П. 7.3 стр.212

П.7.4 стр.214

П. 7.5 стр.217

П.7.2 стр. 210

УЭ-2

Цель: Овладеть рациональными приёмами и методами решения

Задание:

Приведите примеры из указанных выше или самостоятельно подобранных (используйте материалы прошлых уроков) уравнений, при решении которых можно использовать рациональные приёмы решения, в чём они заключаются? (акцент на способ проверки корней уравнения)

УЭ-3

Цель: Использование полученных знаний при решении уравнений высокого уровня сложности

Задание:

= ( или

( = (

П.7.5

УЭ-4

Установите уровень освоения темы:

низкий – решение не более 2-х уравнений;

Средний – решение не более 4-х уравнений;

высокий – решение не более 5-ти уравнений

УЭ-5

Выходной контроль:

Составить таблицу, в которую представить все используемые вами способы преобразования уравнений и на каждый способ записать примеры, решённых вами уравнений, начиная с 1 урока темы: «Уравнения – следствия»

Конспекты в тетрадях

ІІІ этап урока:

Выходная диагностическая работа, представляющая рефлексию учащихся, которая покажет готовность не только к написанию контрольной работы, но и готовность к ЕГЭ по данному разделу.

По итогу урока все без исключения учащиеся оценивают себя сами, затем идёт учительская оценка. Если возникают несогласия между учителем и учеником, то учитель может предложить выполнение дополнительного задания ученику, чтобы объективно суметь оценить его. Домашнее задание нацелено на повторение материала перед контрольной работой.


Школьная лекция

«Равносильные уравнения. Уравнение-следствие »

Методические комментарии. Понятия равносильных уравнений, уравнений-следствий, теоремы о равносильности уравнений – это важные вопросы, связанные с теорией решения уравнений.

К 10-му классу учащиеся накопили некоторый опыт в решении уравнений. В 7-8-х классах решаются линейные и квадратные уравнения, здесь никаких неравносильных преобразований нет. Далее в 8-м и 9-ом классах решаются рациональные и простейшие иррациональные уравнения, выясняется, что в связи с освобождением от знаменателя и возведения обеих частей уравнения в квадрат могут появиться посторонние корни. Таким образом, возникает потребность для введения новых понятий: равносильность уравнений, равносильные и неравносильные преобразования уравнения, посторонние корни и проверка корней. На основе накопленного учащимися опыта решения перечисленных выше классов уравнений, возможно определить новое отношение равносильности уравнений и «открыть» вместе с учениками теоремы о равносильности уравнений.

Урок, конспект которого представлен ниже, предваряет рассмотрение тем, связанных с решением иррациональных, показательных, логарифмических и тригонометрических уравнений. Теоретический материал этого урока служит опорой при решении всех классов уравнений. На данном уроке необходимо определить понятие равносильных уравнений, уравнений-следствий, рассмотреть теоремы о преобразованиях, приводящих к таким видам уравнений. Рассматриваемый материал, как отмечалось выше, является своеобразной систематизацией знаний учащихся о преобразованиях уравнений, он отличается определенной сложностью, поэтому наиболее приемлемым типом урока является школьная лекция. Особенность этого урока в том, что поставленная на нем учебная задача (цели) решается на протяжении многих последующих уроков (выявление преобразований над уравнениями ведущих к приобретению посторонних корней и потере корней).

Каждый этап урока занимает важное место в его структуре.

На этапе актуализации учащиеся вспоминают основные теоретические положения, связанные с уравнением: что такое уравнение, корень уравнения, что значит решить уравнение, область допустимых значений (ОДЗ) уравнения. Находят ОДЗ конкретных уравнений, которые послужат на уроке опорой для «открытия» теорем.

Цель этапа мотивации – создать проблемную ситуацию, которая состоит в отыскании правильного решения предложенного уравнения.

Решение учебной задачи (операционно-познавательный этап) на представленном уроке заключается в «открытии» теорем о равносильности уравнений и их доказательстве. Основное внимание при изложении материала уделено определению равносильных уравнений, уравнений-следствий, «отысканию» теорем о равносильности уравнений.

Записи, которые делает учитель в течение урока, представлены непосредственно в конспекте. Оформление записей учащимися в тетрадях приведено в конце конспекта урока.

Конспект урока

Тема. Равносильные уравнения. Уравнение-следствие.

(Алгебра и начала анализа: Учебник для 10-11 классов общеобразовательных учреждений /Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др. – М.: Просвещение, 2003).

Цели урока. В совместной деятельности с учащимися выявить на множестве уравнений отношение равносильности, «открыть» теоремы о равносильности уравнений.

В результате ученик

знает

Определение равносильных уравнений,

Определения уравнения-следствия,

Формулировки основных теорем;

умеет

Из предложенных уравнений выбирать равносильные уравнения и уравнения-следствия,

Применять определения равносильных уравнений и уравнений-следствий в стандартных ситуациях;

понимает

Какие преобразования приводят к равносильным уравнениям или к уравнениям-следствиям,

Что существуют преобразования, в результате которых уравнение может приобрести посторонние корни,

Что в результате некоторых преобразований может произойти потеря корней.

Тип урока. Школьная лекция (2 часа).

Структура урока.

I. Мотивационно-ориентировочная часть:

Актуализация знаний,

Мотивация, постановка учебной задачи.

II. Операционно-познавательная часть:

Решение учебно-исследовательской задачи (цели урока).

III. Рефлексивно-оценочная часть:

Подведение итогов урока,

Выдача домашнего задания.

Ход урока

I . Мотивационно-ориентировочная часть.

Сегодня на уроке поговорим об уравнении, но тему пока записывать не будем. Вспомним основные понятия, связанные с уравнением. Прежде всего, что такое уравнение?

(Уравнение – это аналитическая запись задачи нахождения значений аргументов, при которых значения одной функции равны значениям другой функции).

Какие еще понятия связаны с уравнением?

(Корень уравнения и что значит решить уравнение. Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство. Решить уравнение – найти все его корни или установить, что их нет).

Что называется ОДЗ уравнения?

(Множество всех чисел, при которых имеют одновременно смысл функции, стоящие в левой и правой частях уравнения).

Найдите ОДЗ следующих уравнений.

5)

6)
.

На доске записано решение уравнения

Что представляет собой процесс решения уравнения?

(Выполнение преобразований, приводящих данное уравнение к уравнению более простого вида, т.е. такого уравнения, нахождение корней которого не представляется трудным).

Верно, т.е. происходит последовательность упрощений от уравнения к уравнению
и т.д. к
. Проследим, что происходит с корнями уравнения на каждом этапе преобразований. В представленном решении получены два корня уравнения
. Проверьте, являются ли числа они и числа
и
корнями исходного уравнения .

(Числа , и являются корнями исходного уравнения, а
- нет).

Значит, в процессе решения эти корни были потеряны. В целом же выполненные преобразования привели к потере двух корней
и приобретению постороннего корня .

Как можно избавиться от посторонних корней?

(Сделать проверку).

Допустима ли потеря корней? Почему?

(Нет, т.к. решить уравнение – это найти все его корни).

Как же избежать потери корней?

(Наверное, при решении уравнения не выполнять преобразования, которые ведут к потере корней).

Итак, чтобы процесс решения уравнения приводил к верным результатам, что важно знать при выполнении преобразований над уравнениями?

(Наверное, знать, какие преобразования над уравнениями сохраняют корни, какие приводят к потере корней или приобретению посторонних корней. Знать, какими преобразованиями их можно заменить, чтобы потери или приобретения корней не было).

Вот этим мы и займемся на этом уроке. Как бы вы сформулировали цель предстоящей деятельности на сегодняшнем уроке?

(Выявить преобразования над уравнениями, которые сохраняют корни, приводят к потере корней или приобретению посторонних корней. Знать, какими преобразованиями их можно заменить, чтобы потери или приобретения корней не было).

II . Операционно-познавательная часть.

Обратимся снова к уравнению, записанному на доске. Проследим, на каком этапе и в результате каких преобразований, были потеряны два корня и появился посторонний. (Учитель справа от каждого уравнения - проставляет числа).

Назовите уравнения, имеющие один и тоже набор (множество) корней.

(Уравнения , ,,
и ,).

Такие уравнения называются равносильными. Попытайтесь сформулировать определение равносильных уравнений.

(Уравнения, имеющие одно и тоже множество корней, называются равносильными).

Запишем определение.

Определение 1. Уравнения
и
называются равносильными, если множества их корней совпадают.

Необходимо отметить, что уравнения не имеющие коней, также являются равносильными.

Для обозначения равносильных уравнений можно использовать символ «
». Процесс решения уравнения , используя новое понятие, можно отразить так:

Таким образом, переход от данного уравнения к равносильному не влияет на множество корней получающегося уравнения.

А какие основные преобразования выполняли при решении линейных уравнений?

(Раскрытие скобок; перенос слагаемых из одной части уравнения в другую, изменяя знак на противоположный; прибавление к обеим частям уравнения выражения, содержащее неизвестную).

Менялись ли при этом их корни?

На основе одного из этих преобразований, а именно: перенос слагаемых из одной части уравнения в другую, меняя при этом знак на противоположный, в 7-м классе сформулировали свойство уравнений. Сформулируйте его, применив новое понятие.

(Если какой-нибудь член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному).

Какое еще свойство уравнения вы знаете?

(Обе части уравнения можно умножать на одно и тоже число, отличное от нуля).

Применение этого свойства также заменяет исходное уравнение на равносильное ему. Обратимся опять к уравнению, записанному на доске. Сравните множество корней уравнений и ?

(Корень уравнения является корнем уравнения ).

То есть при переходе одного уравнения к другому множество корней хотя и расширилось, но потери корней не произошло. В этом случае уравнение называют следствием уравнения . Попытайтесь сформулировать определение уравнения, которое является следствием данного уравнения.

(Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называют следствием первого уравнения).

Определение 2 . Уравнение называют следствием уравнения , если каждый корень уравнения является корнем уравнения .

- В результате какого преобразования получили уравнение из уравнения ?

(Возведение в квадрат обеих частей уравнения).

Значит, это преобразование может приводить к появлению посторонних корней, т.е. исходное уравнение преобразуется в уравнение-следствие. Есть ли еще уравнения-следствия в представленной цепочке преобразований уравнения ?

(Да, например, уравнение - следствие уравнения , а уравнение - следствие уравнения ).

А какие это уравнения?

(Равносильные).

Попытайтесь, используя понятие уравнения-следствия, сформулировать эквивалентное определение равносильных уравнений.

(Уравнения называются равносильными, если каждое из них является следствием другого).

Есть ли еще уравнения-следствия в предложенном решении уравнения ?

(Да, уравнение - следствие уравнения ).

Что происходит с корнями при переходе от к ?

(Потеряны два корня).

В результате какого преобразования это произошло?

(Ошибка в применении тождества
).

Применяя новое понятие уравнения-следствия, и используя символ «
», процесс решения уравнения будет выглядеть так:

.

Итак, полученная схема демонстрирует нам, что если осуществляются равносильные переходы , , то множества корней получающихся уравнений не изменяются. Но только равносильные преобразования применять не всегда удается. Если же переходы неравносильные, то возможны два случая: и . В первом случае уравнение - следствие уравнения , множество корней получающегося уравнения включает в себя множество корней данного уравнения, здесь приобретаются посторонние корни, их можно отсечь выполняя проверку. Во втором случае получилось уравнение, для которого данное уравнение является следствием: , а значит, произойдет потеря корней, таких переходов не следует выполнять. Поэтому важно следить за тем, чтобы при преобразовании уравнения каждое следующее уравнение было следствием предыдущего. Что же надо знать, чтобы преобразования были только такими? Попробуем установить это. Запишем задание 1 (в нем предлагаются уравнения; их ОДЗ, найденная на этапе актуализации; записано множество корней каждого уравнения).

Задание 1. Являются ли уравнения каждой группы (а, б) равносильными? Назовите преобразование, в результате которого первое уравнение группы заменено вторым.

а)
б)

Обратимся к уравнениям группы а), являются ли эти уравнения равносильными?

(Да, и равносильны).

(Использовали тождество ).

То есть выражение в одной части уравнения заменили тождественно равным ему выражением. Изменилась ли ОДЗ уравнения при этом преобразовании?

Рассмотрим группу уравнений б). Равносильны ли эти уравнения?

(Нет, уравнение - следствие уравнения ).

В результате какого преобразования из получили ?

(Заменили левую часть уравнения тождественно равным ему выражением).

Что произошло с ОДЗ уравнения?

(ОДЗ расширилась).

В результате расширения ОДЗ получили уравнение-следствие и посторонний корень
для уравнения . Значит, расширение ОДЗ уравнения может привести к появлению посторонних корней. Для обоих случаев а) и б) сформулируйте утверждение в общем виде. (Ученики формулируют, учитель корректирует).

(Пусть в некотором уравнении
, выражение
заменили на тождественное ему выражение
. Если такое преобразование не изменяет ОДЗ уравнения, то переходим к равносильному уравнению
. Если ОДЗ расширяется, то уравнение является следствием уравнения ).

Это утверждение является теоремой о преобразованиях приводящих к равносильным уравнениям или уравнениям-следствиям.

Теорема 1. ,

а) ОДЗ не изменяется

б) ОДЗ расширяется

Примем эту теорему без доказательства. Следующее задание. Представлены три уравнения и их корни.

Задание 2. Равносильны ли следующие уравнения? Назовите преобразование, в результате которого первое уравнение заменено вторым уравнением, третьим уравнением.

Какие из предложенных уравнений равносильны?

(Только уравнения и ).

Какие преобразования выполнялись, чтобы от уравнения перейти к уравнению , ?

(К обеим частям уравнения в первом случае прибавили
, во втором случае прибавили
).

То есть в каждом случае прибавили некоторую функцию
. Сравните область определения функции в уравнении с ОДЗ уравнения .

(Функция
определена на ОДЗ уравнения ).

Какое уравнение получили в результате прибавления к обеим частям уравнения функции ?

(Получим уравнение равносильное ).

Что произошло с ОДЗ уравнения по сравнению с ОДЗ уравнения ?

(Она сузилась из-за функции
).

Что же получили в этом случае? Будет ли уравнение равносильно уравнению или - уравнение-следствие для уравнения ?

(Нет, не то и ни другое).

Рассмотрев два случая преобразования уравнения , которые представлены в задании 2, попытайтесь сделать вывод.

(Если к обеим частям уравнения прибавить функцию, определенную на ОДЗ этого уравнения, то получим уравнение, равносильное данному).

Действительно, это утверждение является теоремой.

Теорема 2. , - определена

на ОДЗ уравнения

Но утверждение, похожее на сформулированную теорему, мы использовали при решении уравнений. Как оно звучит?

(К обеим частям уравнения можно прибавить одно и то же число).

Это свойство является частным случаем теоремы 2, когда
.

Задание 3. Равносильны ли следующие уравнения? Назовите преобразование, в результате которого первое уравнение заменено вторым уравнением, третьим уравнением.

Какие из уравнений в задании 3 равносильны?

(Уравнения и ).

В результате какого преобразования из уравнения получены уравнения , ?

(Обе части уравнения умножили на
и получили уравнение . Чтобы получить уравнение , обе части уравнения умножили на
).

Какому же условию должна удовлетворять функция , чтобы умножив обе части уравнения на , было бы получено уравнение равносильное ?

(Функция должна быть определена на всей ОДЗ уравнения ).

Выполняли ли прежде над уравнениями такое преобразование?

(Выполняли, обе части уравнения умножали на число, отличное от нуля).

Значит, условие, налагаемое на функцию необходимо дополнить.

(Функция не должна обращаться в ноль ни при одном из ОДЗ уравнения).

Итак, запишем в символическом виде утверждение, которое позволяет от данного уравнения перейти к равносильному. (Учитель под диктовку учеников записывает теорему 3).

Теорема 3.

- определена на всей ОДЗ

для любого из ОДЗ

Докажем теорему. Что значит, что два уравнения равносильны?

(Надо показать, что все корни первого уравнения являются корнями второго уравнения и наоборот, т.е. второе уравнение есть следствие первого и первое уравнение является следствием второго).

Докажем, что является следствием уравнения . Пусть - корень уравнения , что это значит?

(При подстановке в получим верное числовое равенство
).

В точке функция определена и не обращается в ноль. Что это означает?

(Число
. Поэтому числовое равенство можно помножить на
. Получим верное числовое равенство ).

Что это равенство означает?

( - корень уравнения . Этим показали, что уравнение - уравнение-следствие для уравнения ).

Докажем, что - следствие уравнения . (Учащиеся работают самостоятельно, далее после обсуждения, учитель записывает вторую часть доказательства на доске).

Задание 4. Являются ли уравнения каждой группы (а, б) равносильными? Назовите преобразование, в результате которого первое уравнение группы заменено вторым.

а)
б)

Равносильны ли уравнения и ?

(Равносильны).

В результате какого преобразования из можно получить ?

(Возводим обе части уравнения в куб).

От правой и левой частей уравнения можно взять функцию
. На каком множестве определена функция
?

(На общей части множеств значений функций
и
).

Охарактеризуйте группу уравнений под буквой б)?

(Они не равносильны, является следствием , к уравнению применили функцию
и перешли к уравнению , функция определена на общей части множеств значений функций
и
).

Чем же отличаются свойства функций в группе а) и б)?

(В первом случае функция монотонна, а во втором нет).

Сформулируем следующее утверждение. (Учитель под диктовку учащихся записывает теорему).

Теорема 4.

- определена на общей части множеств значений функций и

а) - монотонна

б) - не монотонна

Обсудим, как будет «работать» эта теорема при решении следующих уравнений.

Пример. Решить уравнение

1)
; 2)
.

Какую функцию применим к обеим частям уравнения 1)?

(Возведем обе части уравнения в куб, т.е. применим функцию ).

(Эта функция определена на общей части множеств значений функций, стоящих в левой и правой частях уравнения, она монотонна).

Значит, возведя обе части исходного уравнения в куб, какое уравнение получим?

(Равносильное данному).

Какую функцию применим к обеим частям уравнения 2)?

(Возведем обе части уравнения в четвертую степень, т.е. применим функцию
).

Перечислите свойства этой функции, необходимые для применения теоремы 4.

(Эта функция определена на общей части множеств значений функций, стоящих в левой и правой частях уравнения, она не монотонна).

Какое же уравнение, относительно исходного, мы получим, возведя данное уравнение в четвертую степень?

(Уравнение-следствие).

Будут ли отличаться множество корней исходного уравнения и множество корней полученного уравнения?

(Могут появиться посторонние корни. Значит, необходима проверка).

Проведите решение этих уравнений дома.

III . Рефлексивно-оценочная часть.

Мы сегодня вместе «открыли» четыре теоремы. Еще раз просмотрите их и скажите, о каких уравнениях в них говорится.

(О равносильных уравнениях и уравнении-следствии).

Запишем тему урока. Вернемся к уравнению, которое рассматривали в начале сегодняшнего разговора. Какие из теорем 1-4 применялись при переходе от одного уравнения к другому? (Ученики вместе с учителем выясняют, какая теорема работала на каждом шаге, учитель на схеме отмечает номер теоремы).

T.2 Т.2 Т.1 Т.4 Т.2 Т.4

Что нового вы сегодня узнали на уроке?

(Понятия равносильных уравнений, уравнения-следствия, теоремы о равносильности уравнений).

Какую задачу мы поставили в начале урока?

(Выделить преобразования, не изменяющие множество корней уравнения, преобразования, ведущие к приобретению и потере корней).

Решили ли мы ее полностью?

Поставленную задачу, мы решили частично, ее исследование продолжим на следующих уроках при решении новых видов уравнений.

Используя новое для нас понятие равносильных уравнений, переформулируйте первую часть поставленной задачи «выделить преобразования, не изменяющие множество корней уравнения».

(Как узнать, является ли переход от одного уравнения к другому равносильным преобразованием).

Что поможет ответить на этот вопрос?

(Теоремы о равносильности уравнений).

А применяли ли сегодня преобразования, которые ведут к приобретению посторонних корней?

(Применяли, это возведение обеих частей уравнения в квадрат; использование формул, левая и правая части которых имеют смысл при разных значениях входящих в них букв).

Существуют и другие «специфические» причины, которые приводят как к появлению, так и к потере корней уравнения, о некоторых из них мы говорили. Но есть и такие, которые, как правило, связаны с определенным классом уравнений, а об этом разговор у нас будет позже.

Запишем домашнее задание:

    знать определения равносильных уравнений, уравнения-следствия;

    знать формулировки теорем 1-4;

    провести по аналогии с доказательством теоремы 3 доказательство теорем 1 и 2;

4) №№ 139(4,6), 141(2) – выяснить, являются ли уравнения равносильными; решить уравнения ; .

Записи в тетрадях

Равносильные уравнения. Уравнение-следствие.

Определение 1. Уравнения и называются равносильными, если множества их корней совпадают.

Определение 2. Уравнение называют следствием уравнения , если каждый корень уравнения является корнем уравнения . заменили на тождественное ему выражение.

Пример. Решить уравнение

Пусть даны два уравнения

Если каждый корень уравнения (1) является одновременно и корнем уравнения (2), то уравнение (2) называется следствием уравнения (1). Заметим, что равносильность уравнений означает, что каждое из уравнений является следствием другого.

В процессе решения уравнения часто приходится применять такие преобразования, которые приводят к уравнению, являющемуся следствием исходного. Уравнению-следствию удовлетворяют все корни исходного уравнения, но, кроме них, уравнение-следствие может иметь и такие решения, которые не являются корнями исходного уравнения, это так называемые посторонние корни. Чтобы выявить и отсеять посторонние корни, обычно поступают так: все найденные корни уравнения-следствия проверяют подстановкой в исходное уравнение.

Если при решении уравнения мы заменили его уравнением-следствием, то указанная выше проверка является неотъемлемой частью решения уравнения. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в следствие.

Рассмотрим уравнение

и умножим обе его части на одно и то же выражение имеющее смысл при всех значениях х. Получим уравнение

корнями которого служат как корни уравнения (3), так и корни уравнения . Значит, уравнение (4) есть следствие уравнения (3). Ясно, что уравнения (3) и (4) равносильны, если «постороннее» уравнение не имеет корней.

Итак, если обе части уравнения умножить на выражение имеющее смысл при любых значениях х, то получится уравнение, являющееся следствием исходного. Полученное уравнение будет равносильно исходному, если уравнение не имеет корней. Заметим, что обратное преобразование, т. е. переход от уравнения (4) к уравнению (3) путем деления обеих частей уравнения (4) на выражение как правило, недопустимо, поскольку может привести к потере решений (в этом случае могут «потеряться» корни уравнения Например, уравнение имеет два корня: 3 и 4. Деление же обеих частей уравнения на приводит к уравнению - имеющему только один корень 4, т. е. произошла потеря корня.

Снова возьмем уравнение (3) и возведем обе его части в квадрат. Получим уравнение

корнями которого служат как корни уравнения (3), так и корни «постороннего» уравнения , т. е. уравнение - следствие уравнения (3).

Может привести к появлению так называемых посторонних корней. В этой статье мы, во-первых, детально разберем, что такое посторонние корни . Во-вторых, поговорим о причинах их возникновения. И в-третьих, на примерах рассмотрим основные способы отсеивания посторонних корней, то есть, проверки корней на предмет наличия среди них посторонних с целью исключения их из ответа.

Посторонние корни уравнения, определение, примеры

В школьных учебниках по алгебре не дается определение постороннего корня. Там представление о постороннем корне формируется путем описания следующей ситуации: при помощи некоторых преобразований уравнения осуществляется переход от исходного уравнения к уравнению-следствию, находятся корни полученного уравнения-следствия, и осуществляется проверка найденных корней подстановкой в исходное уравнение, которая показывает, что некоторые из найденных корней не являются корнями исходного уравнения, эти корни называют посторонними корнями для исходного уравнения .

Отталкиваясь от этой базы, для себя можно принять такое определение постороннего корня:

Определение

Посторонние корни – это корни полученного в результате проведения преобразований уравнения-следствия, не являющиеся корнями исходного уравнения.

Приведем пример. Рассмотрим уравнение и следствие этого уравнения x·(x−1)=0 , полученное в результате замены выражения тождественно равным ему выражением x·(x−1) . Исходное уравнение имеет единственный корень 1 . Уравнение, полученное в результате проведения преобразования, имеет два корня 0 и 1 . Значит 0 – это посторонний корень для исходного уравнения.

Причины возможного появления посторонних корней

Если для получения уравнения-следствия не использовать никакие «экзотические» преобразования, а использовать только основные преобразования уравнений , то посторонние корни могут возникнуть лишь по двум причинам:

  • из-за расширения ОДЗ и
  • из-за возведения обеих частей уравнения в одну и ту же четную степень.

Здесь стоит напомнить, что расширение ОДЗ в результате преобразования уравнения в основном происходит

  • При сокращении дробей;
  • При замене нулем произведения с одним или несколькими нулевыми множителями;
  • При замене нулем дроби с нулевым числителем;
  • При использовании некоторых свойств степеней, корней, логарифмов;
  • При использовании некоторых тригонометрических формул;
  • При умножении обеих частей уравнения на одно и то же выражение, обращающееся в нуль на ОДЗ для этого уравнения;
  • При освобождении в процессе решения от знаков логарифмов.

Пример из предыдущего пункта статьи иллюстрирует появление постороннего корня из-за расширения ОДЗ, которое имеет место при переходе от уравнения к уравнению-следствию x·(x−1)=0 . ОДЗ для исходного уравнения есть множество всех действительных чисел, за исключением нуля, ОДЗ для полученного уравнения есть множество R, то есть, ОДЗ расширяется числом нуль. Это число в итоге и оказывается посторонним корнем.

Также приведем пример появления постороннего корня из-за возведения обеих частей уравнения в одну и ту же четную степень. Иррациональное уравнение имеет единственный корень 4 , а следствие этого уравнения, полученное из него путем возведения обеих частей уравнения в квадрат, то есть, уравнение , имеет два корня 1 и 4 . Из этого видно, что возведение обеих частей уравнения в квадрат привело к появлению постороннего корня для исходного уравнения.

Заметим, что расширение ОДЗ и возведение обеих частей уравнения в одну и ту же четную степень, не всегда приводит к появлению посторонних корней. Например, при переходе от уравнения к уравнению-следствию x=2 ОДЗ расширяется с множества всех неотрицательных чисел до множества всех действительных чисел, но посторонние корни не появляются. 2 – это единственный корень как первого, так и второго уравнения. Также не происходит появления посторонних корней при переходе от уравнения к уравнению-следствию . Единственным корнем и первого, и второго уравнения является x=16 . Именно поэтому мы говорим не о причинах появления посторонних корней, а о причинах возможного появления посторонних корней.

Что такое отсеивание посторонних корней?

Термин «отсеивание посторонних корней» лишь с натяжкой можно назвать устоявшимся, он встречается далеко не во всех учебниках алгебры, но является интуитивно понятным, из-за чего обычно и используется. Что понимают под отсеиванием посторонних корней, становится понятно из следующей фразы: «… проверка – обязательный этап решения уравнения, который поможет обнаружить посторонние корни, если они есть, и отбросить их (обычно говорят «отсеять»)» .

Таким образом,

Определение

Отсеивание посторонних корней – это обнаружение и отбрасывание посторонних корней.

Теперь можно переходить к способам отсеивания посторонних корней.

Способы отсеивания посторонних корней

Проверка подстановкой

Основной способ отсеивания посторонних корней – это проверка подстановкой. Он позволяет отсеять посторонние корни, которые могли возникнуть и по причине расширения ОДЗ, и по причине возведения обеих частей уравнения в одну и ту же четную степень.

Проверка подстановкой состоит в следующем: найденные корни уравнения-следствия по очереди подставляются в исходное уравнение или в любое равносильное ему уравнение, те из них, которые дают верное числовое равенство, являются корнями исходного уравнения, а те, которые дают неверное числовое равенство или выражение, не имеющее смысла, являются посторонними корнями для исходного уравнения.

Покажем на примере, как проводится отсеивание посторонних корней через подстановку в исходное уравнение.

В некоторых случаях отсеивание посторонних корней целесообразнее проводить другими способами. Это относится в основном к тем случаям, когда проверка подстановкой связана со значительными вычислительными трудностями или когда стандартный способ решения уравнений какого-то определенного вида предполагает другой проверки (например, отсеивание посторонних корней при решении дробно-рациональных уравнений проводится по условию не равенства нулю знаменателя дроби). Разберем альтернативные способы отсеивания посторонних корней.

По ОДЗ

В отличие от проверки подстановкой, отсеивание посторонних корней по ОДЗ уместно не всегда. Дело в том, что этот способ позволяет отсеивать лишь посторонние корни, возникающие по причине расширения ОДЗ, и он не гарантирует отсеивание посторонних корней, которые могли возникнуть по другим причинам, например, из-за возведения обеих частей уравнения в одну и ту же четную степень. Более того, не всегда просто отыскать ОДЗ для решаемого уравнения. Тем не менее, способ отсеивания посторонних корней по ОДЗ стоит держать на вооружении, так как часто его использование требует меньших вычислительных работ, чем использование других способов.

Отсеивание посторонних корней по ОДЗ проводится следующим образом: все найденные корни уравнения-следствия проверяются на предмет принадлежности области допустимых значений переменной для исходного уравнения или любого равносильного ему уравнения, те из них, которые принадлежат ОДЗ, являются корнями исходного уравнения, а те из них, которые не принадлежат ОДЗ, являются посторонними корнями для исходного уравнения.

Анализ приведенной информации приводит к выводу, что отсеивание посторонних корней по ОДЗ целесообразно проводить, если единовременно:

  • легко находится ОДЗ для исходного уравнения,
  • посторонние корни могли возникнуть только по причине расширения ОДЗ,
  • проверка подстановкой связана со значительными вычислительными сложностями.

Покажем, как проводится отсеивание посторонних корней, на практике.

По условиям ОДЗ

Как мы сказали в предыдущем пункте, если посторонние корни могли возникнуть лишь по причине расширения ОДЗ, то их можно отсеять по ОДЗ для исходного уравнения. Но не всегда просто найти ОДЗ в виде числового множества. В таких случаях можно проводить отсеивание посторонних корней не по ОДЗ, а по условиям, определяющим ОДЗ. Разъясним, как проводится отсеивание посторонних корней по условиям ОДЗ.

Найденные корни по очереди подставляются в условия, определяющие ОДЗ для исходного уравнения или любого равносильного ему уравнения. Те из них, которые удовлетворяют всем условиям, являются корнями уравнения. А те из них, которые не удовлетворяют хотя бы одному условию или дают не имеющее смысла выражение, являются посторонними корнями для исходного уравнения.

Приведем пример отсеивания посторонних корней по условиям ОДЗ.

Отсеивание посторонних корней, возникающих из-за возведения обеих частей уравнения в четную степень

Понятно, что отсеивание посторонних корней, возникающих из-за возведения обеих частей уравнения в одну и ту же четную степень, можно осуществить путем подстановки в исходное уравнение или в любое равносильное ему уравнение. Но такая проверка может быть связана со значительными вычислительными трудностями. На этот случай стоит знать альтернативный способ отсеивания посторонних корней, о котором мы сейчас и поговорим.

Отсеивание посторонних корней, которые могут возникнуть при возведении в одну и ту же четную степень обеих частей иррациональных уравнений вида , где n – некоторое четное число, можно проводить по условию g(x)≥0 . Это вытекает из определения корня четной степени: корень четной степени n есть неотрицательное число, n -ая степень которого равна подкоренному числу, откуда . Таким образом, озвученный подход представляет собой своего рода симбиоз метода возведения обеих частей уравнения в одну и ту же степень и метода решения иррациональных уравнений по определению корня. То есть, уравнение , где n –четное число, решается методом возведения обеих частей уравнения в одну и ту же четную степень, а отсеивание посторонних корней выполняется по условию g(x)≥0 , взятому из метода решения иррациональных уравнений по определению корня.

В презентации продолжим рассмотрение равносильных уравнений, теорем, остановимся более подробно на этапах решения таких уравнений.

Для начала вспомним условие, при котором одно из уравнений является следствием другого (слайд 1). Автор приводит еще раз некоторые теоремы о равносильных уравнениях, которые были рассмотрены ранее: об умножении частей уравнения на одинаковое значение h (x); возведение частей уравнения в одинаковую четную степень; получение равносильного уравнения из уравнения log a f(x) = log a g (x).

На 5-м слайде презентации выделены основные этапы, с помощью которых удобно решать равносильные уравнения:

Найти решения равносильного уравнения;

Проанализировать решения;

Проверить.


Рассмотрим пример 1. Необходимо найти следствие уравнения x - 3 = 2. Найдем корень уравнения x = 5. Запишем равносильное уравнение (x - 3)(x - 6) = 2(x - 6), применив способ умножения частей уравнения на (x - 6). Упростив выражение до вида x 2 - 11x +30 = 0, найдем корни x 1 = 5, x 2 = 6. Т.к. каждый корень уравнения x - 3 = 2 является также решением уравнения x 2 - 11x +30 = 0, то x 2 - 11x +30 = 0 - это уравнение-следствие.


Пример 2. Найти другое следствие уравнения x - 3 = 2. Для получения равносильного уравнения используем метод возведения в четную степень. Упростив полученное выражение, запишем x 2 - 6x +5 = 0. Найдем корни уравнения x 1 = 5, x 2 = 1. Т.к. x = 5 (корень уравнения x - 3 = 2) является также решением уравнения x 2 - 6x +5 = 0, то уравнение x 2 - 6x +5 = 0 также является уравнением-следствием.


Пример 3. Необходимо найти следствие уравнения log 3 (x + 1) + log 3 (x + 3) = 1.

Заменим в уравнении 1 = log 3 3. Тогда, применяя утверждение из теоремы 6, запишем равносильное уравнение (x + 1)(x +3) = 3. Упростив выражение, получим x 2 + 4x = 0, где корнями будут x 1 = 0, x 2 = - 4. Значит уравнение x 2 + 4x = 0 - следствие для заданного уравнения log 3 (x + 1) + log 3 (x + 3) = 1.


Итак, можно сделать вывод: если расширяется область определения уравнения, то получается уравнение-следствие. Выделим стандартные действия при нахождении уравнения-следствия:

Избавление от знаменателей, которые содержат переменную;

Возведение частей уравнения в одинаковую четную степень;

Освобождение от логарифмических знаков.

Но важно запомнить: когда в ходе решения расширяется область определения уравнения, то необходимо проверить всех найденные корни - будут ли они попадать в ОДЗ.


Пример 4. Решить уравнение, представленное на слайде 12. Вначале найдем корни равносильного уравнения x 1 = 5, x 2 = - 2 (первый этап). Необходимо обязательно проверить корни (второй этап). Проверка корней (третий этап): x 1 = 5 не принадлежит области допустимых значений заданного уравнения, поэтому уравнение имеет одно решение только x = - 2.


В примере 5 найденный корень равносильного уравнения не входит в ОДЗ заданного уравнения. В примере 6 значение одного из двух найденных корней не определено, поэтому этот корень не является решением исходного уравнения.