Пример изображение комплексного числа на плоскости онлайн. Модуль и аргумент комплексного числа

Комплексные числа

Основные понятия

Первоначальные данные о числе относятся к эпохе каменного века – палеомелита. Это «один», «мало» и «много». Записывались они в виде зарубок, узелков и т.д. Развитие трудовых процессов и появление собственности заставили человека изобрести числа и их названия. Первыми появились натуральные числа N , получаемые при счете предметов. Затем, наряду с необходимостью счета, у людей появилась потребность измерять длины, площади, объемы, время и другие величины, где приходилось учитывать и части употребляемой меры. Так возникли дроби. Формальное обоснование понятий дробного и отрицательного числа было осуществлено в 19 веке. Множество целых чисел Z – это натуральные числа, натуральные со знаком минус и нуль. Целые и дробные числа образовали совокупность рациональных чисел Q, но и она оказалась недостаточной для изучения непрерывно изменяющихся переменных величин. Бытие снова показало несовершенство математики: невозможность решить уравнение вида х 2 = 3, в связи с чем появились иррациональные числа I. Объединение множества рациональных чисел Q и иррациональных чисел I – множество действительных (или вещественных) чисел R . В итоге числовая прямая заполнилась: каждому действительному числу соответствовала на ней точка. Но на множестве R нет возможности решить уравнение вида х 2 = – а 2 . Следовательно, снова возникла необходимость расширения понятия числа. Так в 1545 году появились комплексные числа. Их создатель Дж. Кардано называл их «чисто отрицательными». Название «мнимые» ввел в 1637 году француз Р. Декарт, в 1777 году Эйлер предложил использовать первую букву французского числа i для обозначения мнимой единицы. Этот символ вошел во всеобщее употребление благодаря К. Гауссу.

В течение 17 – 18 веков продолжалось обсуждение арифметической природы мнимостей, их геометрического истолкования. Датчанин Г. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изображать комплексное число точкой на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой, а вектором, идущим в эту точку из начала координат.

Лишь к концу 18 – началу 19 века комплексные числа заняли достойное место в математическом анализе. Первое их использование – в теории дифференциальных уравнений и в теории гидродинамики.

Определение 1. Комплексным числом называется выражение вида , где x и y – действительные числа, а i – мнимая единица, .

Два комплексных числа и равны тогда и только тогда, когда , .

Если , то число называют чисто мнимым ; если , то число является действительным числом, это означает, что множество R С , где С – множество комплексных чисел.

Сопряженным к комплексному числу называется комплексное число .

Геометрическое изображение комплексных чисел.

Любое комплексное число можно изобразить точкой М (x , y ) плоскости Oxy. Парой действительных чисел обозначаются и координаты радиус-вектора , т.е. между множеством векторов на плоскости и множеством комплексных чисел можно установить взаимно-однозначное соответствие: .

Определение 2. Действительной частью х .

Обозначение:x = Rez (от латинского Realis).

Определение 3. Мнимой частью комплексного числа называется действительное число y .

Обозначение: y = Imz (от латинского Imaginarius).

Rez откладывается на оси (Ох) , Imz откладывается на оси (Оy ), тогда вектор , соответствующий комплексному числу – это радиус-вектор точки М (x , y ), (или М (Rez , Imz )) (рис. 1).

Определение 4. Плоскость, точкам которой поставлено в соответствие множество комплексных чисел, называется комплексной плоскостью . Ось абсцисс называется действительной осью , так как на ней лежат действительные числа . Ось ординат называется мнимой осью , на ней лежат чисто мнимые комплексные числа . Множество комплексных чисел обозначается С .

Определение 5. Модулем комплексного числа z = (x , y ) называется длина вектора : , т.е. .

Определение 6. Аргументом комплексного числа называется угол между положительным направлением оси (Ох ) и вектором : .

Комплексные числа

Мнимые и комплексные числа. Абсцисса и ордината

комплексного числа. Сопряжённые комплексные числа.

Операции с комплексными числами. Геометрическое

представление комплексных чисел. Комплексная плоскость.

Модуль и аргумент комплексного числа. Тригонометрическая

форма комплексного числа. Операции с комплексными

числами в тригонометрической форме. Формула Муавра.

Начальные сведения о мнимых и комплексных числах приведены в разделе «Мнимые и комплексные числа». Необходимость в этих числах нового типа появилась при решении квадратных уравнений для случая D < 0 (здесь D – дискриминант квадратного уравнения). Долгое время эти числа не находили физического применения, поэтому их и назвали «мнимыми» числами. Однако сейчас они очень широко применяются в различных областях физики

и техники: электротехнике, гидро- и аэродинамике, теории упругости и др.

Комплексные числа записываются в виде: a + bi . Здесь a и b действительные числа , а i мнимая единица, т. e . i 2 = –1. Число a называется абсциссой , a b – ординатой комплексного числа a + bi . Два комплексных числа a + bi и a – bi называются сопряжёнными комплексными числами.

Основные договорённости:

1. Действительное число а может быть также записано в форме комплексного числа: a + 0 i или a – 0 i . Например, записи 5 + 0 i и 5 – 0 i означают одно и то же число 5 .

2. Комплексное число 0+ bi называется чисто мнимым числом . Запись bi означает то же самое, что и 0+ bi .

3. Два комплексных числа a + bi и c + di считаются равными, если a = c и b = d . В противном случае комплексные числа не равны.

Сложение. Суммой комплексных чисел a + bi и c + di называется комплексное число (a + c ) + (b + d ) i . Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты.

Это определение соответствует правилам действий с обычными многочленами.

Вычитание. Разностью двух комплексных чисел a + bi (уменьшаемое) и c + di (вычитаемое) называется комплексное число ( a – c ) + (b – d ) i .

Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.

Умножение. Произведением комплексных чисел a + bi и c + di называется комплексное число:

( ac – bd ) + (ad + bc ) i . Это определение вытекает из двух требований:

1) числа a + bi и c + di должны перемножаться, как алгебраические двучлены,

2) число i обладает основным свойством: i 2 = 1.

П р и м е р . (a+ bi )( a – bi ) = a 2 + b 2 . Следовательно, произведение

двух сопряжённых комплексных чисел равно действительному

положительному числу.

Деление. Разделить комплексное число a + bi (делимое) на другое c + di (делитель) - значит найти третье число e + f i (чатное), которое будучи умноженным на делитель c + di , даёт в результате делимое a + bi .

Если делитель не равен нулю, деление всегда возможно.

П р и м е р. Найти (8 + i ) : (2 – 3 i ) .

Р е ш е н и е. Перепишем это отношение в виде дроби:

Умножив её числитель и знаменатель на 2 + 3 i

И выполнив все преобразования, получим:

Геометрическое представление комплексных чисел. Действительные числа изображаются точками на числовой прямой:

Здесь точка A означает число –3, точка B – число 2, и O – ноль. В отличие от этого комплексные числа изображаются точками на координатной плоскости. Выберем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на обеих осях. Тогда комплексное число a + bi будет представлено точкой Р с абсциссой а и ординатой b (см. рис.). Эта система координат называется комплексной плоскостью .

Модулем комплексного числа называется длина вектора OP , изображающего комплексное число на координатной (комплексной ) плоскости. Модуль комплексного числа a + bi обозначается | a + bi | или буквой r

Комплексные числа, их изображение на плоскости. Алгебраические операции над комплексными числами. Комплексное сопряжение. Модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы комплексного числа. Корни из комплексных чисел. Показательная функция комплексного аргумента. Формула Эйлера. Показательная форма комплексного числа.

При изучении одного из основных приемов интегрирования: интегрирования рациональных дробей – требуется для проведения строгих доказательств рассматривать многочлены в комплексной области. Поэтому изучим предварительно некоторые свойства комплексных чисел и операций над ними.

Определение 7.1. Комплексным числом z называется упорядоченная пара действительных чисел (а,b) : z = (a,b) (термин «упорядоченная» означает, что в записи комплексного числа важен порядок чисел а и b: (a,b)≠(b,a)). При этом первое число а называется действительной частью комплексного числа z и обозначается a = Re z, а второе число b называется мнимой частью z: b = Im z.

Определение 7.2. Два комплексных числа z 1 = (a 1 , b 1) и z 2 = (a 2 , b 2) равны тогда и только тогда, когда у них равны действительные и мнимые части, то есть a 1 = a 2 , b 1 = b 2 .

Действия над комплексными числами.

1. Суммой комплексных чисел z 1 = (a 1 , b 1 ) и z 2 = (a 2 , b 2 z = (a,b ) такое, что a = a 1 + a 2 , b = b 1 + b 2 . Свойства сложения: а) z 1 + z 2 = z 2 + z 1 ; б) z 1 + (z 2 + z 3 ) = (z 1 + z 2 ) + z 3 ; в) существует комплексное число 0 = (0,0): z + 0 = z для любого комплексного числа z.

2. Произведением комплексных чисел z 1 = (a 1 , b 1 ) и z 2 = (a 2 , b 2 ) называется комплексное число z = (a,b ) такое, что a = a 1 a 2 – b 1 b 2 , b = a 1 b 2 + a 2 b 1 . Свойства умножения: а) z 1 z 2 = z 2 z 1 ; б) z 1 (z 2 z 3 ) = (z 1 z 2 ) z 3 , в) (z 1 + z 2 ) z 3 = z 1 z 3 + z 2 z 3 .

Замечание. Подмножеством множества комплексных чисел является множество действительных чисел, определяемых как комплексные числа вида (а, 0). Можно убедиться, что при этом определение операций над комплексными числами сохраняет известные правила соответствующих операций над действительными числами. Кроме того, действительное число 1 = (1,0) сохраняет свое свойство при умножении на любое комплексное число: 1∙ z = z.

Определение 7.3. Комплексное число (0, b ) называется чисто мнимым . В частности, число (0,1) называют мнимой единицей и обозначают символом i .

Свойства мнимой единицы:

1) i∙i=i ² = -1; 2) чисто мнимое число (0,b ) можно представить как произведение действительного числа (b, 0) и i : (b, 0) = b∙i.

Следовательно, любое комплексное число z = (a,b) можно представить в виде: (a,b) = (a,0) + (0,b) = a + ib.


Определение 7.4. Запись вида z = a + ib называют алгебраической формой записи комплексного числа.

Замечание. Алгебраическая запись комплексных чисел позволяет производить операции над ними по обычным правилам алгебры.

Определение 7.5. Комплексное число называется комплексно сопряженным числу z = a + ib.

3. Вычитание комплексных чисел определяется как операция, обратная сложению: z = (a,b ) называется разностью комплексных чисел z 1 = (a 1 , b 1 ) и z 2 = (a 2 , b 2 ), если a = a 1 – a 2 , b = b 1 – b 2 .

4. Деление комплексных чисел определяется как операция, обратная умножению: число z = a + ib называется частным от деления z 1 = a 1 + ib 1 и z 2 = a 2 + ib 2 (z 2 ≠ 0), если z 1 = z∙z 2 . Следовательно, действительную и мнимую части частного можно найти из решения системы уравнений: a 2 a – b 2 b = a 1 , b 2 a + a 2 b = b 1 .

Геометрическая интерпретация комплексных чисел .

Комплексное число z = (a,b ) можно представить в виде точки на плоскости с координатами (a,b ) или вектора с началом в начале координат и концом в точке (a,b ).

При этом модуль полученного вектора называется модулем комплексного числа, а угол, образованный вектором с положительным направлением оси абсцисс,- аргументом числа. Учитывая, что a = ρ cos φ, b = ρ sin φ, где ρ = | z | - модуль z, а φ = arg z – его аргумент, можно получить еще одну форму записи комплексного числа:

Определение 7.6. Запись вида

z = ρ (cos φ + i sin φ ) (7.1)

называется тригонометрической формой записи комплексного числа.

В свою очередь, модуль и аргумент комплексного числа можно выразить через а и b : . Следовательно, аргумент комплексного числа определен не однозначно, а с точностью до слагаемого, кратного 2π.

Легко убедиться, что операция сложения комплексных чисел соответствует операции сложения векторов. Рассмотрим геометрическую интерпретацию умножения. Пусть тогда

Следовательно, модуль произведения двух комплексных чисел равен произведению их модулей, а аргумент – сумме их аргументов. Соответственно, при делении модуль частного равен отношению модулей делимого и делителя, а аргумент – разности их аргументов.

Частным случаем операции умножения является возведение в степень:

- формула Муавра .

Используя полученные соотношения, перечислим основные свойства комплексно сопряженных чисел:

Комплексные числа и
координатная
плоскость

Геометрическая модель множества R действительных чисел – числовая прямая. Любому действительному числу соответствует единственная точка

на
числовой прямой и, любой точке прямой
соответствует только одно
действительное число!

Добавив к числовой прямой, соответствующей множеству всех действительных чисел ещё одно измерение – прямую, содержащую множество чисто м

Добавив к числовой прямой, соответствующей множеству
всех действительных чисел ещё одно измерение –
прямую, содержащую множество чисто мнимых чисел –
получим координатную плоскость, в которой каждому
комплексному числу a+bi можно поставить в соответствие
точку (a; b) координатной плоскости.
i=0+1i соответствует точка (0;1)
2+3i соответствует точка (2;3)
-i-4 соответствует точка (-4;-1)
5=5+1i соответствует тоска (5;0)

Геометрический смысл операции сопряжения

! Операция сопряжения есть осевая
симметрия относительно оси абсцисс.
!! Сопряжённые друг другу
комплексные числа равноудалены от
начала координат.
!!! Вектора, изображающие
сопряженные числа, наклонены к оси
абсцисс под одинаковым углом, но
расположены по разные стороны от
этой оси.

Изображение действительных чисел

Изображение комплексных чисел

Алгебраический
способ
изображения:
Комплексное число
a+bi изображается
точкой плоскости
с координатами
(a;b)

Примеры изображения комплексных чисел на координатной плоскости

(Нас интересуют
комплексные числа
z=x+yi , у которых
х=-4. Это-уравнение
прямой,
параллельной оси
ординат)
у
Х= - 4
Действительная
часть равна -4
0
х

Изобразите на координатной плоскости множество всех комплексных чисел, у которых:

Мнимая часть
является четным
однозначным
натуральным
числом
(Нас интересуют
комплексные числа
z=x+yi, у которых
у=2,4,6,8.
Геометрический образ
состоит из четырех
прямых,параллельных
оси абсцисс)
у
8
6
4
2
0
х