Поглощение (абсорбция) света. Поглощение света

Электромагнитная теория света связала между собой оптические и электрические свойства тел. В частности, стало понятным, почему диэлектрики прозрачны, а металлы, наоборот, практически непрозрачны для света. Прозрачность диэлектриков объясняется тем, что в них отсутствуют свободные электроны. Проходящие световые волны могут вызывать лишь колебания связанных в атомах электронов, причем не происходит потери световой энергии. Поглощение велико лишь в областях резонанса. В этих областях, где частота падающей волны близка к собственной частоте атомных вибраторов, начинают играть роль силы «трения», о которых мы уже говорили. Однако повторяем, что за исключением таких областей резонанса диэлектрики прозрачны.

В отличие от диэлектриков проводники непрозрачны и обладают сильным поглощением, обычно почти во всех частях спектра.

В проводниках, как известно, кроме внутриатомных электронов существуют еще так называемые свободные электроны (т. II, § 30, 1959 г.; в пред. изд. § 36). Электрическое поле световой волны вызывает движение свободных электронов, т. е., по существу, переменные токи в проводнике. Из теории электричества нам известно, что движение свободных электронов связано с выделением джоулева тепла. Таким образом, часть световой энергии, ушедшая на движение свободных электронов, превратится в тепло, что и объясняет происходящее поглощение света. Чем выше проводимость проводника, тем сильнее в нем поглощение света.

Металлы, являющиеся хорошими проводниками, уже при толщине пластинки порядка десятых долей миллиметра совершенно непрозрачны.

С сильным поглощением света внутри металлов тесно связан их высокий коэффициент отражения. Если у стекла, как мы видели, коэффициент отражения от поверхности равен 4%, то у металлов он достигает 80-90%. То, что сильному поглощению соответствует высокий коэффициент отражения - «металлическое отражение», особенно отчетливо можно наблюдать, исследуя отражения света от жидкого раствора краски. Поверхность раствора сильно поглощающей краски отражает так же, как и металл, и обладает чисто металлическим блеском.

У большинства твердых и жидких тел области поглощаемых частот (полосы поглощения) гораздо шире, чем у паров и газов, где сказываются собственные частоты внутриатомных колебаний.

Рис. 167. Фраунгоферовы линии в солнечном спектре.

Наиболее важный пример узких полос поглощения, даваемых газом, - это черные фраунгоферовы линии, пересекающие спектр Солнца (рис. 167). Некоторые фраунгоферовы линии объясняются поглощением света атомами газов наружных слоев атмосферы Солнца; некоторые же линии - земного происхождения, т. е. объясняются поглощением в земной атмосфере.

Особый интерес представляют вещества, обладающие ясно выраженным резонансным поглощением, т. е. сильной зависимостью поглощения от длины волны света. Если эти вещества построены из сложных молекул, то играют роль не только собственные колебания электронов, но и колебания атомов, входящих в состав молекул. Существует теснейшая связь между структурой молекул и окраской вещества.

В лепестках цветов найдены вещества, называемые антоцианидинами, вызывающие окраску цветов. На рис. 168 изображена структура молекулы антоцианина (оксониевая соль), окрашивающего в красный цвет розу, на рис. 169 - структура молекул антоцианина (калиевая соль), окрашивающего в синий цвет василек. Мы видим, что достаточно было удалить кислотную группу и заменить один из водородов калием, чтобы произошло радикальное изменение цвета.

Колоссальную роль в природе играет хлорофилл, окрашивающий листья растений в зеленый цвет. Молекулы хлорофилла обладают рядом резонансных полос поглощения. На рис. 170 изображены спектры поглощения живых листьев крапивы, полученные В. Н. Любименко. При получении спектра а свет проходил через один лист крапивы, при получении спектра b свет проходил через два листа крапивы, положенных друг на друга.

Рис. 168. Молекулы антоцианина, окрашивающего розу в красный цвет.

Рис. 169. Молекула антоцианина, окрашивающего василек в синий цвет.

Темные полосы соответствуют полосам поглощения.

Благодаря наличию сильных полос поглощения листья вбирают в себя значительную долю падающего на них света. Поглощенный свет вызывает разложение углекислоты в растениях, т. е. вызывает бдин из самых важных процессов в природе. Из рис. 170 между прочим следует, что листья пропускают не только зеленые лучи, но и темно-красные.

Рис. 170. Спектр поглощения листьев крапивы: а - один лист, Ь - два листа.

К. А. Тимирязев, одним из первых изучивший спектр хлорофилла, писал: «На этот факт не мешало бы обратить внимание иным живописцам, нередко угощающим в своих ландшафтах невозможной, никогда не виданной малахитовой зеленью. По всей вероятности, в этих неудачных попытках художники стремятся изобразить возможно чистый зеленый цвет, между тем цвет растительности именно смешанный зелено-красный. В справедливости этого можно убедиться весьма простым и любопытным опытом.

Самое обыкновенное, встречающееся в продаже синее стекло, поглощая зеленые лучи, пропускает кроме синих еще часть красных (рис. 171). Понятно, что если смотреть через такое стекло на зеленую растительность, то оно, поглощая посылаемые в наш глаз зеленые лучи, будет допускать до него только красные. Оптики воспользовались этим фактом для того, чтобы предложить публике под несколько замысловатым названием эритрофитоскопа довольно забавный инструмент. Это просто синие очки, но стоит их только надеть, и весь мир представляется в «розовом свете». Под ясным синим небом развертывается фантастический ландшафт с кораллово-красными лугами и лесами».

Рис. 171. Спектр поглощения синего стекла.

Рис. 172. Спектр поглощения: а - оконного стекла; 6 - увнолевого стекла.

Последний пример чрезвычайно поучителен, так как показывает, какие неожиданные эффекты могут получаться в результате одновременного действия двух поглощающих свет веществ; смотря сквозь синее стекло на зеленые листья, мы видим их красными.

Гемоглобин - красное красящее вещество крови - имеет молекулы, очень сходные с молекулами хлорофилла. Основное различие состоит в том, что молекула хлорофилла содержит атом магния, а гемоглобина - атом железа.

Избирательным поглощением обладает и человеческая кожа. Резкий максимум поглощения кожи лежит около в области довольно коротких ультрафиолетовых лучей. Эта спектральная область обладает сильным лечебным действием и вызывает загар. Как раз эту область спектра сильно поглощают обычные оконные стекла. Имеются специальные увиолевые стекла, обладающие прозрачностью в ультрафиолетовой части спектра (рис. 172).

Всем известны яркие цвета минералов, в особенности драгоценных камней. Окраска минералов также объясняется избирательным поглощением. В большинстве случаев это поглощение связано с наличием небольших примесей металлов железной группы (железо, марганец, хром и др.). Наиболее сильное окрашивающее действие оказывает хром, само название элемента указывает на это.

Интересно, что хром в малых количествах окрашивает минералы в красный (рубин), а в больших количествах - в зеленый цвет (изумруд). Окраска минералов связана со свойствами ионов тяжелых металлов. Например, железо, входящее в минерал в виде окрашивает в зеленый цвет, а железо в виде красный цвет. Причины, определяющие частоты собственных колебаний в этих случаях, еще не вполне ясны. Различная окраска минералов чрезвычайно облегчает разведку полезных ископаемых. В 1930 г. в Канаде жилы радиоактивных руд разыскивались и открывались с самолета по их темно-красному тону.

Искусственное создание веществ, обладающих нужными спектрами поглощения, красок, представляет сейчас одну из наиболее мощных отраслей химической промышленности. Наиболее важные технические красители для тканей получаются путем сложной химической переработки каменноугольной смолы. У всех этих красителей очень сложные молекулы, состоящие из десятков атомов углерода, водорода, азота, кислорода и др. Естественно, что вопрос об их собственных колебаниях очень сложен и пока мало разработан.

В сигнализации, фотографии и других областях широко применяются окрашенные стекла - светофильтры. В светофильтрах окрашивается либо тонкий слой желатина, нанесенного на стекло, либо само стекло. Для окраски стекла часто вводят в него коллоидные частицы металла (селен, медь, золото и др.). На этих коллоидных частицах происходит дифракция света, сопровождаемая поглощением света, поскольку частицы состоят из проводника. Поглощение имеет резко резонансный характер, связанный с наличием собственных колебаний у коллоидных частиц металла. Коллоидный раствор меди в стекле дает красное «рубиновое» стекло, применяемое в светофорах.

Наконец, следует остановиться еще на том, как действуют окрашенные слои при различных условиях наблюдения. Здесь надо различать наблюдение в проходящем свете и наблюдение в отраженном свете. Светофильтры, очевидно, действуют на проходящий свет, текстильные краски и краски для картин - на отраженный свет,

На картинах, нарисованных акварельными красками, свет проходит сквозь слой краски, отражается от белой бумаги и возвращается обратно, опять проходя сквозь краску. Масляные краски сами содержат твердые включения, отражающие падающий свет так, что свет не доходит до полотна.

Для наблюдения в проходящем свете важно значение коэффициента поглощения, характеризующего поглощение слоя краски. Для наблюдения в отраженном свете важен коэффициент отражения краски, равный отношению интенсивности отраженного света к интенсивности падающего.

Поглощением или абсорбцией называется явление потери энергии световой волны, проходящей через вещество, вследствие преобразования световой энергии волны в разные формы внутренней энергии вещества или в энергии вторичного излучения другого направлений и спектрального состава. При прохождении света через вещество происходит поглощение энергии, вследствие чего интенсивность света уменьшается. Изменение интенсивности света выражается экспериментальным законом, которая называется законом Бугера.

Где I 0 - интенсивность света падающего на вещество

I - интенсивность с вышедшего из вещества

х - толщина вещества

α- коэффициент поглощения, зависящей от длины волны падающего света, химического состава вещества и его агрегатного состояния.

Коэффициент поглощения . Если α численно равен обратной величине от толщины вещества, то есть , то интенсивность вышедшего света уменьшается в е раз. Рассмотрим, как зависит коэффициент поглощения от длины волны и структуры вещества.

Одноатомные газы

В природе (в космосе) очень часто встречается вещество, которую можно представить как разряженный одноатомный газ. Атомы химических элементов также можно представить как одноатомный газ. Из-за того, что атомы находится на больших расстояниях друг от друга, свет через такие вещества проходит, практически не поглощаясь. Поглощение света наблюдается лишь в том случае, когда частота падающего света совпадает с собственной частотой внешнего оптического электрона. ν =ν 0 !

В этом случае, электрон поглощает энергию падающего света всю порцию hν. Наблюдается поглощение в очень узкой области и образуется линейчатый спектр поглощения.

α=10 -11 -10 -12 м -1

Молекулярные газы

Если вещество находится в молекулярном состоянии, то есть в состав молекулы входят несколько атомов, то поглощение света будет наблюдаться, когда частота падающего излучения соответствует частоте колебании атомов в молекулах и электронов в атомах.

Если вещество находится в молекулярном состоянии, то наблюдается поглощение в некотором интервале ∆ν, в результате чего спектр получается полосатым.



α=10 -8 -10 -10 м -1

Диэлектрики

Для прозрачных диэлектриков поглощение невелико α=10 -5 -10 -7 м -1 , но для них наблюдается селективное поглощение (выборочное). Такое поглощение связано с тем, что в диэлектриках нет свободных электронов, и поглощение вызвано явлением резонанса при вынужденных колебаниях электронов в атомах и молекулах, имеющих достаточно прочную связь друг с другом. Диэлектрики дают сплошной спектр поглощения.

Поглощение в металлах

Металлы полностью поглощают свет и α=10 3 -10 4 м -1 , то есть металлы непрозрачны для света. Такое сильное поглощение связано с тем, что в металлах есть свободные электроны, и при попадании света в металлах возникают быстропеременные электрические токи . Эти токи быстро затухают, превращаясь в джоулевую теплоту. Чем больше проводимость металла, тем сильнее он поглощает световую волну. Там, где происходит поглощение, наблюдается аномальная дисперсия. На графике представлена зависимость показателя преломления от длины волны и коэффициент поглощения α от длины волны. Зависимость α от λ представлена для линейчатого спектра. В реальности линейчатый спектр не бесконечно тонкая линия, а некоторая кривая имеющая острый максимум. На графике видно, что поглощение происходит между точкой АВ, где наблюдается аномальная дисперсия.

Зависимостью α от λ объясняется окрашенность поглощающих тел. Например, если стекло слабо поглощает красные лучи, но сильно поглощает синие цвета, то при падении белого света на такое стекло, оно будет выглядеть красным. Мы видим за счет отраженного света. Если же такое стекло осветить зеленым или синим светом, то оно нам будет казаться черным, так как сильно поглощает.

Такие явления используются в светофильтрах. В них в зависимости от химического состава вещества пропускается свет, только определение длины волны, а все остальные длины волн поглощаются. Разнообразие пределов селективного поглощения и разных веществ объясняет многообразие цветов в природе. Насчитывается до миллионов разных цветов и оттенков. В физике широко используется метод абсорбционного спектрального анализа . При помощи этого метода изучается химическое строение разных видов. Для анализа анализируются определенные частоты, в которых наблюдается поглощение и интенсивность поглощения. Структура спектров поглощения полностью определяется составом и строением молекул, поэтому изучение спектров поглощения является основным методом количественного и качественного анализа разных веществ.

  1. Излучение Вавилова- Черенкова

Советские ученые Вавилов и Черенков обнаружили необычное сечение, которое вызывается в веществе при движении в нем быстро движущихся заряженных частиц. Особенность излучения заключается в следующем. Обычно заряженная частица испускают излучение, если они движутся с ускорением, если же частица движется равномерно и прямолинейно, то она не должна испускать электромагнитные излучения. Советские ученые Черенков, Тамм, Франк смогли объяснить данное излучение (Нобелевская премия 1958г.), как нелюминесцентное свечение, вызванное движением электрона со скорость большей фазовой скорости света в среде.

Если , то электрон испускает электромагнитные излучения. На эффекте Вавилова- Черенкова основана работа черенковских счетчиков, при помощи которых регистрируют быстро движущиеся заряженные частицы. Использование такого счетчика позволило Сегре (итальянский ученый) открыть антипротон (Нобелевская премия 1959г.). Особенностью данного излучения является также тот факт, что оно наблюдается не во всем пространстве, а только под острым углом θ к направлению движения электрона. Если рассмотрим это явление в пространстве, то излучение будет наблюдаться в пределах некоторого телесного угла dΩ или в пространственном конусе с образующей направление под углом θ к скорости электрона.

Но так как в точке Р наблюдается свечение, то это значит, что волны приходят туда одновременно, то есть ∆t / =0. Тогда

А так как cosθ не может быть больше единицы, V е больше скорости света в среде, то есть больше . Таким образом, действительно эффект Вавилова-Черенкова вызван движением заряженной частицы движущейся с постоянной скоростью больше .

Поглощение света – это уменьшение интенсивности оптического излучения (света), проходящего через среду, заполненную веществом.

Как уже было отмечено ранее, в идеализированной однородной среде колеблющиеся электроны возвращают всю падающую энергию в виде вторичных волн, и поглощения света не происходит. В реальном теле часть падающей световой энергии переходит в другие формы (главным образом, в тепловую ) – наблюдается поглощение света .

Особый интерес представляет случай, когда частота световой волны ω совпадает с частотой собственных колебаний электронов ω о i . При этих частотах энергия световой волны полностью поглощается веществом. Такое явление называется резонансным поглощением света, а соответствующая частота – резонансной . Именно в области резонансного поглощения наблюдается аномальное поведение дисперсии. Вещество, состоящее из атомов или молекул с определенным набором частот собственных колебаний электронов ω о i даст в спектре прошедшего через него света узкие линии поглощения . Коэффициент преломления окажется постоянным в областях, далеких от линий поглощения, и будет быстро меняться с частотой и сильно отличаться от единицы вблизи каждой линии поглощения, где взаимодействие света с веществом велико.

Экспериментальная зависимость показателя преломления n ω о ) представлена на рис. 6-1.


1

Рис. 6-1. Зависимость показателя преломления n и коэффициента поглощенияот длины волны вблизи одной из резонансных частот (λ о – длина волны, соответствующая резонансной частоте ω о ).

Из экспериментальной зависимости (рис.6-1) следует, что коэффициент преломления n принимает большие значения с длинноволновой стороны полосы поглощения и малые – с ее коротковолновой стороны. Внутри самой полосы поглощения коэффициент преломления убывает с уменьшением длины волны (аномальная дисперсия). Как видно, коэффициент преломления может быть меньше единицы, значит, фазовая скорость волны может превышать скорость света с . Это не противоречит теории относительности, так как скорость передачи энергии равна групповой скорости, которая не превышает значение с (смотри: 1- Приложение; 2- И.В.Савельев. Курс общей физики. Том 2. Электричество и магнетизм. Волны. Оптика. 2006 г., с. 461).

Рассмотренные выше соображения справедливы не только для электронов, но и для ионов, причем, ввиду большей массы ионов, классические представления для ионов более обоснованы. В соответствии с теоретическими представлениями было найдено, что все осцилляторы отчетливо подразделяются на две группы: у одной удельные заряды по порядку величины близки к удельному заряду электрона, а у другой – к удельному заряду ионов. (Удельный заряд определяется отношением величины заряда к его массе, т.е. ). Первым соответствуют полосы поглощения, лежащие в ультрафиолетовой (реже в видимой), а вторым – в инфракрасной области спектра. Это связано с тем, что массы атомов в десятки тысяч раз больше массы электрона.



Опыт показывает, что интенсивность I плоской световой волны, прошедшей сквозь прозрачный диэлектрик, обнаруживает уменьшение своего значения согласно закону Бугера (установленного экспериментально Бугером и обоснованного теоретически И. Ламбертом):

Рис.6-2. Иллюстрация к закону поглощения Бугера.

I 0 – интенсивность световой волны, вступающей в вещество, d – толщина слоя вещества, пройденного светом, - коэффициент поглощения , зависящий от длины световой волны, химической природы и состояния вещества.

Коэффициент поглощения физическая величина, обратно пропорциональная слою вещества, при прохождении которого интенсивность падающего света убывает в е (е = 2,72) раз. При измерении коэффициента поглощения необходимо учитывать, что часть света отражается от границы исследуемого вещества. Закон справедлив при не слишком больших интенсивностях света и только для монохроматического излучения, так как для каждого вещества зависит от длины волны.

В тех случаях, когда поглощение осуществляется молекулами вещества, растворенного в практически не поглощающем растворителе, коэффициент поглощенияоказывается пропорциональным числу поглощающих молекул в единице объема, т.е. пропорционален концентрации растворенного вещества С и выражается соотношением: , где – новый коэффициент поглощения, не зависящий от концентрации С и характерный только для молекулы поглощающего вещества. Для растворов закон Бугера принимает вид:

где, d – толщина слоя раствора, через который прошел свет. В таком виде закон поглощения принято называть законом Бугера – Ламберта – Бера.

Оптическая плотность (D ) - мера непрозрачности слоя вещества толщиной d для световых лучей; характеризует ослабление оптического излучения в слоях различных веществ (красителях, светофильтрах, растворах, газах и т.п.).

Для не отражающего слоя оптическая плотность равна:
D = lg I 0 /I = , где I – интенсивность излучения, прошедшего поглощающую среду; I 0 – интенсивность падающего излучения. Оптическая плотность может быть определена и как логарифм величины, обратной коэффициенту пропускания , т.е., D = lg (1/).

Коэффициент поглощения и оптическая плотность D связаны соотношением:

Цветные прозрачные тела, красители, растворы обнаруживают селективность (избирательность) поглощения в области видимых лучей, то есть различно поглощают лучи различных длин волн. Например, красными является стекло или раствор, слабо поглощающие красные и оранжевые лучи и сильно поглощающие зеленые и фиолетовые. В общем случае коэффициент зависит от длины волны (или частоты) света. Поглощение велико лишь в области частот, близких к частотам собственных колебаний электронов в атомах. У веществ, атомы (молекулы) которых практически не взаимодействуют (газы и пары металлов при невысоком давлении), коэффициент поглощения для большинства длин волн близок к нулю, и лишь для очень узких областей спектра имеет резкие максимумы (рис.6-3). Эти максимумы соответствуют резонансным частотам колебаний электронов. Газы при высоких давлениях, жидкости и твердые тела дают широкие полосы поглощения (рис.6-4).

Металлы, как известно, практически непрозрачны для света. Это объясняется тем, что под действием электрического поля световой волны, свободные электроны приходят в движение. А движение электрических зарядов под действием электрического поля – это электрический ток (в рассматриваемом случае - быстропеременный), протекание же электрического тока должно непременно сопровождаться выделением джоулева тепла. Таким образом, при освещении светом металлы просто нагреваются, поскольку наблюдаться происходит превращение световой энергии в тепловую

При прохождении через к--л. среду за счёт взаимодействия с ней, в результате к-рого световая энергия переходит в др. виды энергии или в оптич. излучение др. спектрального состава. Осн. законом П. с., связывающим интенсивность I пучка света, прошедшего слой поглощающей среды толщиной l с интенсивностью падающего пучка I 0 , является закон Бугера Не зависящий от интенсивности света коэф. наз. показателем поглощения, причём как правило, различен для разных длин волн Этот закон был экспериментально установлен П. Бугером (P. Bouguer, 1729) и впоследствии теоретически выведен И. Ламбертом (J. Н. Lambert, 1760) при очень простых предположениях, что при прохождении любого слоя вещества интенсивность уменьшается на определённую долю, зависящую только от и толщины слоя l , т. е. dI/l = Решением этого ур-ния и является Бугера - Ламберта - Бера закон . Физ. смысл его состоит в том, что сам процесс потери фотонов пучка в среде, характеризуемый не зависит от их в световом пучке, т. е. от интенсивности света, и от толщины поглощающего слоя l . Это справедливо при не слишком больших интенсивностях излучения (см. ниже).
Зависимость от длины волны света называется спектром поглощения вещества. Спектр поглощения изолир. атомов (напр., разреженные газы) имеет вид узких линий, т. е. отличен от нуля только в нек-рых узких диапазонах длин волн (сотые - тысячные доли нм), соответствующих частотам собств. электронов внутри атомов. Спектр поглощения молекул, определяемый колебаниями атомов в них, состоит из существенно более широких областей длин волн (т. н. полосы поглощения, десятые доли - сотни нм; см. Молекулярные спектры ).Поглощение твёрдых тел характеризуется, как правило, очень широкими областями (сотни и тысячи нм) с большим значением ; качественно это объясняется тем, что в конденснр. средах между частицами приводит к быстрой передаче всему коллективу частиц энергии, отданной светом одной из них.
Качеств. картина процессов взаимодействия излучения с веществом, происходящих на атомном уровне и приводящих к П. с., может быть получена в рамках квазиклассич. подхода. В основе его лежит модель, рассматривающая атомы как совокупность гармонич. осцилляторов : электроны в атомах (молекулах) колеблются около положения равновесия. Такая модель приемлема для разреженных газов и паров металлов, где можно не учитывать влияния соседних атомов. Для жидких и твёрдых тел такая модель непригодна, т. к. поведение электронов, определяющих оптич. свойства атома, резко меняется под действием полей соседних атомов.
Спонтанное испускание атомов осцилляторной модели соответствует свободным (затухающим) колебаниям электронов. Собств. частоты этих колебаний v nm задаются 2-м постулатом Бора: где и - уровни энергии атома, между к-рыми совершается квантовый переход с испусканием света на частоте v nm .
При распространении в среде света, падающего на неё извне, колебания электронов в атомах носят вынужденный характер и совершаются с частотой падающей световой волны. При таком подходе П. с. связывается с потерями энергии волны на вынужденные колебания электронов. (Энергия, поглощённая атомом, может переизлучаться или переходить в др. виды энергии.) Световое поле падающее на среду, вызывает колебания электронов, описываемые ур-нием

Здесь т 0 и е 0 - масса и электрона, х - его смещение от положения равновесия, - коэф., характеризующий затухание. Первый член в (1) описывает силу инерции, второй - - тормозящую силу, пропорц. скорости колебат. движения электрона и обусловливающую затухание его колебаний (аналогичную силе трения), третий член - упругую силу, пропорц. смещению электрона от положения равновесия; правая часть ур-ния (1) - вынуждающая сила. Решение этого ур-ния

при ненулевом есть величина комплексная, что и свидетельствует о поглощении энергии волны атомом. При комплексной связи вынуждающей силы и отклонения электрона комплексными оказываются, соответственно, и интегральные величины: диэлектрич. проницаемость ( - проводимость, - веществ, часть диэлектрич. проницаемости) и показатель преломления Мнимая часть величины прямо связана с характеристикой поглощающих свойств среды - показателем поглощения: Величина являющаяся, как и ф-цией длины волны, наз. главным показателем поглощения. Введение комплексных величин и позволило применить формальное описание, разработанное для прозрачных сред, и к поглощающим средам. Именно с поглощением света связана аномальная дисперсия, к-рая имеет место внутри полосы поглощения (см. Дисперсия света ).
При рассмотрении П. с. с квантовой точки зрения вводится такая характеристика энергетич. уровней, как населённость уровня N n,m - число атомов, находящихся в данном энергетич. состоянии. В этом случае выражение для может быть представлено в виде

где разность населённостей уровней п и тN m - (g m /g n)N n (здесь g m и g n - статистич. веса заселённости уровней). Зависимость от разности частот - наз. контуром линии поглощения. В рассмотренном классич. приближении ширина линии поглощения на уровне 0,5 от максимума Это т. н. естеств. ширина линии. В реальных средах имеется ряд причин, увеличивающих ширину линии поглощения, иногда во много раз. Гл. причиной уширения линии поглощения в газах служит , возникающий вследствие беспорядочного движения атомов (см. Уширение спектральных линий) .
При спец. условиях возбуждения возможна т. н. инверсная населённость, когда т. е. когда населённость верхнего уровня больше населённости нижнего. В этом случае, как видно из (2), меняет знак и показатель поглощения - среда характеризуется т. н. отрицательным поглощением. Свет, проходящий через такую среду, не ослабляется, а, наоборот, усиливается. Среды, в к-рых возможно создание (тем или иным способом) инверсной населённости уровней, используются для создания лазеров и усилителей света.
Поскольку поглощение фотона приводит к переводу атома с нижнего уровня на верхний, то процесс поглощения влияет на заселённость энергетич. уровней. При обычно наблюдаемых интенсивностях света количество поглощаемых фотонов намного меньше числа поглощающих атомов, поэтому не зависит от интенсивности света. Соответственно, не зависит от неё и Однако, если интенсивность падающего на среду света достаточно велика, то в возбуждённое состояние может перейти значит. доля поглощающих атомов. Это приведёт к тому, что и ибудут зависеть от интенсивности света - возникнет т. н. нелинейное поглощение. В этом случае закон Бугера перестаёт быть справедливым. В пределе, при очень высокой интенсивности падающего света, населённости верх. и ниж. уровней выравниваются и среда перестаёт поглощать свет - просветляется, т. е. свет проходит через такую среду, вообще не испытывая поглощения (см. Самоиндуцированная прозрачности) .
При очень высокой интенсивности света возможна и ещё одна особенность П. с. - многофотонное поглощение ,когда в одном акте одновременно поглощается несколько (i )фотонов меньших частот при условии
П. с. используется в разл. областях науки и техники. Так, на нём основаны мн. особо высокочувствительные методы количеств. и качеств. хим. анализа, в частности абсорбционный спектральный анализ, спектрофотометрия, колориметрия . Вид спектра П. с. удаётся связать с хим. структурой вещества, по виду спектра поглощения можно исследовать характер движения электронов в металлах, выяснить зонную структуру и мн. др.

Лит.: Ландсберг Г. С., Оптика, 5 изд., М., 1976; Соколов А. В., Оптические свойства металлов, М., 1961; Ельяшевич М. А., Атомная и молекулярная спектроскопия, М., 1962; Королёв Ф. А., Теоретическая оптика, М., 1966; Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973.

А. П. Гагарин .

поглощение света

уменьшение интенсивности света, проходящего через среду, вследствие взаимодействия его с частицами среды. Сопровождается нагреванием вещества, ионизацией или возбуждением атомов или молекул, фотохимическими процессами и т.д. Поглощенная веществом энергия может быть полностью или частично переизлучена веществом с другой частотой (см. Рассеяние света , Бугера Ламберта - Бера закон).

Поглощение света

уменьшение интенсивности оптического излучения (света), проходящего через материальную среду, за счёт процессов его взаимодействия со средой. Световая энергия при П. с. переходит в различные формы внутренней энергии среды; она может быть полностью или частично переизлучена средой на частотах, отличных от частоты поглощённого излучения.

Основной закон, описывающий П. с., ≈ закон Бугера, который связывает интенсивности I света, прошедшего слой среды толщиной l, и исходного светового потока I0. Не зависящий от I, I0и l коэффициент kl называется поглощения показателем (ПП, в спектроскопии ≈ поглощения коэффициентом); как правило, он различен для разных длин света l. Этот закон установил на опыте в 1729 П. Бугер. В 1760 И. Ламберт вывел его теоретически из очень простых предположений, сводящихся к тому, что при прохождении слоя вещества интенсивность светового потока уменьшается на долю, которая зависит только от ПП и толщины слоя, т. е. dl/l= ≈kldl (дифференциальная, равносильная первой, запись закона Бугера). Физический смысл закона состоит в том, что ПП не зависит от I и l (это было проверено С. И. Вавиловым экспериментально с изменением I ~ в 1020 раз).

Зависимость kl от l называется спектром поглощения вещества. Для изолированных атомов (например, в разреженных газах) он имеет вид набора узких линий, т. е. kl отличен от 0 лишь в определённых узких диапазонах длин волн (шириной в десятые ≈ сотые доли). Эти диапазоны соответствуют частотам собственных колебаний электронов внутри атомов, «резонирующих» с проходящим излучением и поэтому поглощающих из него энергию (рис. 1 ). Спектры П. с. отдельных молекул также соответствуют собственным частотам, но гораздо более медленных колебаний внутри молекул самих атомов, которые значительно тяжелее электронов. Молекулярные спектры П. с. занимают существенно более широкие области длин волн, т. н. полосы поглощения, шириной от единиц до тысяч. Наконец, П. с. жидкостями и твёрдыми телами обычно характеризуется очень широкими областями (тысячи и десятки тысяч) с большими значениями kl и плавным ходом его изменения (рис. 2 ). Качественно это можно объяснить тем, что в конденсированных средах сильное взаимодействие между частицами приводит к быстрой передаче всему коллективу частиц энергии, отданной светом одной из них. Другими словами, со световой волной «резонируют» не только отдельные частицы, но и многочисленные связи между ними. Об этом свидетельствует, например, изменение П. с. молекулярными газами с ростом давления ≈ чем выше давление (чем сильнее взаимодействие частиц), тем «расплывчатее» полосы поглощения, которые при высоких давлениях становятся сходными со спектрами П. с. жидкостями.

Ещё Бугер высказал убеждение, что для П. с. важны «не толщины, а массы вещества, содержащиеся в этих толщинах». Позднее немецкий учёный А. Бер (1852) экспериментально подтвердил это, показав, что при П. с. молекулами газа или вещества, растворённого в практически непоглощающем растворителе, ПП пропорционален числу поглощающих молекул на единицу объёма (и, следовательно, на единицу длины пути световой волны), т. е. концентрации с: kl= clс (правило Бера). Так закон П. с. приобрёл вид Бугера ≈ Ламберта ≈ Бера закона; ; где cl не зависит от концентрации и характеризует молекулу поглощающего вещества. Физический смысл правила Бера состоит в утверждении независимости П. с. молекулами от их взаимодействия с окружением, и в реальных газах (даже при невысоких давлениях) и растворах наблюдаются многочисленные отступления от него.

Сказанное выше относится к средам сравнительно малой оптической толщины, равной (в пренебрежении рассеянием света) kll. При возрастании kll П. с. средой усиливается на всех частотах ≈ линии и полосы поглощения расширяются. (Объяснение этому даёт квантовая теория П. с., учитывающая, в частности, многократное рассеяние фотонов в оптически «толстой» среде с изменением их частоты и, в конечном счёте, поглощением их частицами среды.) При достаточно больших kll среда поглощает всё проникающее в неё излучение как абсолютно чёрное тело .

В проводящих средах (металлах, плазме и т.д.) световая энергия передаётся не только связанным электронам, но и (часто преимущественно) свободным электронам, kl в таких средах сильно зависит от их электропроводности а. Значительное П. с. в проводящих средах очень сильно влияет на все процессы распространения света в них; это формально учитывается тем, что член, содержащий kl входит в выражение для комплексного преломления показателя среды. В несколько идеализированном случае П. с. только свободными электронами (электронами проводимости) nkl = 4ps/c (n ≈ действительная часть показателя преломления, с ≈ скорость света). Измерения П. с. металлами позволяют определить многие характерные их свойства; опытные данные при этом хорошо описываются современной квантовой теорией металлооптики. В теоретических расчётах часто пользуются величиной c, связанной с kl ═соотношением, где l ≈ длина волны света в вакууме (а не в среде). Если (nc) равно 1, то в слое среды толщиной l интенсивность света уменьшается в е4p, т. е. ~ в 100 000 раз. Т. к. очень сильное П. с. характерно для металлов (по крайней мере в видимой и инфракрасной областях спектра), то, по предложению М. Планка, П. с. средами с (nc) ³ 1 называется «металлическим».

В терминах квантовой теории при П. с. электроны в поглощающих атомах, ионах, молекулах или твёрдых телах переходят с более низких уровней энергии на более высокие (см. также Квантовые переходы). Обратный переход в основное состояние или в «нижнее» возбуждённое состояние может совершаться с излучением фотона или безызлучательно. В последнем случае энергия возбуждённой частицы может, например, в столкновении с др. частицей перейти в кинетическую энергию сталкивающихся частиц (см. Столкновения атомные). Тип «обратного» перехода определяет, в какую форму энергии среды превращается энергия поглощённого света.

В световых потоках чрезвычайно большой интенсивности П. с. многими средами перестаёт подчиняться закону Бугера ≈ kl начинает зависеть от I. Связь между I и I0 становится нелинейной (нелинейное П. с.). Этот эффект, в частности, может быть обусловлен тем, что очень большая доля поглощающих частиц, перейдя в возбуждённое состояние и оставаясь в нём сравнительно долго, меняет (или совсем теряет) способность поглощать свет, что, разумеется, заметно изменяет характер П. с. средой. (Опыты Вавилова, показавшие соблюдение закона Бугера и при больших интенсивностях, выполнялись с веществами, молекулы которых возбуждаются очень ненадолго ≈ на время ~ 10-8сек ≈ и в которых поэтому доля возбуждённых молекул всегда невелика.) Особый интерес представляет ситуация, когда в поглощающей среде искусственно создана инверсия населённостей энергетических уровней, при которой число возбуждённых состояний на верхнем уровне больше, чем на нижнем. В этом случае каждый фотон из падающего потока вызывает испускание ещё одного точно такого же фотона с большей вероятностью, чем поглощается сам (см. Излучение, в разделе Квантовая теория излучения). В результате интенсивность выходящего потока I превосходит интенсивность падающего I0, т. е. имеет место усиление света. Формально это явление соответствует отрицательности kl в законе Бугера и поэтому носит название отрицательного П. с. На отрицательном П. с. основано действие оптических квантовых усилителей и оптических квантовых генераторов (лазеров) .

П. с. широчайшим образом используется в различных областях науки и техники. Так, на нём основаны многие особо высокочувствительные методы количественного и качественного химического анализа, в частности абсорбционный спектральный анализ , спектрофотометрия , колориметрия и пр. Вид спектра П. с. удаётся связать с химической структурой вещества, установить в молекулах наличие определённых связей (например, водородной связи), исследовать характер движения электронов в металлах, выяснить зонную структуру полупроводников и многих др. ПП можно определять и в проходящем, и в отражённом свете, т.к. интенсивность и поляризация света при отражении света зависят от kl (см. Френеля формулы). См. также Металлооптика, Спектроскопия.

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Ельяшевич М. А., Атомная и молекулярная спектроскопия, М., 1962; Гайтлер В., Квантовая теория излучения, пер. с англ., М., 1956; Соколов А. В., Оптические свойства металлов, М., 1961; Мосс Т., Оптические свойства полупроводников, пер. с англ., М., 1961.