Z преобразование. Смысл Z преобразования

Ряд Фурье

Непрерывная периодическая функция времени лс(/) с периодом Т , удовлетворяющая в пределах периода условиям Дирихле (функция jc(f) - периодическая, кусочно-монотонная на периоде, имеющая конечное число точек разрыва 1-го рода), может быть представлена в виде ряда Фурье

где Асо - период дискретизации по частоте:

Х{к) - коэффициенты Фурье (комплексные числа):

к - номер коэффициента Фурье, соответствующего частоте к А со. Аналогично, непрерывная периодическая функция частоты Х{со) с периодом Q, удовлетворяющая в пределах периода условиям Дирихле, может быть представлена в виде ряда Фурье, симметричного (2.7):

где: At - период дискретизации по времени:

х(п) - коэффициенты Фурье (комплексные числа):

к - номер коэффициента Фурье, соответствующего времени п At.

На основании (2.8) и (2.11) можно записать соотношение для периодов функций и периодов дискретизации во временной и частотной областях:

Т Аса = Q At.

Сравнивая ряды (2.7) и (2.10), легко заметить взаимозаменяемость независимых переменных время-частота.

Z-преобразование и его свойства

При анализе и синтезе дискретных и цифровых устройств широко используют преобразование сигналов и характеристик устройств, получившее название Z-преобразования.

Пусть имеется некоторая числовая последовательность

Эта последовательность может быть как конечной, так и бесконечной и содержит отсчетные значения некоторого сигнала. Поставим ей в соответствие сумму ряда по отрицательным степеням комплексной переменной г.

Такая сумма, если она существует, носит название Z-преобразования последовательности {х к }. Это одностороннее Z-преобразование. Если же

то такое преобразование называют двухсторонним Z-преобразованием.

Здесь М >0 и i?>0 - постоянные вещественные числа. Тогда, из теории функций комплексного переменного следует, что этот ряд сходится для всех значений г, таких, что |z|>/?. Например, дискретный сигнал {х к } = (1,1,1,...) имеет Z-преобразование

являющееся суммой геометрической прогрессии, и сходится при любых z в кольце z > 1. При этом, суммируя, получаем

На границе области аналитичности при z = 1 эта функция имеет единственный простой полюс.

Рассмотрим теперь обратное Z-преобразование. Пусть X(z) - функция комплексной переменной z, аналитическая в кольцевой области |z|>/?. Умножим обе части равенства, определяющего Z-преобразование, на z k ~ l и получим

Теперь вычислим интегралы от обеих частей этого равенства, взяв в качестве контура интегрирования произвольную замкнутую кривую, целиком находящуюся в области аналитичности и охватывающую все полюсы функции X (z ). Из теоремы Коши следует, что

Тогда интегралы от всех слагаемых в правой части выражения равны нулю, кроме интеграла от слагаемого x k z ~ l , равного х к 2л j . Таким образом, получаем

Данная формула называется обратным Z-преобразоеанием.

Исследуем связь Z-преобразования с преобразованиями Лапласа и Фурье. Запишем выражение для модулированной импульсной последовательности {ШИП).

Преобразование Лапласа от него имеет вид

Если формально положить z = ехр(/?Д),

то это выражение совпадает с формулой для Z-преобразования.

Если же в формуле для Z-преобразования положить Z = ехр(у Д), то выражение

будет преобразованием Фурье от МИП, т. е. спектром МИП.

Рассмотрим некоторые свойства Z-преобразования.

  • 1. Линейность. Если и к = а х к + р у к , то U(z) = ос X (z) + /?E(z).
  • 2. Z-преобразование смещенного сигнала. Если Ук =х к-и то E(z) = z _1 X(z). Таким образом, символ z -1 служит оператором единичной задержки (на один интервал дискретизации Д) в Z-области.
  • 3. Z-преобразование свертки. Если fm = ^хкут_к - дискретная свертка двух дискретных сигналов, то F(z) = X(z) Z(z)

Контрольные вопросы

Записать преобразование Лапласа.

Записать преобразование Фурье.

Записать ряд Фурье.

Записать Z-преобразование.

Записать обратное Z-преобразование.

Записать свойства Z-преобразования.

Лекция 8. Цифровые САУ

Основные положения и определения

Система называется цифровой, если в контуре имеется хотя бы один импульсный элемент. На рисунке 8.1 приведена цифровая САУ на базе микроконтроллера, т.е. функции сумматора и регулятора реализуются программным путем в микроконтроллере, с выхода которого сигналы поступают на объект управления с известной ПФ.

Рисунок 8.1 – Структурная схема цифровой системы

Микроконтроллер приближенно можно описать ПФ запаздывающего звена

Рисунок 8.2 – Выходная характеристика запаздывающего звена

Амплитудно-импульсная модуляция (АИМ) это модуляция, при которой амплитуда импульса модулированного сигнала У пропорциональна величине информационного сигнала Х, подаваемого на вход модулятора.

Рисунок 8.3 – Виды АИМ

Существует 2 вида АИМ: первого и второго рода. В АИМ 1-го рода амплитуда модулированного сигнала в течение длительности импульса τ повторяет информационный сигнал Х. При АИМ 2-го рода амплитуда импульса в течение длительности импульса τ постоянна. Например, в АЦП используется АИМ 2-го рода.

Рисунок 8.4 – Временная диаграмма работы АЦП

В АЦП преобразование происходит в 2 этапа: дискретизация по времени с периодом Т и квантование по уровню аналогового сигнала.

Поэтому блок АЦП можно представить в виде 2-х элементов: импульсного элемента, осуществляющего дискретизацию по времени и формирователя импульсов, выполняющий квантование по уровню (рисунок 8.5,а). Цифровая система (ЦС), содержащее АЦП, приведена на рисунке 8.5,б.

Рисунок 8.5 – Структурная схема ЦС с АЦП

При увеличении разрядности АЦП (числа квантований) ошибка между значением цифрового сигнала и аналогового уменьшается.

Таблица 8.1 - Относительные ошибки АЦП

Решетчатая функция. Например, .

Разностное уравнение 1-го порядка;

Разностное уравнение 2-го порядка;

Разностное уравнение k-го порядка.

Z-преобразование

Для описания ЦС используется z-преобразование. Для этого необходимо перейти из области t в область р, а затем в область Z.

Преобразование Лапласа имеет вид

.

Приближенно интеграл можно представить в виде суммы

.

Примем , тогда

или

. (8.1)

Пример 1. Найти z-изображение .

.

В правой части уравнения сумма бесконечно убывающей геометрической прогрессии, знаменатель которой равен

.

Таблица 8.2 – Примеры перехода из t в Z и P области

F(t) Р-преобразование Z-преобразование
1(t) t t 2 exp(-at) 1/р 1 /p 2 1 /p 3 1/(p+a) z / z-1 Tz / (z-1) 2 T 2 z(z+1) /(z-1) 3 z/ (z-e -at)

Пример 2. Дана x(t) = 1(t). Требуется получить z-изображение другим способом.

Как и при первом способе, получим изображение единичной функции в виде ряда Тейлора

x(z) = 1 + z -1 + z -2 +…..+z - n .

Умножим на z -1 обе части уравнения

x(z) ∙ z -1 = z -1 + z -2 + z - n -1 ,

и вычтем из первого выражения x(z), полученное x(z) ∙ z -1 .

x(z) – x(z) ∙ z -1 = 1.

Пример 3. Дана функция x(t)= t ∙ 1(t). Получить z-изображение.

x(z) ∙ z -1 = Tz -2 + 2Tz -3 + …;

Теоремы Z- преобразования

1) Суммирование и вычитание. Если f 1 (t) и f 2 (t) имеют z-преобразование, то

2) Умножение на константу. Если f(t) имеет z- преобразование F(z), то

3) Сдвиг во временной области. Если f(t) имеет z- преобразование F(z), то

Пример 4. Найти z- преобразование единичной ступенчатой функции 1(t) при задержке ее на один период квантования Т.

4) Об умножении оригинала на экспоненту (смещение в области изображений). Если f(t) имеет изображение f(z), то

5) Теорема о начальном значении. Если f(t) имеет z- преобразование F(z) и если существует предел , то

Из теоремы следует, что значение дискретного сигнала f(t) при t=0 определяется значением F(z) при z = ∞.

6) Теорема о конечном значении. Если f(t) имеет z-преобразование F(z) и если функция (1-z -1)F(z) не имеет полюсов на окружности единичного радиуса или вне ее, то

Пример 5. Найти конечное значение f(nT) для заданного z-преобразования

Приведем заданную функцию к виду

Определим корни знаменателя, т.е. определим полюса ПФ. Поскольку функция не имеет полюсов на единичной окружности, то

7) Теорема дифференцирования. Если z-преобразование функции f(t,a) есть F(z,a), где а – независимая переменная или константа, то

Пример 6. Определить z-преобразование функции f(t) = te -α t с помощью теоремы дифференцирования.

Обратное z- преобразование

Преобразование Лапласа и его обратное преобразование для непрерывных функций является однозначным. Для z-преобразования обратное z-преобразование не является однозначным. Корректный результат обратного z-преобразования функции F(z) есть f(nT), который равен f(t) только в моменты t = nT.

Рисунок 8.6 иллюстрирует тот факт, что для z-преобразования единичной ступенчатой функции, которое равно z/(z-1) и соответствует последовательности единичных импульсов. Обратное z-преобразование может быть любой функцией, значения которой равны единицы в моменты t=0,T,2T. Неоднозначность обратного z-преобразования является одним из ограничений этого метода.

При анализе и синтезе дискретных и цифровых устройств широко используют так называемое z-преобразование, играю­щее по отношению к дискретным сигналам такую же роль, как интегральные преобразования Фурье и Лапласа по отно­шению к непрерывным сигналам. В данном параграфе изла­гаются основы теории этого функционального преобразова­ния и некоторые его свойства.

Определение z -преобразования. Пусть - числовая последовательность, конечная или бесконечная, со­держащая отсчетные значения некоторого сигнала. Поставим ей в однозначное соответствие сумму ряда по отрицатель­ным степеням комплексной переменнойz :

Назовем эту сумму, если она существует, z -преобразова­нием последовательности к }. Целесообразность введения такого математического объекта связана с тем, что свойства дискретных последовательностей чисел можно изучать, иссле­дуя ихz-преобразования обычными методами математиче­ского анализа.

На основании формулы (2.113) можно непосредственно найти z-преобразования дискретныхсигналов с конечным числом отсчетов. Так, простейшему дискретному сигналу с единс твенным отсчетом соответствует .

Если же, например,

Сходимость ряда. Если в ряде (2.113) число слагаемых бесконечно велико, то необходимо исследовать его сходи­мость. Из теории функций комплексного переменного известно следующее. Пусть коэффициенты рассматриваемого ряда удовлетворяют условию

при любых . ЗдесьМ > 0 иR 0 > 0 - постоянные ве­щественные числа. Тогда ряд (2.113) сходится при всех зна­ченияхz, таких, что |z| >R 0 . В этой области сходимости сумма ряда представляет собой аналитическую функцию переменнойz, не имеющую ни полюсов, ни существенно особых точек.

Рассмотрим,например,дискретный сигнал , образованный одинаковыми единичными отсчетами и служа­щий моделью обычной функции включения. Бесконечный ряд является суммой геометрической прогрессии и сходится при любыхzв кольце .

Сум­мируя прогрессию, получаем

На границе области аналитичности при z= 1эта функция имеет единственный простой полюс.

Аналогично получается z-преобразование бесконечного дис­кретного сигнала , гдеа - некоторое вещественное число. Здесь

Данное выражение имеет смысл в кольцевой области .

z -преобразование непрерывных функций. Полагая, что от­счеты есть значения непрерывной функцииx (t ) в точках , любому сигналуx (t ) можно сопоставить егоz-преобразование при выбранном шаге дискретизации:

Например, если , то соответствующееz-преобразование

.

является аналитической функцией при .

Обратное z -преобразование. ПустьX (z) - функция ком­плексной переменнойz, аналитическая в кольцевой области |z| >R 0 . Замечательное свойствоz-преобразования состоит в том, что функцияX (z) определяет всю бесконечную совокупность отсчетов .

Действительно, умножим обе части ряда (2.113) на множитель :

. (2.115)

а затем вычислим интегралы от обеих частей полученного равенства, взяв в качестве контура интегрирования произ­вольную замкнутую кривую, лежащую целиком в области аналитичности и охватывающую все полюсы функции X (z). При этом воспользуемся –фундаментальным положением, вытекающим из теоремы Коши:

.

Очевидно, интегралы от всех слагаемых правой части обратятся в нуль, за исключением слагаемого с номером т, поэтому

Данная формула называется обратным z -преобразованием .

Связь с преобразованиями Лапласа и Фурье . Определим при сигнал вида идеальнойМИП:

.

Преобразовав его по Лапласу, получим изображение

которое непосредственно переходит в z-преобразование, если выполнить подстановку . Если же положить , то выражение

Z-преобразованием (преобразованием Лорана) называют свёртывание исходного сигнала, заданного последовательностью вещественных чисел во временно́й области, в аналитическую функцию комплексной частоты. Если сигнал представляет импульсную характеристику линейной системы, то коэффициенты Z-преобразования показывают отклик системы на комплексные экспоненты , то есть на гармонические осцилляции с различными частотами и скоростями нарастания/затухания.

Распространенным способом анализа дискретных цифровых последовательностей является z-преобразование (z-transform).

Основное достоинство z-преобразований заключается в простоте математических операций со степенными полиномами, что имеет немаловажное значение при расчетах цифровых фильтров и спектральном анализе.

Произвольной непрерывной функции s(t), равномерно дискретизированной и отображенной отсчетами s k = s(kDt), равно как и непосредственно дискретной функции, можно поставить в соответствие степенной полином по z, последовательными коэффициентами которого являются значения s k:

s k = s(kDt) Û TZ = s k z k = S(z). (8.3.1)

где z = s+jw = r×exp(-jj) - произвольная комплексная переменная. Полином S(z) называют z-образом или z-изображением функции s(kDt). Преобразование имеет смысл для области тех значений z, в которой ряд S(z) сходится, т.е. сумма ряда представляет собой аналитическую функцию переменной z, не имеющую полюсов и особых точек.

Смысл величины z в z-полиноме заключается в том, что она является оператором единичной задержки по координатам функции. Умножение z-образа сигнала s(k) на величину z n означает задержку сигнала на n интервалов: z n S(z) Û s(k-n).

Свойства z-преобразования.

Без углубления в теорию, можно констатировать, что все свойства ДПФ действительны и для z-преобразования. Отметим некоторые из них.

Линейность : Если S(k) = a·x(k)+b·y(k), то S(z) = aX(z)+bY(z). Соответственно, z-преобразование допустимо только для анализа линейных систем и сигналов, удовлетворяющих принципу суперпозиции.

Задержка на n тактов: y(k) = x(k-n).

Y(z) = y(k)×z k = x(k-n)×z k =z n x(k-n)×z k - n = z n x(m)×z m = z n X(z).

Соответственно, умножение z-образа сигнала на множитель z n вызывает сдвиг сигнала на n тактов дискретизации.

Для z-преобразования действительны все известные теоремы о спектрах. В частности, свертка двух сигналов отображается в z-области произведением их z-образов, и наоборот:

s(k) * h(k) Û S(z)H(z), s(k)·h(k) Û S(z) * H(z).

При z = exp(-jwDt) z-преобразование представляет собой особую форму представления дискретных сигналов, при которой на полином S(z) можно ссылаться как на временную функцию (по значениям коэффициентов kDt), так и на функцию частотного спектра сигнала (по значениям аргумента w).

Отображение z-преобразования выполняют на комплексной z-плоскости с Re z и Im z по осям координат (рис. 8.3.1). Спектральной оси частот w на z-плоскости соответствует окружность радиуса:

|z| = |exp(-jwDt)| = = 1.

Подстановка значения какой-либо частоты w в z = exp(-jwDt) отображается точкой на окружности. Частоте w = 0 соответствует точка Re z = 1 и Im z = 0 на правой стороне оси абсцисс. При повышении частоты точка смещается по окружности против часовой стрелки, и занимает крайнее левое положение на частоте Найквиста w N = p/Dt (Re z = -1, Im z = 0).

Z-преобразование позволяет производить разложение сигналов и функций, например передаточных функций фильтров, на короткие составляющие операции свертки, для чего достаточно приравнять z-полином к нулю, найти его корни a i , и переписать полином в виде произведения двучленов:

S(z) = a 0 (z-a 1)(z-a 2)...,

где а 0 - последний отсчет сигнала (коэффициент при старшей степени z).