Что такое молекула главного комплекса гистосовместимости. Главный комплекс гистосовместимости, его основные биологические функции

БРАВЕ РЕШЕТКИ

Схема построения

БРАВЕ́ РЕШЕТКИ, 14 трехмерных геометрических решеток, характеризующих все возможные типы трансляционной симметрии кристаллов. Браве решетки образуются действием операции переноса (трансляции) на любую точку кристалла.

О. Браве в 1848 показал, что все многообразие кристаллических структур можно описать с помощью 14 типов решеток, отличающихся формами элементарных ячеек и симметрией и подразделяющихся на 7 кристаллографических сингоний. Эти решетки были названы решетками Браве.

Решетки Браве различаются симметрией элементарной ячейки, т. е. соотношением между ее ребрами и углами, а также центрированностью.

Для выбора ячейки Браве используют три условия:

Симметрия элементарной ячейки должна соответствовать симметрии кристалла, точнее наиболее высокой симметрии той сингонии, к которой относится кристалл. Ребра элементарной ячейки должны быть трансляциями решетки;

Элементарная ячейка должна содержать максимально возможное число прямых углов или равных углов и равных ребер;

Элементарная ячейка должна иметь минимальный объем.

По характеру взаимного расположения основных трансляций или расположению узлов все кристаллические решетки разбиваются на четыре типа: примитивные (Р ), базоцентрированные (С ), объемно-центрированные (I ), гранецентрированные (F ).

В примитивной Р -ячейке узлы решетки располагаются только по вершинам ячейки, в объемно-центрированной I -ячейке - один узел в центре ячейки, в гранецентрированной F -ячейке - по одному узлу в центре каждой грани, в базоцентрированной С -ячейке - по одному узлу в центрах пары параллельных граней.

Совокупность координат узлов, входящих в элементарную ячейку, называется базисом ячейки. Всю кристаллическую структуру можно получить, повторяя узлы базиса совокупностью трансляций ячейки Браве.

Для некоторых сингоний элементарная ячейка может содержать узлы не только в углах, но и в центре ячейки, всех или некоторых граней. При этом возможен трансляционный перенос не только на периоды элементарной ячейки, но и на половины диагоналей граней ячейки или пространственных диагоналей. Кроме обязательной трансляционной инвариантности, решетка может переходить в себя при других преобразованиях, к которым относятся повороты, отражения и инверсии. Именно эти дополнительные симметрии определяют тип решетки Браве и отличают ее от других.



Типы решеток Браве:

Кубические: примитивная, объемно-центрированная и гранецентрированная;

Гексагональная, тригональная;

Тетрагональные: примитивная и объемно-централизованная;

Ромбические: примитивная, базо-, объемно- и гранецентрированные;

Моноклинные: примитивная и базоцентрированная;

Триклинная.


Сингони́я (от греч. σύν, «согласно, вместе, рядом», и γωνία, «угол» - дословно «сходноугольность») - классификация кристаллографических групп симметрии, кристаллов и кристаллических решёток в зависимости от системы координат (координатного репера). Группы симметрии с единой координатной системой объединяются в одну сингонию.

Кристаллы, принадлежащие к одной и той же сингонии, имеют подобные углы и рёбра элементарных ячеек.

· Триклинная: {\displaystyle a\neq b\neq c}, {\displaystyle \alpha \neq \beta \neq \gamma \neq 90^{\circ }}

· Моноклинная: {\displaystyle a\neq b\neq c}, {\displaystyle \alpha =\gamma =90^{\circ },\beta \neq 90^{\circ }}

· Ромбическая: {\displaystyle a\neq b\neq c}, {\displaystyle \alpha =\beta =\gamma =90^{\circ }}

· Тетрагональная: {\displaystyle a=b\neq c}, {\displaystyle \alpha =\beta =\gamma =90^{\circ }}

· Гексагональная: {\displaystyle a=b\neq c}, {\displaystyle \alpha =\beta =90^{\circ },\gamma =120^{\circ }}

· Кубическая: {\displaystyle a=b=c}, {\displaystyle \alpha =\beta =\gamma =90^{\circ }}

Основные характеристики кристаллических структур

Кристаллические мат-лы характ наличием дальнего порядка, кот характ. тем, что в нем можно выделить некий объем, расположение атома в котором повторяется но всему объему.

В аморфных мат-ах имеет место ближний порядок, кот. характ. тем. что нет повторения объемов.

Крист. структуру удобно описывать с помощью З х мерной сетки прямых липни, которые делят прос-во на параллелепипиды равных размеров. Пересеч линий образ 3 х мерную пространств. решетку. Узлы решетки, как правило, соответствуют расположению атомов в кристалле. Атом колеблется

около этих положений. Если в такой пространственной решетке можно выделить некий объем, перемещением которого в 3 х направ. позволяет выстроив весь кристалл, то гов. Что найдена элемент, ячейка.

Элемент ячейку принято характеризовать 6 параметрами: а, Ь, с - длина ребер параллелепипеда, α, β, γ.

Форма элемент ячейки определяет кристаллографическую систему координат - сингония. В качестве осей выбирают направления ребер -элем, ячейки, а сами ребра являются единицами измерения. Число прямых углов и равных сторон должно быть mах,а объем элем ячейки должен быть min.

Рис. 17. Снежинки-скелетные кристаллы льда

Из опыта известно, что в кристаллическом веществе физические свойства одинаковы в параллельных направлениях, а представление о строении веществ требует, чтобы слагающие кристалл частицы (молекулы, атомы или ионы) находились одна от другой на некоторых конечных расстояниях. Исходя из этих предположений, возможно построить геометрическую схему строения кристаллического . Для этого положение каждой слагающей частицы можно отметить точкой. Вся кристаллическая постройка представится тогда системою точек, закономерно расположенных в пространстве, причем для любых параллельных направлений расстояния между точками будут одинаковыми. Такое правильное расположение точек в пространстве называют

пространственной решеткой, а если каждая точка представляет положение атома, иона или молекулы в кристалле - кристаллической решеткой.

Построение пространственной решетки можно себе представить следующим образом.

А 0 (рис. 18) обозначает центр атома или иона. Пусть ближайший к ней такой же центр обозначается точкой Ль тогда, на основании однородности кристаллического , на расстоянии А 1 А 2 = А 0 А 1 должен находиться центр А 2 ; продолжая это рассуждение далее, можно получить ряд точек: А 0 , А 1 , А 2 , А 3 …

Положим, что ближайшая точка к А 0 в другом направлении будетR 0 , тогда должна существовать частица S 0 на расстоянии R 0 S 0 = Л 0 R 0 и т. д., т. е. получится другой ряд одинаковых точекА 0 , R 0 , S 0 … Если через R 0 , S 0 и т. п. провести линии, параллельные A 0 , A 1 , A 2 , получатся одинаковые ряды R 0 , R 1 , R 2 , S 0 , S 1 , S 2 … и т. д

Рис. 18. Пространственная решетка

Врезультате сделанного построения получилась сетка, узлыкоторой соответствуют центрам частиц, слагающих кристалл.

Если представить себе, что в каждой точке В 0, Со и т. д. восстановлена такая же сетка, как и в A 0 , в результате этого построения получится пространственная решетка, которая в известном смысле и будет выражать геометрическое строение кристаллического .

Кристаллы это что

Теория пространственных решеток, созданная великим русским кристаллографом Е. С. Федоровым, получила блестящее подтверждение при исследовании структуры кристаллов посредством рентгеновских лучей. Эти исследования дают не только картины пространственных решеток, но и точные длины промежутков между частицами, находящимися в их узлах.

Рис. 19. Структура алмаза

При этом выяснилось, что существует несколько типов пространственных решеток, отличающихся как характером расположения частиц, так и химической природой их.

Отметим следующие типы пространственных решеток:

Атомные структурные решетки. В узлах этих решеток расположены атомы каких-либо веществ или элемента, соединяющиеся непосредственно между собою в кристаллическую решетку. Такого типа решетка характерна для алмаза, цинковой обманки и некоторых других минералов (см. рис. 19 и 20).

Ионные структурные решетки. В узлах этих решеток расположены ионы, т. е. атомы, имеющие положительный или отрицательный заряд.

Ионные решетки обычны для неорганических соединений, например галогенов щелочных металлов, силикатов и пр.

Прекрасным примером является решетка каменной соли (NaCl) (рис. 21). В ней ионы натрия (Na) по трем взаимно перпендикулярным направлениям чередуются с ионами хлора (Сl) через промежутки, равные 0,28 миллимикрона.

Рис. 20. Структура цинковой обманки

В кристаллических веществах с подобной структурой промежутки между атомами в молекуле равны промежуткам между молекулами, и само понятие молекулы теряет смысл для таких кристаллов. На рис. 20 каждый ион натрия имеет

сверху, снизу, справа, слева, спереди и сзади на равных от него расстояниях по одному иону хлора, которые принадлежат как к данной «молекуле», так и к соседним «молекулам», и нельзя сказать, с каким именно ионом хлора из этих шести составляет молекулу или составлял бы ее при переходе в газообразное состояние.

Кроме описанных выше типов, существуют молекулярные структурные решетки, в узлах которых находятся не атомы или ионы, а обособленные, электрически нейтральные молекулы. Молекулярные решетки особенно характерны для различных органических соединений или, например, для «сухого льда» - кристаллической СO 2 .

Рис. 21. Кристаллическая решетка каменной соли

Слабые («остаточные») связи между структурными единицами таких решеток обусловливают малую механическую прочность подобных решеток, их низкие температуры плавления и кипения. Существуют и такие кристаллы, в которых сочетаются различные типы решеток. В одних направлениях связи частиц являются ионными (валентными), а в других молекулярными (остаточными). Такое строение приводит к различной механической прочности в разных направлениях, обусловливая резкую анизотропию механических свойств. Так, кристаллы молибденита (MoS 2) легко раскалываются по направлению пинакоида (0001) и придают кристаллам этого минерала чешуйчатый облик, подобно кристаллам графита, где обнаруживается сходная структура. Причиной малой механической прочности в направлении перпендикулярном (0001) является отсутствие в этом направлении ионных связей. Целостность решетки здесь удерживается только связями молекулярного (остаточного) характера.

Принимая во внимание все изложенное выше, легко провести параллель между внутренней структурой аморфного вещества, с одной стороны, и кристаллического, с другой:

1.В аморфном веществе частицы располагаются в беспорядке, как бы закрепляя частично хаотическое состояние жидкости; поэтому некоторые исследователи называют , например , переохлажденными жидкостями.

2.В кристаллическом веществе частицы располагаются в стройном порядке и занимают определенное положение в узлах пространственной решетки.

Различие между кристаллическим и стекловатым (аморфным) веществом можно сравнить с тем различием, которое имеется между дисциплинированной воинской частью и рассеянной толпой. Естественно, что кристаллическое состояние более устойчиво, чем аморфное, и аморфное вещество будет легче растворяться, химически реагировать или плавиться. Природные всегда имеют тенденцию приобретать кристаллическое строение, «раскристаллизовываться», например (аморфный кремнезем) со временем переходит в халцедон - кристаллический кремнезем.

Вещество в кристаллическом состоянии обычно занимает несколько меньший объем, чем в аморфном виде, и имеет больший удельный вес; например альбит - полевой шпат состава NaAlSi 3 O 8 в аморфном состоянии занимает 10 куб. единиц, а в кристаллическом-только 9; 1 см 3 кристаллического кремнезема (кварца) весит 2,54 г, а такой же объем стекловатого кремнезема (сплавленного кварца) - только 2,22 г. Особый случай представляет лед, имеющий меньший удельный вес, чем , взятая в том же количестве.

ИССЛЕДОВАНИЕ КРИСТАЛЛОВ РЕНТГЕНОВСКИМИ ЛУЧАМИ

Вопрос о причинах закономерности в распределении физических свойств в кристаллическом веществе, вопрос о внутренней структуре кристаллов впервые пытался разрешить М. В. в 1749 г. на примере селитры. Этот вопрос затем был более широко разработан уже в конце XVIII в. французским кристаллографом Аюи. Аюи высказал предположение, что каждому веществу свойственна определенная кристаллическая форма. Это положение было в дальнейшем опровергнуто обнаружением явлений изоморфизма и полиморфизма. Указанные явления, играющие большую роль в минералогии, будут рассмотрены нами несколько позже.

Благодаря работам русского кристаллографа Е. С. Федорова и некоторых других кристаллографов, теория пространственных решеток, кратко изложенная в предыдущей главе, была разработана математически, и на основании исследования формы кристаллов были выведены возможные типы пространственных решеток; но только в XX в., благодаря исследованию кристаллов рентгеновскими лучами, эта теория была проверена на опыте и блестяще подтвердилась. Целому ряду физиков: Лауэ, Брэггам, Г. В. Вульфу и др. удалось, используя теорию пространственных решеток, доказать совершенно точно, что в узлах кристаллических решеток находятся в одних случаях атомы, а в других молекулы или ионы.

Открытые Рентгеном в 1895 г. лучи, носящие его имя, представляют один из видов лучистой энергии и по многим свойствам напоминают лучи света, отличаясь от них только длиной волны, которая в несколько тысяч раз меньше длины световых волн.

Рис. 22. Схема получения рентгенограммы кристалла по методу Лауэ:
А - рентгеновская трубка; В - диафрагма; С - кристалл; D - фотопластинка

В 1912 г. Лауэ воспользовался кристаллом, где атомы расположены по пространственной решетке, как дифракционной решеткой для получения интерференции рентгеновских лучей. В поставленном им исследовании узкий пучок параллельных рентгеновских лучей (рис. 22) пропускался через тонкий кристалл цинковой обманки С. На некотором расстоянии от кристалла и пер пендикулярно к пучку лучей была помещена фотографическая пластинка D, защищенная от непосредственного действия боковых рентгеновских лучей и от дневного света свинцовыми экранами.

При продолжительной выдержке в течение нескольких часов экспериментаторы получили картину, сходную с рис. 23.

Для световых лучей, обладающих сравнительно с размерами атомов большой длиной волны, атомные сетки пространственной решетки играют роль практически сплошных плоскостей, и световые лучи полностью отражаются от поверхности кристалла. Гораздо более короткие рентгеновские лучи, отраженные от многочисленных атомных сеток, расположенных на определенных расстояниях друг от друга, идя по одному и тому же направлению, будут интерферировать, то ослабляя, то усиливая друг друга. На фотографической пластинке, поставленной на их пути, усиленные лучи дадут при продолжительной экспозиции черные пятна, расположенные закономерно, в тесной связи с внутренним строением кристалла, т. е. с его атомной сеткой и с особенностями расположенных в ней отдельных атомов.

Если взять пластинку, вырезанную из кристалла в определенном кристаллографическом направлении, и произвести с ней тот жеопыт, то на рентгенограмме будет виден узор, соответствующий симметрии строения кристалла.

Более плотным атомным сеткам соответствуют наиболее темные пятна. Редко усаженные атомами грани дают слабые точки или почти не дают их. Центральное пятно на такой рентгенограмме получается от рентгеновских лучей, прошедших через пластинку

Рис. 23. Рентгенография кристалла каменной соли по оси 4-го порядка

по прямому пути; остальные пятна образуют лучи, отраженные от атомных сеток.

На рис. 23 изображена рентгенофотография кристалла каменной соли, из которого была вырезана пластинка около 3 мм толщиной, параллельная грани куба. Посредине видно большое пятно - след центрального пучка лучей.

Расположение мелких пятен симметрично и указывает на существование оси симметрии 4-го порядка и четырех плоскостей симметрии.

Вторая иллюстрация (рис. 24) изображает рентгенограмму кристалла кальцита. Снимок сделан в направлении оси симметрии 3-го порядка. Буквами О обозначены концы осей симметрии 2-го порядка.

В настоящее время для исследования структуры кристаллических тел пользуются разными методами. Существенной особенностью метода Лауэ, кратко описанного выше, является применение только крупных кристаллов, точно ориентированных по отношению к проходящему пучку рентгеновских лучей.

При невозможности пользоваться крупными кристаллами обычно применяется «метод порошков» (метод Дебая-Шерера). Громадное преимущество этого метода в том, что для него не требуется крупных кристаллов. Перед исследованием испытуемое вещество в тонко измельченном состоянии обычно спрессовывается в небольшой столбик. Этим методом можно исследовать не только спрессованные порошки, но и вести работу над готовыми образцами металлов в виде проволоки, если кристаллики их достаточно мелки.

При наличии большого количества кристаллов отражение может произойти от любой грани каждого кристалла. Поэтому на рентгенограмме, полученной по «методу порошков», обычно получается ряд линий, дающих характеристику исследуемого вещества.

Благодаря применению рентгеновских лучей для исследования кристаллов, наконец, была получена возможность проникнуть в область действительного расположения молекул, ионов и атомов внутри кристаллов и определить не только форму атомной решетки, но и расстояния между частицами, ее составляющими.

Изучение структуры кристаллов при помощи рентгеновских лучей позволило определить кажущиеся размеры ионов, входящих в состав данного кристалла. Метод определения величины радиуса иона или, как обычно говорят, ионного радиуса будет ясен из следующего примера. Исследование такого рода кристаллов как MgO, MgS и MgSe, с одной стороны, и MnO, MnS и MnSe, с другой, дало следующие межионные расстояния:

Для

MgO -2,10 Å МnО - 2,24 Å

MgS - 2,60 Å и MnS - 2,59 Å

MgSe - 2,73 Å MnSa - 2,73 Å,

где Å-обозначает величину „ангстрем», равную одной десятимиллионной миллиметра.

Сравнение приведенных величин показывает, что для межионного расстояния в соединениях MgO и МnО размеры ионов Mg и Мn Играют некоторую роль. В других же соединениях видно, что расстояния между ионами S и Se не зависит от входя щего в соединения другого иона, и ионы S и Se соприкасаются между собою, создавая плотнейшую упаковку ионов.

Рис. 24. Рентгенограмма кристалла кальцита на оси 3-го порядка

Вычисление дает для S -2 ионный радиус, равный 1,84 Å,

а для Se -2 - 1,93 Å. Зная ионные радиусы S -2 и Se -2 , можно вычислить и ионные радиусы других ионов. Так О 2 имеет ионный

радиус, равный 1,32Å. F -1 - 1,33Å, Na +l -0,98Å, Са+ 2 - 1,06,

К +1 - 1,33, Mg +2 -0,78Å, Аl +3 -0,57Å, Si +4 - 0,39Å и т. д. Величина ионного радиуса играет большую роль в вопросах изоморфизма и полиморфизма, что и будет рассмотрено в соответствующих разделах.

Рентгеноструктурное изучение минералов сильно продвинуло вперед современную минералогию, как в вопросах понимания строения минералов, так и связи их строения и состава с другими важными свойствами, как спайность, показатель преломления и др. Значение исследования минералов рентгеновскими лучами прекрасно выражается следующей фразой: «Если кристаллографы познавали минерал в той мере, в какой можно изучить здание, осматривая его снаружи, а химики пытались познать это здание, разрушив его и затем изучая в отдельности входившие в его состав материалы, то рентгеноструктурный анализ впервые позволил нам войти в здание и обозревать его внутреннее расположение и убранство».

Статья на тему Структура кристаллов

Твердые тела разделяют на аморфные тела и кристаллы. Отличие вторых от первых состоит в том, что атомы кристаллов располагаются согласно некоторому закону, образуя тем самым трехмерную периодическую укладку, что называется – кристаллическая решетка.

Примечательно, что название кристаллов происходит от греческих слов «застывать» и «холод», и во времена Гомера этим словом называли горный хрусталь, который тогда считался «застывшим льдом». Сперва данным термином называли лишь ограненные прозрачные образования. Но позже, кристаллами стали звать также непрозрачные и не ограненные тела природного происхождения.

Кристаллическая структура и решетка

Идеальный кристалл представляется в виде периодически повторяющихся одинаковых структур – так называемых элементарных ячеек кристалла. В общем случае, форма такой ячейки – косоугольный параллелепипед.

Следует различать такие понятия как кристаллическая решетка и кристаллическая структура. Первая – это математическая абстракция, изображающая регулярное расположение неких точек в пространстве. В то время как кристаллическая структура – это реальный физический объект, кристалл, в котором с каждой точкой кристаллической решетки связана определенная группа атомов или молекул.

Кристаллическая структура граната — ромб и додекаэдр

Основным фактором, определяющим электромагнитные и механические свойства кристалла, является строение элементарной ячейки и атомов (молекул), связанных с ней.

Анизотропия кристаллов

Главное свойство кристаллов, отличающее их от аморфных тел – это анизотропия. Это означает, что свойства кристалла различны, в зависимости от направления. Так, например, неупругая (необратимая) деформация осуществляется лишь по определенным плоскостям кристалла, и в определенном направлении. В связи с анизотропией кристаллы по-разному реагируют на деформацию в зависимости от ее направления.

Однако, существуют кристаллы, которые не обладают анизотропией.

Виды кристаллов

Кристаллы разделяют на монокристаллы и поликристаллы. Монокристаллами называют вещества, кристаллическая структура которых распространяется на все тело. Такие тела являются однородными и имеют непрерывную кристаллическую решетку. Обычно, такой кристалл обладает ярко выраженной огранкой. Примерами природного монокристалла являются монокристаллы каменной соли, алмаза и топаза, а также кварца.

Немало веществ имеют кристаллическую структуру, хотя обычно не имеют характерной для кристаллов формы. К таким веществам относятся, например, металлы. Исследования показывают, что такие вещества состоят из большого количества очень маленьких монокристаллов — кристаллических зерен или кристаллитов. Вещество, состоящее из множества таких разноориентированных монокристаллов, называется поликристаллическим. Поликристаллы зачастую не имеют огранки, а их свойства зависят от среднего размера кристаллических зерен, их взаимного расположения, а также строения межзеренных границу. К поликристаллам относятся такие вещества как металлы и сплавы, керамики и минералы, а также другие.