Доказательства внеземной жизни. Как ищут жизнь в космосе

Жизнь в космосе - это самая большая мечта научной фантастики. Это также мечта, которую многие храбрые мужчины и женщины смогли реализовать, благодаря многочисленным шаттлам и миссиям на космической станции, выполняемым различными агентствами.

Однако совсем нетрудно забыть, что то время, которое они проводят в космосе, это не только прогулки в открытом космосе и научные эксперименты. Во время своих миссий астронавты должны приспосабливаться к совершенно другому образу жизни.

10. Физические изменения

Человеческое тело начинает вести себя очень странно в условиях космической микрогравитации. Позвоночник, освобождённый от постоянного притяжения Земли, сразу начинает расправляться. Этот процесс может добавить до 5,72 сантиметров к росту человека. Внутренние органы сдвигаются вверх внутри туловища, что уменьшает талию на несколько сантиметров. Сердечнососудистая система изменяет внешний вид человека ещё больше. После исчезновения притяжения, мощные мышцы ног (которые толкают кровь вверх против силы тяжести) начинают выталкивать кровь и жидкости в верхнюю часть тела. Это новое, равное распределение жидкости значительно увеличивает торс, делая обхват ног значительно меньшим. «NASA» в шутку называет это явление «куриными ножками».

В сущности, обычное тело человека превращается в мультяшного силача с тонкими ногами, тонкой талией и диспропорционально большой верхней частью тела. Даже черты лица становятся мультяшными, так как кровоток к верхней части тела делает лицо человека одутловатым и опухшим.

Всё это может звучать довольно страшно, но на самом деле это не так страшно и не причиняет никакого вреда.

9. Синдром космической адаптации


Синдром космической адаптации это по сути два-три дня ужасного недомогания, которое начинается тогда, когда пропадает сила притяжения. От этого синдрома страдают порядка 80 процентов тех, кто отправляется в космос.

Так как тело не весит ничего в условиях микрогравитации, мозг путается. Наша пространственная ориентация (то, как наши глаза и мозг могут определить, месторасположение вещей) обычно основывается на силе притяжения. Когда эта сила пропадает, наш мозг не может разобраться в ситуации, а изменения, которые вдруг происходят в организме, только добавляют путаницы. Мозг разбирается с этой ситуацией, заставляя человека чувствовать ужасное недомогание, похожее на морскую болезнь (именно поэтому это состояние также известно как космическая болезнь). Симптомы могут включать в себя всё, начиная с тошноты и лёгкого дискомфорта до непрекращающейся рвоты и галлюцинаций. Несмотря на то, что обычные лекарства от укачивания могут помочь в данной ситуации, они, как правило, не используются, потому что предпочтение отдаётся постепенному естественному привыканию.

Сенатор Джейк Гарн (Jake Garn), бывший астронавт, является рекордсменом по худшему случаю синдрома космической адаптации в истории. Непонятно, что с ним было на самом деле, но его коллеги по команде убедительно отметили, что «мы не должны рассказывать такие истории». В его часть астронавты до сих пор неофициально используют «Шкалу Гарна», где один Гарн - это состояние страшнейшего недомогания и полной некомпетентности. К счастью, большинство людей не переходят за 0,1 Гарн.

8. Проблемы со сном


Можно с лёгкостью предположить, что сон в тёмном космосе должен быть довольно простым. На самом деле, это довольно большая проблема. Дело в том, что человек, желающий поспать, должен пристегнуть себя к койке, чтобы избежать плавания в пространстве и ударов о разные вещи. В космическом шаттле есть всего четыре спальных койки, поэтому, когда в миссии участвуют больше людей, некоторые астронавты должны использовать спальный мешок, пристёгнутый к стене или просто стул. Как только они достигают космической станции, всё становится немного более комфортным: там есть две одиночные каюты для экипажа, укомплектованные большими окнами для наблюдения за космосом.

Жизнь в космосе (по крайней мере, в той малой его части, где побывали люди) также может привести к массовым перебоям в режиме сна и бодрствования. Международная космическая станция расположена таким образом, что находясь в ней можно увидеть заходы и восходы солнца 16 раз в день. И вот к этому 90-минутному дню люди привыкают очень долгое время.

Другой, не менее большой проблемой является то, что внутри космических кораблей и станций на самом деле очень шумно. Вокруг вас постоянно шумят и гудят фильтры, вентиляторы и все системы. Иногда даже затычки для ушей и снотворное бывают недостаточными для сна, пока астронавты не привыкают к шуму.

Однако если смотреть на вещи оптимистически, качество сна, которое вы получаете в космосе, может быть намного лучше, чем на Земле. Было установлено, что сон в невесомости уменьшает апноэ во сне и храп, что гарантирует гораздо более спокойный сон.

7. Проблемы личной гигиены


Когда мы представляем себе героических космонавтов во время их миссий, гигиена это не то, что приходит нам в голову в первую очередь. Тем не менее, представьте себе кучу людей, живущих в закрытом помещении в течение длительного периода времени. Представив это, становится легко понять, почему астронавты должны относиться к личной гигиене очень серьёзно.

Очевидно, что в условиях невесомости душ это даже не вариант. Даже если бы у вас было достаточно воды на борту, вода из душа просто прилипала бы к телу или плавала бы в виде крошечных шариков. Именно поэтому у каждого космонавта есть специальный гигиенический комплект (расческа, зубная щётка, и другие предметы личной гигиены), который присоединяется к шкафчикам, стенам и другим приспособлениям. Астронавты моют волосы особым шампунем, не требующим ополаскивания, который изначально был разработан для лежачих пациентов в больницах. Они моют свои тела губками. Только бритьё и чистка зубов выполняются таким же образом, как на Земле… за исключением того, что они должны быть предельно осторожными. Если хотя бы один сбритый волосок затеряется, он может попасть в глаза других астронавтом (или ещё хуже, забиться в важную часть аппаратуры) и вызвать серьёзные неприятности.

6. Туалет


Самым частым вопросом, задаваемым людям, которые были в космосе, на удивление является не вопрос «Как выглядела Земля?» и не вопрос «Как вы себя чувствовали при отсутствии силы притяжения?». Вместо этих вопросов, люди спрашивают «Как же вы ходили в туалет?».

Это хороший вопрос, и космические агентства потратили бесчисленные часы, пытаясь как можно больше упростить этот процесс. Первые космические туалеты работали при помощи простого воздушного механизма: воздух всасывал экскременты в контейнер. В нём также была специальная вакуумная трубка для мочеиспускания. В самых первых шаттлах также использовались более простые версии под названием «трубки для опорожнения». Как показано в фильме «Apollo 13», моча из этой трубки попадала прямо в космос.

Одной из наиболее важных систем в туалете была система фильтрации воздуха. Воздух, в котором находились экскременты, был тем же воздухом, которым приходилось дышать, поэтому сбой в фильтрах мог превратить закрытое пространство в очень неприятное место. Со временем, дизайны туалетов стали более разнообразными. Когда женщины вошли в космическую гонку, для них был создана специальная система для мочеиспускания с овальным «Коллектором». Были добавлены и улучшены вращающиеся вентиляторы, методы хранения, а также системы управления отходами. В наши дни, некоторые космические туалеты настолько сложные, что они могут даже превращать мочу обратно в питьевую воду.

Хотите узнать забавный факт, которым можно смутить вашего друга астронавта? Люди, планирующие полететь в космос должны практиковаться в использовании космического туалета при помощи очень специфического устройства, называемого «тренажёр позиции». Это тренировочный туалет с видеокамерой под его краем. Астронавт должен правильно сидеть … глядя в монитор на свою оголённую пятую точку. Это считается одним из «глубоких и страшно хранимых секретов о космических полётах».

5. Одежда


Самой известной космической одеждой, понятное дело, является скафандр. Они бывают разных размеров, цветов и форм, от примитивного SK-1 Юрия Гагарина до громоздкого твёрдого AX-5 Hardshell от NASA. В среднем, скафандр весит примерно 122 килограмма (в обычном состоянии при наличии обычной силы притяжения), и для того, чтобы в него забраться нужно потратить 45 минут. Он настолько громоздкий, что космонавты должны использовать специальные рукоятки для жёсткой нижней туловищной части скафандра (Lower Torso Assembly Donning Handles), чтобы его надеть.

Тем не менее, есть много других вещей о космической одежде, о которых стоит узнать. Жизнь в космосе требует гораздо меньшего гардероба, чем на Земле. Ведь как человек может там испачкаться? Вы редко выходите наружу (а если и выходите, то для этого есть специальный костюм), а внутренняя часть шаттла или станции абсолютно чистая. Вы также намного меньше потеете, так как при нулевой силе притяжения нагрузок практически нет. Команды астронавтов обычно меняют одежду каждые три дня.

Одежда также играла большую роль в борьбе НАСА с проблемой отходов человеческой жизнедеятельности. Первоначальным планом была установка туалетных устройств непосредственно в скафандры. Когда это оказалось невозможным, агентство создало специальную «одежду с максимальной впитываемостью», чтобы она служила в качестве аварийного туалета для космонавта. По сути это специальные высокотехнологичные шорты, которые могут впитать до двух литров жидкости.

4. Атрофия


Несмотря на то, что пропорции человеческой фигуры становятся мультяшными и подобными форме тела супермена, микрогравитация не делает нас более сильными. На самом деле, она работает в противоположном направлении. На Земле мы постоянно используем наши мышцы: не только для поднятия вещей и передвижения, а просто для борьбы с силой притяжения. В космосе отсутствие мышечной деятельности в условиях невесомости быстро приводит к атрофии мышц (мышцы начинают уменьшаться и ослабевать). Со временем ослабевают даже позвоночник и кости, потому что им не нужно поддерживать вес.

Чтобы бороться с этой деградацией и поддерживать мышечную массу, космонавтам приходится очень много упражняться. Например, экипаж МКС (Международной космической станции), должен тренироваться в специальном тренажерном зале по 2,5 часа каждый день.

3. Метеоризм


Метеоризм может быть очень неприятным и постыдным. А когда вы находитесь в космосе, он может ещё и стать самой настоящей угрозой вашему здоровью. По крайней мере, в 1969 году, так считали в NASA, когда они занимались изучением вопроса под названием «кишечный водород и метан у людей, питающихся космической диетой». Это может и звучит забавно, но вопрос был очень реальным и обоснованным. Метеоризм это гораздо больше, чем просто неприятный запах. От него вырабатываются значительные количества метана и водорода, которые являются легковоспламеняющимися газами. Вторая часть проблемы состоит в том, что космическая пища сильно отличается от нормальной диеты землян. Пища, которой питались первые астронавты, вызывала серьёзное газообразование. Их безудержный метеоризм считался потенциальной причиной риска взрыва, так что бедным учёным пришлось анализировать их газы для того, чтобы создать диеты, вызывающее меньшее газообразование.

Сегодня метеоризм не считается огромным риском для жизни. Тем не менее, обратить внимание на то, что вы едите, находясь в закрытом помещении космического корабля, никогда не помешает. Никто не любит того парня, который выпускает газы в лифте целыми месяцами.

2. Космос может испортить мозг


Космонавты, как правило, очень устойчивы к психологическому давлению, в конце концов, космические агентства проводят психологические тесты, чтобы убедиться, что люди смогут выдержать стресс и не сойдут с ума во время миссии. Тем не менее, жизнь в космосе всё-таки может быть опасной для мозга. На самом деле, космос сам по себе может вызвать серьёзные проблемы для людей, которые живут там в течение длительного периода времени. Проблема заключается в космическом излучении: фоновом излучении Вселенной, которое, по сути, делает космос микроволновой печью низкой интенсивности. Атмосфера Земли защищает нас от космического излучения, но как только вы оказываетесь за её пределами, от излучения не существует эффективной защиты. Чем дольше человек проводит в космосе, тем больше его мозг страдает от радиации. Помимо всего прочего, это может ускорить начало болезни Альцгеймера.

Поэтому, когда человечество, в конце концов, приготовится покорить Марс и другие планеты, полёт вполне может нанести непоправимый ущерб нашим мозгам.

1. Чудовищные микробы


«Больные» дома, это здания, которые страдают от большой проблемы с плесенью, и поэтому представляют опасность для здоровья своих обитателей. В них неприятно жить, но обитатели, по крайней мере, всегда могут переехать на новое место или выйти на улицу, чтобы вдохнуть свежего воздуха.

«Больные» космические корабли и станции такой возможности не предусматривают.

Плесень, микробы, бактерии и грибки являются серьёзной проблемой в космосе. Достаточно большие их скопления могут повредить сложное оборудование и вызвать риски для здоровья, и не важно, насколько хорошо дезинфицируют шаттлы, прежде чем они покидают атмосферу, эти маленькие мерзости всегда найдут способ увязаться за нами.

Как только они попадают в космос, микробы перестают вести себя как обычная плесень и становятся чем-то похожим на существа из видеоигр. Они развиваются во влагу, которая в конечном итоге конденсируется в скрытые, свободно плавающие шарики с водой, заражённой микробами. Эти плавающие концентрации воды могут быть размером с баскетбольный мяч, и они настолько переполнены опасными микробами, что могут даже повредить нержавеющую сталь. Это делает их страшной опасностью для экипажа и самой космической станции, если надлежащие меры безопасности не соблюдены.

Не слишком холодно, не слишком жарко – такие условия, приемлемые для жизни встречаются не только на Земле, но и в некоторых других местах в космосе.

Мы, земляне, действительно должны быть счастливы. Наша планета находится в самом правильном месте Солнечной системы. Мы находимся не слишком близко к , как, например или Венера, где средняя температура может достигать более 400 °C. Но и не слишком далеко, как Юпитер или Сатурн, температура которых достигает минус 140 °C.

Но наша планета не единственная, обладающая такими идеальными условиями. Множество других обнаруженных планет и лун тоже находится в так называемой зоне обитания или зоне Златовласки. Планеты или луны, расположенные в такой зоне, находятся на правильном расстоянии от своей звезды, так что там не слишком холодно и не слишком жарко. Средняя температура на этих телах позволяет существование на их поверхности жидкой воды, основного ингредиента для возникновения жизни.

Конечно, расположение планеты в зоне обитаемости необходимое условие, но не достаточное. Например наш загадочный сосед, находится в обитаемой зоне нашей системы, однако для жизни, вероятнее всего, непригоден. Впрочем, колоссальные объемы льда, обнаруженные на Марсе, позволят в отдаленном будущем произвести его колонизацию, создав искусственное магнитное поле и атмосферу, подобную земной.

Нахождение планеты в зоне обитаемости совсем не означает, что на ней есть вода, но это значит что она там потенциально может быть. Эти потенциально пригодные для жизни миры должны соответствовать и другим требованиям, чтобы иметь возможность поддерживать жизнь. Например, иметь атмосферу, быть скалистой планетой (а не быть газовым гигантом) и иметь правильную смесь химических соединений, необходимых для функционирования живых организмов.

Есть ли в космосе жизнь?

Этот вопрос занимал сознание людей очень и очень давно, и возможно сейчас мы наконец близки к получению ответа. Несколько небесных тел были определены как потенциальные кандидаты на существование на них жизни.

Некоторые из них – планеты размера , вращающиеся вокруг звезд, похожих на наше Солнце. Другие называются сверхземлями – их размер может быть до 45 размеров Земли.

Самой известной из этих планет, конечно, является Марс, где было подтверждено существование огромного количество воды, которая находится прямо под его поверхностью. Как уже было сказано выше, Марс со временем мог бы принять человеческую колонию.

Водный лед под поверхностью Марса.

Жизнь на спутниках планет

Сатурн, одна из крупнейших планет нашей Солнечной системы, имеет 62 луны, некоторые из которых – крошечные объекты диаметром 1 км. Другие – больше, чем некоторые планеты. Например, имеющий почти половину размера Земли.

Один из спутников Сатурна недавно оказался в центре внимания охотников за внеземной жизнью: Энцелад. Здесь ученые обнаружили обширные океаны воды, погребенные на глубине 30-40 километрах под поверхностью планеты, которая покрыта льдом и снегом, и где температура в полдень достигает -198°C! Космический зонд “ ” обнаружил присутствие всех жизненно важных ингредиентов для жизни в этих океанах: углерод, азот и водород.

«С точки зрения астробиологии это самое интересное место Солнечной системы», – сказал Крис Маккей, планетарный ученый из НАСА в недавнем новостном отчете.

Сатурн – не единственная планета со спутником, на котором может потенциально существовать жизнь. Луна Юпитера также была целью космической разведки с 1960-х годов.

Прославленная книгой (и фильмом) “2001: Космическая одиссея”, Европа имеет океан жидкой воды, глубиной от 15 до 20 километров, скрывающийся под слоем льда. По крайней мере два будущих проекта НАСА планируют более подробно изучить этот спутник.

«Мы вряд ли можем надеяться на лучшую цель для решения одной из самых больших задач науки – поиска доказательств существовования жизни за пределами Земли».

Однако о внутреннем устройстве этой планеты еще ничего не известно.

«Сейчас мы просто высказываем догадки о содержании атмосферы этой планеты, – сказал Джейсон.

«Будущие наблюдения могут позволить нам впервые исследовать атмосферу потенциально пригодной для жизни планеты. Мы планируем искать воду и, в конечном счете, молекулярный кислород».

Планета 1140b была обнаружена при работе проекта MEarth, который направлен на поиски планет, подобных Земле. Помимо 1140b, проект MEarth обнаружил еще две планеты, подобные Земле, GJ1132b и GJ1214b .

Другая звездная система, в которой доказано существование потенциально пригодных для жизни планет, называется TRAPPIST-1. Система удалена на 39 световых лет от нашей планеты. Расположена она в созвездии Водолея, и последние наблюдения показали существование по меньшей мере семи малых планет, вращающихся вокруг центральной звезды этой системы. Из этих семи планет три найдены в обитаемой зоне.

«Эта планетная система удивительна не только потому, что мы нашли так много планет, но и потому, что все они удивительно похожи по размерам на Землю!» – заявил Michaël Gillon из Университета Льежа в Бельгии.

Две из этих планет, TRAPPIST-1b и TRAPPIST-1c, были дополнительно изучены и, вероятно, являются скалистыми планетами, такими как Земля, что делает их еще более вероятными кандидатами на наличие там жизни.

Другие потенциально пригодные для жизни планеты были обнаружены космическим телескопом NASA «Кеплер». Одна из этих планет, Kepler-452b, расположена в созвездии Лебедя возле звезды, которая очень похожа на наше Солнце. Планета примерно на 60% больше, чем Земля, но является ли она скалистой планетой и имеет ли она жидкую воду, остается загадкой.

Жизнь, как она есть

Но как на самом деле узнать, может ли планета поддерживать жизнь? Пока мы не найдем чужую форму жизни, все наши выкладки лишь теория. Однако недавно опубликованное исследование представило убедительные доказательства того, что один из видов микроорганизмов мог бы выжить на – спутнике Сатурна.

Соединения, найденные в Энцеладе, такие, как метан, диоксид углерода, аммиак и водород, могут быть использованы для питания некоторыми земными микроорганизмами.

В проведенном эксперименте исследователям удалось вырастить микроорганизмы в условиях состава и давления атмосферы, которые, как считается, присутствуют в Энцеладе. Исследователи обнаружили одного выжившего: это микроорганизм, теоретически способный выжить на Энцеладе.

«Микроорганизм Methanothermococcus okinawensis процветает и производит метан в условиях, подобных тем, которые встречаются на ледяной луне Сатурна – Энцеладе», – сообщил Симон Ритманн из Венского университета, возглавляющий новое исследование.

Кроме того, исследователи определили геологический процесс, известный как серпентинизация, который может привести к образованию достаточного количества водорода для выживания какой-либо формы жизни на Энцеладе.

Выводы подтверждают идею о том, что некоторые микроорганизмы могут процветать на Энцеладе и быть ответственными за часть метана, обнаруженного на этой луне.

Но найдем ли мы когда-нибудь разумную жизнь?

«Физиологические возможности нескольких организмов, обнаруженных на Земле, которые способны выживать в экстремальных условиях окружающей среды, позволяют предположить, что где-то во Вселенной может существовать . Но мы можем найти жизнь и у себя на пороге – в Солнечной системе», – заявил Саймон.


Вам могут понравиться эти статьи:


Жизнь в космосе, на других планетах, разумная жизнь: эти словосочетания всегда вызывали трепет при наблюдениях звездного неба и не только. Издревле земляне искали себе подобных. Сначала на Земле, затем на Луне, на Марсе, на других звездах и, наконец, в других Галактиках. Каналы и сезонные изменения на Марсе, наблюдаемые в оптические телескопы, таили в себе надежду, что в скором времени братья по разуму протянут нам свою руку. Но разум подразумевает высокоразвитую цивилизацию. Значит, разумные должны сами заявить о себе. Чем? Конечно, радиосигналами! Но космос молчал. Пресловутые сигналы от «зеленых человечков» оказывались не более, чем пульсарами или иными периодическими радиосигналами от естественных небесных объектов. Необходимо было выработать стратегию поиска внеземных цивилизаций (ВЦ) и в ноябре 1961 года на астрономической конференции в Грин-Бэнк (США) американский ученый Фрэнк Дрэйк (Frank Drake) предложил свою знаменитую формулу Дpейка:

n = N*Р1*Р2*Р3*Р4*(t/T),
где n – число цивилизаций, ищущих контакта [??? - ВВА], в нашей Галактике;
N - количество звезд в Галактике;
Р1 - вероятность того, что звезда имеет планетную систему;
Р2 - вероятность того, что на планете есть жизнь;
Р3 - вероятность того, что на планете есть разум;
Р4 - вероятность того, что на планете есть технология;
t - длительность технологической эры;
T – возраст Галактики.

Но, стоит оговориться, что формула оценивает число ВЦ только биологического типа и привязанных к планетам, и исключает другие формы жизни (кристаллическую и т.п.), и к тому же оценивает только одну планету, пригодную для жизни, как в Солнечной системе. В 1979 году в формуле Дрейка появлися дополнительный коэффициент Р5, учитывающий вероятность выхода ВЦ на уровень энергопотребления. В 2005 году был добавлен коэффициент Р6 (доля коммуникативных цивилизаций). Итак, попробуем разобраться насколько может быть справедлива эта формула, и сколько же ВЦ могут существовать на досягаемом расстоянии, например в Нашей Галактике. Мы можем себе представить вокруг каждой звезды, имеющей планетную систему, зону, где температурные условия не исключают возможности развития жизни.
Вряд ли она возможна на планетах вроде Меркурия, температура освещённой Солнцем части которого выше температуры плавления свинца, или вроде Нептуна, температура поверхности которого -200°C. Нельзя, однако, недооценивать огромную приспособляемость живых организмов к неблагоприятным условиям внешней среды. Следует еще заметить, что для жизнедеятельности живых организмов значительно “опаснее” очень высокие температуры, чем низкие, так как простейшие виды вирусов и бактерий могут, как известно, находится в состоянии анабиоза при температуре, близкой к абсолютному нулю. Для эволюции живых организмов от простейших форм (вирусы, бактерии) к разумным существам необходимы огромные интервалы времени так как “движущей силой” такого отбора являются мутации и естественный отбор - процессы, носящие случайный характер. Именно через большое количество случайных процессов реализуется закономерное развитие от низших форм жизни к высшим. На примере нашей планеты Земли мы знаем, что этот интервал времени, по-видимому, превосходит миллиард лет. Поэтому только на планетах, обращающихся вокруг достаточно старых звёзд, мы можем ожидать присутствия высокоорганизованных живых существ. При современном состоянии астрономии мы можем только говорить об аргументах в пользу гипотезы о множественности планетных систем и возможности возникновения на них жизни. Для того, чтобы говорить о жизни, надо по крайней мере считать, что достаточно старые звёзды имеют планетные системы. Для развития жизни на планете необходимо, чтобы выполнялся рад условий общего характера. И совершенно очевидно, что далеко не на каждой планете может возникнуть жизнь. Кроме того, необходимо, чтобы излучение звезды на протяжении многих сот миллионов и даже миллиардов лет оставалось приблизительно постоянным.
Например, обширный класс переменных звёзд, светимости которых сильно меняются со временем (часто периодически), должен быть исключён из рассмотрения. Однако большинство звёзд излучает с удивительным постоянством. Например, согласно геологическим данным, светимость нашего Солнца за последние несколько миллиардов лет оставалась постоянной с точностью до нескольких десятков процентов. Чтобы на планете могла появится жизнь, её масса не должна быть слишком маленькой. С другой стороны слишком большая масса тоже является неблагоприятным фактором, на таких планетах невелика вероятность образования твёрдой поверхности невелика, они обычно представляют из себя газовые шары с быстро растущей к центру плотностью (например Юпитер и Сатурн). Так или иначе, массы планет, пригодных для развития жизни, должны быть ограничены как сверху, так и снизу. По-видимому, нижняя граница возможностей массы такой планеты близка к нескольким сотым массы Земли, а верхняя в десятки раз превосходит земную. Очень большое значение имеет химический состав поверхности и атмосферы. Как видно, пределы параметров планет, пригодных для жизни, достаточно широки. В настоящее время жизнь определяется не через внутреннее строение и вещества, которые её присущи, а через её функции: “управляющая система”, включающая в себя механизм передачи наследственной информации, обеспечивающей сохранность последующим поколениям. Тем самым благодаря неизбежным помехам при передаче такой информации наш молекулярный комплекс (организм) способен к мутациям, а следовательно к эволюции. Для изучения жизни нужно прежде всего определить понятие “живое вещество”. Этот вопрос является далеко не простым. Возникновению живого вещества на Земле (и, как можно судить по аналогии, на других планетах) предшествовала довольно длительная и сложная эволюция химического состава атмосферы, в конечном итоге приведшая к образованию ряда органических молекул. Эти молекулы впоследствии послужили как бы “кирпичиками” для образования живого вещества.
По современным данным планеты образуются из первичного газово-пылевого облака, химический состав которого аналогичен химическому составу Солнца и звёзд, первоначальная их атмосфера состояла в основном из простейших соединений водорода - наиболее распространённого элемента в космосе. Больше всего было молекул водорода, аммиака, воды и метана. Кроме того первичная атмосфера должна была быть богата инертными газами - прежде всего гелием и неоном. В настоящее время благородных газов на Земле мало так как они в своё время диссипировали (улетучились) в межпланетное пространство, как и многие водородсодержащие соединения. Однако, по видимому, решающую роль в установлении состава земной атмосферы сыграл фотосинтез растений, при котором выделяется кислород. Не исключено, что некоторое, а может быть даже существенное, количество органических веществ было принесено на Землю при падениях метеоритов и, возможно, даже комет. Некоторые метеориты довольно богаты органическими соединениями. Подсчитано, что за 2 млрд. лет метеориты могли принести на Землю от 108 до 1012 тонн таких веществ. Также органические соединения могут в небольших количествах возникать в результате вулканической деятельности, ударов метеоритов, молний, из-за радиоактивного распада некоторых элементов. Имеются довольно надёжные геологические данные, указывающие на то, что уже 3.5 млрд. лет назад земная атмосфера была богата кислородом. С другой стороны возраст земной коры оценивается геологами в 4.5 млрд. лет. Жизнь должна была возникнуть на Земле до того, как атмосфера стала богата кислородом, так как последний в основном является продуктом жизнедеятельности растений.
Жизнь на Земле возникла 4.0-4.4 млрд. лет назад. Механизм усложнения строения органических веществ и появление у них свойств, присущих живому веществу, в настоящее время ещё недостаточно изучен, хотя в последнее время наблюдаются большие успехи в этой области биологии. Но уже сейчас ясно, что подобные процессы длятся в течение миллиардов лет. Любая сколь угодно сложная комбинация аминокислот и других органических соединений - это ещё не живой организм. Можно, конечно, предположить, что при каких-то исключительных обстоятельствах где-то на Земле возникла некая “праДНК”, которая и послужила началом всему живому. Вряд ли, однако, это так, если гипотетическая “праДНК” была вполне подобна современной. Дело в том, что современная ДНК сама по себе совершенно беспомощна. Она может функционировать только при наличии белков-ферментов. Думать, что чисто случайно, путём “перетряхивания” отдельных белков - многоатомных молекул, могла возникнуть такая сложнейшая машина, как “праДНК” и нужный для её функционирования комплекс белков-ферментов - это значит верить в чудеса. Однако можно предположить, что молекулы ДНК и РНК произошли от более примитивной молекулы.
Для образовавшихся на планете первых примитивных живых организмов высокие дозы радиации могут представлять смертельную опасность, так как мутации будут происходить так быстро, что естественный отбор не поспеет за ними. Заслуживает внимания ещё такой вопрос: почему жизнь на Земле не возникает из неживого вещества в наше время? Объяснить это можно только тем, что ранее возникшая жизнь не даст возможность новому зарождению жизни. Микроорганизмы и вирусы буквально съедят уже первые ростки новой жизни. Нельзя полностью исключать и возможность того, что жизнь на Земле возникла случайно. Существует ещё одно обстоятельство, на которое, может быть, стоит обратить внимание. Хорошо известно, что все “живые” белки состоят из 22 аминокислот, между тем как всего аминокислот известно свыше 100. Не совсем понятно, чем эти кислоты отличаются от остальных своих “собратьев”. Нет ли какой-нибудь глубокой связи между происхождением жизни и этим удивительным явлением? Если жизнь на Земле возникла случайно, значит, жизнь во Вселенной редчайшее (хотя, конечно, ни в коем случае не единичное) явление. Для данной планеты (как, например, наша Земля) возникновений особой формы высокоорганизованной материи, которую мы называем “жизнью”, является случайностью. Но в огромных просторах Вселенной возникающая таким образом жизнь должна представлять собой закономерное явление. Волнующий вопрос о жизни на других планетах занимает умы астрономов вот уже несколько столетий. Возможность самого существования планетных систем у других звёзд только сейчас становится предметом научных исследований. Раньше же вопрос о жизни на других планетах был областью чисто умозрительных заключений. Между тем Марс, Венера и другие планеты Солнечной системы уже давно известны как несамосветящиеся твёрдые небесные тела, окружённые атмосферами. Давно стало ясно, что в общих чертах они напоминают Землю, а если так, почему бы на них не быть жизни, даже высокоорганизованной, и, кто знает, разумной? Вполне естественно считать, что физические условия, господствовавшие на только что образовавшихся из газово-пылевой среды планетах земной группы (Меркурий, Венера, Земля, Марс), были очень сходными, в частности их первоначальные атмосферы были одинаковы.
Основными атомами, входящими в состав тех молекулярных комплексов, из которых образовалось живое вещество, являются водород, кислород, азот и углерод. Роль последнего особенно важна. Углерод - четырёхвалентный элемент. Поэтому только углеродные соединения приводят к образованию длинных молекулярных цепей с богатыми и изменчивыми боковыми ответвлениями. Именно к такому типу принадлежат различные белковые молекулы. Часто заменителем углерода называют кремний. Кремний довольно обилен в космосе. В атмосферах звёзд его содержание лишь в 5-6 раз меньше, чем углерода, то есть достаточно велико. Вряд ли, однако, кремний может играть роль “краеугольного камня” жизни. По некоторым причинам его соединения не могут обеспечить такое большое разнообразие боковых ответвлений в сложных молекулярных цепочках, как углеродные соединения. Между тем богатство и сложность таких боковых ответвлений именно и обеспечивает огромное разнообразие свойств белковых соединений, а также исключительную “информативность” ДНК, что совершенно необходимо для возникновения и развития жизни. Важнейшим условием для зарождения жизни на планете является наличие на её поверхности достаточно большого количества жидкой среды.
В такой среде находятся в растворённом состоянии органические соединения и могут создаваться благоприятные условия для синтеза на их основе сложных молекулярных комплексов. Кроме того, жидкая среда необходима только что возникшим живым организмам для защиты от губительного воздействия ультрафиолетового излучения, которое на начальном этапе эволюции планеты может свободно проникать до её поверхности. Можно ожидать, что такой жидкой оболочкой может быть только вода и жидкий аммиак, многие соединения которого, кстати, по своей структуре аналогичны органическим соединениям, благодаря чему в настоящее время рассматривается возможность возникновения жизни на аммиачной основе. Образование жидкого аммиака требует сравнительно низкой температуры поверхности планеты. Вообще значение температуры первоначальной планеты для возникновения на ней жизни весьма велико.
Если температура достаточно высока, например выше 100°C, а давление атмосферы не очень велико, на её поверхности не может образоваться водяная оболочка, не говоря уж об аммиачной. В таких условиях говорить о возможности возникновения жизни на планете не приходится. Исходя из сказанного, мы можем ожидать, что условия для возникновения в отдалённом прошлом жизни на Марсе и Венере могли быть, вообще говоря, благоприятными. Жидкой оболочкой могла быть только вода, а не аммиак, что следует из анализа физических условий на этих планетах в эпоху их формирования. В настоящее время эти планеты достаточно хорошо изучены, и ничто не указывает на присутствие даже простейших форм жизни ни на одной из планет солнечной системы, не говоря уже о разумной жизни. Однако получить явные указания на наличие жизни на той или иной планете путём астрономических наблюдений очень трудно, особенно если речь идет о планете в другой звёздной системе. До этого мы только определили самые общие условия, при которых во Вселенной может (не обязательно должна) возникнуть жизнь. Такая сложная форма материи, как жизнь, зависит от большого числа совершенно не связанных между собой явлений.
Но все эти рассуждения касаются только простейших форм жизни. Когда мы переходим к возможности тех или иных проявлений разумной жизни во Вселенной, мы сталкиваемся с очень большими трудностями. Жизнь на какой-нибудь планете должна проделать огромную эволюцию, прежде чем стать разумной. Движущая сила этой эволюции - способность организмов к мутациям и естественный отбор. В процессе такой эволюции организмы всё более и более усложняются, а их части - специализируются. Усложнение идёт как в качественном, так и в количественном направлении. Можем ли мы, однако, такой процесс считать универсальным для эволюции жизни во всех уголках Вселенной? Скорее всего – нет! Ведь в принципе при совершенно других условия средством обмена информацией между особями могли бы стать не продольные колебания атмосферы (или гидросферы), в которой живут эти особи, а нечто совершенно другое. Почему бы не представить себе способ обмена информацией, основанный не на акустических эффектах, а, скажем, на оптических или магнитных? И вообще - так ли уж обязательно, чтобы жизнь на какой-нибудь планете в процессе её эволюции стала разумной? Между тем эта тема с незапамятных времён волновала человечество. Говоря о жизни во Вселенной, всегда, прежде всего, имели в виду разумную жизнь. Одиноки ли мы в безграничных просторах космоса?
Философы и учёные с античных времён всегда были убеждены, что имеется множество миров, где существует разумная жизнь. Никаких научно обоснованных аргументов в пользу этого утверждения не приводилось. Рассуждения, по существу, велись по следующей схеме: если на Земле - одной из планет Солнечной системы есть жизнь, то почему бы ей не быть на других планетах? Этот метод рассуждения, если его логически развивать, не так уж плох. И вообще страшно себе представить, что из 1020 - 1022 планетных систем во Вселенной, в области радиусом в десяток миллиардов световых лет разум существует только на нашей крохотной планетке... Но может быть, разумная жизнь - чрезвычайно редкое явление. Может быть, например, что наша планета как обитель разумной жизни единственная в Галактике, причем далеко не во всех галактиках имеется разумная жизнь. Можно ли, вообще, считать работы о разумной жизни во Вселенной научными? Вероятно, всё-таки, при современном уровне развития техники можно, и необходимо заниматься этой проблемой уже сейчас, тем более она может вдруг оказаться чрезвычайно важной для развития цивилизации... Обнаружение любой жизни, особенно разумной представляет могло бы иметь огромное значение. Поэтому уже давно предпринимаются попытки обнаружить и установить контакт с другими цивилизациями.
Ученые пришли к выводу, что наиболее естественный и практически осуществимый канал связи между какими-нибудь цивилизациями, разделёнными межзвёздными расстояниями, может быть установлен с помощью электромагнитных волн. Очевидное преимущество такого типа связи - распространение сигнала с максимально возможной в природе скоростью, равной скорости распространения электромагнитных волн, и концентрация энергии в пределах сравнительно небольших телесных углов без сколько-нибудь значительного рассеяния. Главными недостатками такого метода являются маленькая мощность принимаемого сигнала и сильные помехи, возникающие из-за огромных расстояний и космических излучений. Сама природа подсказывает нам, что передачи должны идти на длине волны 21 сантиметр (длина волны излучения свободного водорода), при этом потери энергии сигнала будут минимальны, а вероятность приёма сигнала внеземной цивилизацией гораздо больше, чем на случайно взятой длине волны. Вероятней всего, что и ожидать сигналов из космоса мы должны на той же волне.
Но, допустим, что мы обнаружили какой-то странный сигнал. Теперь мы должны перейти к следующему, довольно важному вопросу. Как распознать искусственную природу сигнала? Скорее всего он должен быть модулирован, то есть его мощность со временем должна регулярно меняться. На первых порах он должен, по видимому, быть достаточно простым. После того как сигнал будет принят (если, конечно, это случиться), между цивилизациями будет установлена двухсторонняя радиосвязь, и тогда можно начинать обмен более сложной информацией. Конечно, не следует при этом забывать, что ответы могут при этом быть получены не ранее, чем через несколько десятков или даже сотен лет. Однако исключительная важность и ценность таких переговоров безусловно должна компенсировать их медленность. Радионаблюдения за несколькими ближайшими звёздами уже несколько раз проводились в рамках крупного проекта “ОЗМА” в 1960 году и при помощи телескопа Национальной радиоастрономической лаборатории США в 1971 году. Разработано большое количество дорогих проектов установления контактов с другими цивилизациями, но они не финансируются, а реальных наблюдений пока проводилось очень мало. Несмотря на очевидные преимущества космической радиосвязи, мы не должны упускать из виду и другие типы связи, так как заранее нельзя сказать с какими сигналами мы можем иметь дело. Во первых это оптическая связь, главный недостаток которой - очень слабый уровень сигнала, ведь несмотря на то, что угол расхождения светового пучка удалось довести до 10 -8 рад., ширина его на расстоянии нескольких световых лет будет огромной.
Также связь может осуществляться в помощью автоматических зондов. По вполне понятным причинам этот вид связи землянам пока недоступен, и не станет доступным даже с началом использования управляемых термоядерных реакций. При запуске такого зонда мы бы столкнулись с огромным количеством проблем, если даже считать время его полёта к цели приемлемым. К тому же на расстоянии менее 100 световых лет от солнечной системы уже имеется более 50000 звёзд. На какую из них посылать зонд? Таким образом, установление прямого контакта с внеземной цивилизацией с нашей стороны пока невозможно. Но может быть нам стоит только подождать? Вот здесь нельзя не упомянуть об очень актуальной проблеме НЛО на Земле. Различных случаев “наблюдения” инопланетян и их активности уже замечено так много, что ни в коем случае нельзя однозначно опровергать все эти данные. Можно только сказать что многие из них, как оказывалось со временем, являлись выдумкой или следствием ошибки. Но это уже тема других исследований. Если где-то в космосе будет обнаружена какая-то форма жизни или цивилизация, то мы совершенно, даже приблизительно, не можем себе представить, как будут выглядеть её представители и как они отреагируют на контакт с нами.
А вдруг эта реакция будет, с нашей точки зрения, отрицательной. Тогда хорошо если уровень развития внеземных существ ниже, чем наш. Но он может оказаться и неизмеримо выше. Такой контакт, при нормальном к нам отношении со стороны другой цивилизации, представляет наибольший интерес. Но об уровне развития инопланетян можно только догадываться, а об их строении нельзя сказать вообще ничего. Многие учёные придерживаются мнения, что цивилизация не может развиваться дальше определённого предела, а потом она либо погибает, либо больше не развивается. Например, немецкий астроном фон Хорнер назвал шесть причин, по его мнению способных ограничить длительность существования технически развитой цивилизации:
1) полное уничтожение всякой жизни на планете;
2) уничтожение только высокоорганизованных существ;
3) физическое или духовное вырождение и вымирание;
4) потеря интереса к науке и технике;
5) недостаток энергии для развития очень высокоразвитой цивилизации;
6) время жизни неограниченно велико;

Последнюю возможность фон Хорнер считает совершенно невероятной. Далее, он считает, что во втором и третьем случаях на той же самой планете может развиться ещё одна цивилизация на основе (или на обломках) старой, причём время такого “возобновления” относительно невелико. Достижения последних лет позволили обнаружить у других звезд более 200 внесолнечных планет, и мы приблизились к тому порогу, за которым можно будет определить состав атмосфер экзпопланет. Если в атмосфере найдут молекулы кислорода и углекислого газа, то вопрос о существовании жизни на других планетах можно считать решенным. Останется только узнать разумная это жизнь или нет.
В последнее время планеты у других звезд открывают все чаще. Эти открытия уже доступны небольшим телескопам, а число известных экзопланет превысило две сотни. Пока астрономам удается обнаружить лишь планеты-гиганты типа Юпитера. Но чувствительность аппаратуры увеличивается с каждым годом, а методы исследований совершенствуются день ото дня, поэтому недалек тот момент, когда в распоряжение ученых будет предоставлена «земля» у другого солнца. Первым вопросом, конечно, будет – пригодна ли она для жизни или даже есть ли на ней жизнь и разумные существа? На этот вопрос можно будет ответить, сравнивая с экзопланетами нашу Землю. Поскольку, на первых порах, ученые смогут воспользоваться только спектром планеты, точнее, спектром ее атмосферы, для сравнения нужно будет использовать данные об атмосфере Земли на протяжении всей ее истории. Охватить такой большой период необходимо, поскольку возраст звезд весьма различен, значит, и различен возраст самих планет. Вновь открытая планета может находиться как на начальной, так и на средней, и на конечной стадии своей эволюции. Для каждой из них нужно будет рассматривать наиболее близкий по времени период развития нашей планеты. В то же время, зная возраст внесолнечной планеты и состав ее атмосферы, можно будет оценивать состояние атмосферы Земли в аналогичную эпоху.
Астрономы Lisa Kaltenegger из Гарвардско-Смитсоновского Центра Астрофизики (CfA) и Wesley Traub из Лаборатории Реактивного Движения - JPL (NASA), уже сейчас предложили четко разграничить исторические эпохи, чтобы при открытии очередного «экзота» сразу относить его к группе планет, находящихся на той или иной стадии развития.Геологические «временные записи» показывают, что атмосфера Земли эффективно изменялась в течение 4,5 миллиардов лет, со времени ее образования. Частично это происходило из-за появляющихся новых форм жизни, частично из-за иных химических превращений. Распределяя состав атмосферы в течение всей ее истории, Kaltenegger и Traub предлагают искать аналогичные атмосферы у других миров. Таким образом, можно определить, есть ли на исследуемой планете жизнь и на какой стадии развития она находится. Из сотен экзопланет только четыре могут наблюдаться непосредственно. Все они – газовые гиганты типа Юпитера.
До настоящего времени атмосферу смогли обнаружить только у одного из этих миров. Это сделал David Charbonneau при помощи космического телескопа «Спитцер». Для обнаружения небольших планет типа Земли готовятся новые проекты, такие как, например, Искатель Землеподобных Планет - TPF (NASA) и Darwin (ESA). Новые космические телескопы смогут непосредственно изучать соседние миры, похожие на наш. Астрономам особенно важно пронаблюдать видимые и инфракрасные спектры отдаленных «земель», т.к. именно эти отпечатки светового и теплового излучения несут больше всего информации относительно атмосферного состава. Каждый определенный газ создает линии излучения (поглощения) в спектрах небесных тел, подобно отпечаткам пальцев или генома ДНК. Изучая эти «отпечатки», астрономы с большой точностью могут указать на присутствие того или иного газа в атмосфере и даже выявить наличие облаков.В наше время атмосфера Земли состоит на три четверти из азота и на ¼ из кислорода, включая небольшой процент других газов (углекислый газ и метан и т.п). Но четыре миллиарда лет тому назад кислород в атмосфере полностью отсутствовал. Дальнейшее развитие воздушной оболочки Земли ученые предложили разграничить шестью продолжительными эпохами, каждая из которых характеризуется своей определенной смесью газов. Если астрономы найдут планету со спектром подобным спектру одной из смоделированных эпох Земли, то они смогут охарактеризовать ее геологическое состояние и возможность появления на ней жизни. Для того, чтобы лучше представить себе временные отрезки 4,5 миллиардной истории нашей планеты, Kaltenegger, Traub, а так же их коллега из CfA Ken Jucks, расписали их на протяжении одного года, начиная с 1 января, которым они обозначили день образования Земли. В результате получилась такая картина….
Эпоха 0 (ноль) - 12 февраля (3,9 миллиардов лет тому назад). В Эпохе 0 молодая Земля обладала мощной атмосферой, состоящей по большей части из азота, углекислого газа и сероводорода. Дни были короче, а Солнце едва проглядывало сквозь бурую пелену облаков в виде красного диска. Один-единственный океан, который полностью покрывал нашу планету, имел грязно-коричневый оттенок и подвергался постоянной бомбардировке прилетающих их космоса метеоритов и комет. Углекислый газ помогал согревать наш мир в то время, потому что от солнечного тепла до поверхности Земли доходила только треть сегодняшнего количества. Хотя никакие ископаемые не существовали в этот период, признаки органических веществ того времени, возможно, сохранились в скалах Гренландии.
Эпоха 1 – 17 марта (3,5 миллиарда лет тому назад). Пейзаж планеты представлял из себя цепи вулканических островов, повсеместно «протыкающих» единый океан. Первыми живыми на Земле стали анаэробные бактерии, которые могли жить без кислорода. Эти бактерии производили большие количества метана, который и характерен для состава атмосферы через миллиард лет после рождения планеты. Если аналогичные бактерии существуют на другой планете, то будущие миссии (TPF и Darwin) смогли бы обнаружить продукт их производства в атмосфере «экзота».
Эпоха 2 – 5 июня (2,4 миллиарда лет тому назад). Концентрации метана в атмосфере достигла максимальной. Доминирующими газами были также азот и углекислый газ. Начали формироваться континентальные платформы. Появились сине-зеленые водоросли, которые начали вырабатывать большое количество кислорода.
Эпоха 3 – 16 июля (2 миллиарда лет тому назад). Кислорода в атмосфере становится все больше, и он начинает «конкурировать» с метаном и углекислым газом, заставляя задыхаться анаэробные бактерии. Окружающий пейзаж стал чрезвычайно влажным с продолжающейся активной вулканической деятельностью. Зеленовато-коричневые облака висели над мутной серой водой. Кислородная революция одержала верх.
Эпоха 4 – 13 октября (800 миллионов лет тому назад). Уровень кислорода продолжает увеличиваться. На этот раз период совпадает со временем, известным в геологической истории как Кембрийский Прорыв (Cambrian Explosion). Начавшийся 550 - 500 миллионов лет тому назад, период Кембрия является одним из самых значимых отправных пунктов эволюции жизни на Земле. Это - время появления многих видов морских животных, о которых мы можем судить по окаменелостям, обнаруженным в толще скал. Земля покрывается болотами, морями и характерна малой вулканической активностью. Океаны кишат живыми организмами.
Эпоха 5 – 8 ноября (300 миллионов лет тому назад). Жизнь выбирается из океанов на сушу. Атмосфера Земли достигает своего стабильного состояния с преобладающим количеством азота и кислорода. Это было начало Мезозоя, когда на планете господствовали динозавры. Пейзаж выглядел похожим на парк Юрского периода. Эпоха 6 – 31 декабря, 11 часов 59 минут 59 секунд (текущее время). Человеческая деятельность способна изменить состав атмосферы. Это незначительное изменение, но его вполне можно было бы зафиксировать в спектре Земли современными наблюдательными средствами, если бы мы наблюдали нашу планету с ближайших звезд. Гигантские флотилии будущих инфракрасных космических телескопов смогут сделать подобные измерения и у более далеких планет. Максимум через несколько десятков лет мы узнаем, одинока ли наша голубая планета во Вселенной или рядом есть разумные соседи, которые ждут встречи с нами….
На Земле поиски внесолнечных планет-транзитов идут полным ходом при помощи постоянно действующей Сети Автоматизированных Телескопов (HAT). Задачей HAT является фиксация изменения блеска тысяч звезд. Если у некоторой звезды имеются планеты, а плоскость их орбит лежит в плоскости луча зрения, то при прохождении планеты перед звездой, блеск последней падает. Это «угасание» фиксируется телескопами из HAT, а звезда заносится в списки кандидатов для более детального изучения. Телескопы автоматизированной сети проводят в наблюдениях каждую ясную ночь, покрывая область неба в 300 раз превышающую размер полной Луны за одну экспозицию. Одним из таких кандидатов оказалась звезда ADS 16402 - один из членов двойной системы, которая видима даже в бинокль в созвездии Ящерицы (Lacerta). Блеск ее снизился всего на 1.5% на время около двух часов. Этого оказалось достаточно, чтобы чувствительные приемники HAT поймали ее в свою «сеть».
Возраст звезд системы, обращаются друг около друга на расстоянии около 1500 а.е., составляет около 3,6 миллиардов лет. Около одной из них и была найдена планета HAT-P-1. Она напоминает прототип планеты Солярис из одноименного фантастического романа Станислава Лема. Но, в отличии от мыслящего (разумного) планеты-океана, обнаруженная планета имеет плотность, в 4 раза меньшую, чем у воды. Это ставит ее в ранг редких планет, хотя в остальном новое небесное тело похоже на обычные газовые гиганты. HAT-P-1 находится на расстоянии 450 световых лет от Земли. Она больше, чем Юпитер в 1,38 раза, но имеет только половину его массы. Планета обращается по орбите вокруг центрального светила с периодом 4,5 суток на расстоянии 0,05 а.е. от него. Из одиннадцати известных транзитных внесолнечных планет, кроме HAT-P-1, подобная «распухнутость» обнаружена еще у планеты HD209458b, но последняя все же плотнее своей соперницы на 4 процента. Теоретики пытались объяснить низкую плотность планет, но пока безуспешно, и это вновь грозит пересмотром существующих теорий образований планет. Как видим, земляне из всех сил стараются приблизить долгожданный момент встречи с ВЦ или хотя бы косвенно узнать, что мы не одни. Может быть нам, живущим сейчас, повезет.

Источник - Астрогалактика

Одиноки ли мы во Вселенной? Ученые дают однозначный ответ: нет. Количество возможных пристанищ жизни настолько велико, что где-то жизнь точно есть. Вопрос только, в каком виде. Парадокс Ферми говорит, что мы не видим никаких следов инопланетян и внеземной жизни, хотя полагаем, что она есть, поэтому ученые и организации всего мира пристально вглядываются в космос, в надежде запечатлеть, поймать, увидеть, нащупать след пребывания в космосе кого-либо еще кроме нас.

Самым крупным спутником планеты Сатурн по праву считается , который несмотря на низкую температуру воздуха и ледяную поверхность, составом своей атмосферы и стабильным наличием воды на ранних стадиях ее развития. Именно этим он и интересен ученым - предполагается, что в его подземных водоемах могут существовать видимые невооруженным глазом микроорганизмы. Космическое агентство NASA намерено поискать их в рамках своей следующей программы «Стрекоза» (Dragonfly).

Сегодня мы попробуем выяснить, возможна ли жизнь в Космосе. В Космосе — то есть на других планетах Солнечной системы и в открытом Космосе, в других Галактиках.

На данный момент официально установлено, что полноценной жизни в Космосе, других Галактиках нет и не может быть. То есть планеты, подобной Земле с населением живых существ, больше нет, по-крайней мере — нам об этом неизвестно, а мы будем исходить из того, что нам известно.

Давайте сначала кратко разберемся с основными понятиями.

Вселенная — это в контексте нашей темы все, что есть вне нашей планеты за ее пределами, астрономическая Вселенная, или Метагалактика. То есть это все, включая планеты Солнечной системы и все за пределами ее, это все, что мы можем представить из имеющегося в Космосе.

Солнечная система - система планет с центральной звездой - Солнцем и космическими естественными объектами вращающимися вокруг этой звезды. Главная теория возникновения Солнца - оно образовалось из газопылевого облака путем гравитационного сжатия около 4,57 млрд лет назад (и еще столько же ему осталось жить по прогнозам).

Самые близкие к Солнцу планеты — Меркурий, Венера, Земля и Марс, или планеты земной группы, их состав — силикаты и металлы.

Массивнее и удаленнее от Солнца планеты — Юпитер, Сатурн, Уран и Нептун (также называемые газовыми гигантами), их состав - водород, гелий, Уран и Нептун - чуть поменьше, в составе кроме водорода и гелия имеют метан, угарный газ (еще их называют «ледяные гиганты»). Газовые гиганты — Юпитер, Сатурн, Уран и Нептун имеют вокруг своей окружности кольцами пыли и других частиц, многие планеты имеют естественные спутники, у Земли самый известный - Луна (хотя до сих ведутся споры, планета это или спутник).

В Солнечной системе существуют еще несколько популяций малых тел, карликовые планеты, пояса астероидов и т.д.

Но, оказывается, Солнечная система — лишь часть галактики под названием Млечный путь…

Галактика Млечный Путь - галактика, в которой и есть Солнечная система со своими планетами, Земля, отдельные звёзды, которые мы видим.

И вот таких галактик в нашей Вселенной порядка несколько сотен миллиардов!! Как утверждают астрономические эксперты.

Вот такая картина: мы живем в крошечной части Солнечной системы, которая является частью галактики под названием млечный путь, которая находится во Вселенной, и в последней еще порядка минимум миллиарда подобных галактик. Представляете масштабы??

Вспомните себя еще маленькими… Ведь многим из нас, глядя на звездное небо и блуждающие далеко-далеко небесные тела неясной формы, казалось, что где-то там, в невидимой глазу нише, обязательно есть еще кто-то живой… Мне особенно запомнилось время 90-х гг, когда возник необъяснимо яркий интерес людей к НЛО, потусторонним, иноземным объектам, инопланетянам. Возможно, этот интерес возник раньше, однако я в силу возраста заметила его только в обозначенный период. Помню как будучи ребенком, а затем подростком, я с настороженностью воспринимала истории о столкновениях людей с НЛО, а, точнее, с тем что они называли так… Иногда верилось, что и впрямь есть пришельцы, а иногда, что людям делать нечего, вот и придумывают ерунду или списывают многие беды на пришельцев.

В газетах печатали статьи о новых случаях наблюдения НЛО над населенными пунктами, в небе разных стран, о фантастических случаях приземления инопланетян на Землю и проведении опытов над землянами… о подозрительных знаках на суше (например, выжженное в виде эмблемы поле). Были такие газеты как «Комсомольская правда», «Комок» и др., там в подробностях описывали истории похищения людей пришельцами, проведение опытов, как сейчас помню — эта тема была безумно популярной среди народа, потому, поддерживая рейтинг, редакторы лепили всякую чушь на скорую руку, но ведь народ то несведующий верил, ждал инопланетных гостей при мигании фонаря на улице да замкнувших фарах у авто, все казалось, что это признаки иноземной жизни. Серьезно — так вели себя многие, особенно пожилые люди…

Популярным сюжетом для фильмов были вторжения инопланетян, иноземная жизнь, полет к другим галактикам, ужасы внеземных цивилизаций, чужие с планет иной вселенной и т.д. Возможно, все это было неким отвлечением после развала СССР и других мировых событий, возможно, это было связано с начавшимися открытиями в космическом плане и возникшим еще большим интересом к данной сфере.

Но прошло более 20 лет и технологии получения информации о Космосе встали на новый уровень (хотя еще 99 % остается неизученными), освоение внеземной жизни — дорожка проторенная, сегодня легенды прошлого о пришельцах тают и на их место приходит более-менее адекватная информация. Информация это такая, что жизни в Космосе нет, нет в виде подобия жизни на Земле, или, по-крайней мере, нам об этом неизвестно. А из доступных источников нам известно, что остальные планеты Солнечной системы безжизненны. Сказок стало меньше, но вопросы остались. И главный — вопрос — есть ли жизнь в неизвестных нам галактиках?? Возможна ли жизнь на планетах, подобных нашей чуть позже??

Как известно — Земле (как и Солнечной системе) не менее 4,6 млрд лет, исходя из данных о Солнце, жизни на Земле около 3,5 млрд лет. К этой версии присоединяются даже теологи, религиозные философы — мол, для Бога один день как тысяча лет и тысяча лет как один день, и все эти млрд лет — как неделька для высших сил…. Так формировалась жизнь, появлялись динозавры, потом люди, возможно, были люди огромных размеров (как в Апокалипсисе Гибсона), где-то между был один апокалипсис, через пару млн лет грядет другой, а, возможно, и раньше…

Несмотря на активное освоение Космоса (в основном спутниками) человек в Космос летал, однако до планет «не долетал», предположительно был на Луне (предположительно — поскольку есть версии, что высадка людей, американцев, на Луне, это фикция). То есть все, что мы знаем о Космосе и других планетах лишь по снимках и полученному спутниками, беспилотными космическими кораблями, роботами материалу.. Однако и этого вполне достаточно, чтобы установить наиболее верные факты.

Одно время, может, десятилетие назад, в СМИ муссировали тему жизни на Марсе, совсем недавно колонизацию в будущем на Марсе, возможность там жить, создание искусственной атмосферы. То есть человек 10 лет назад был еще настолько несведущ, что там, на красной планете, и искренне надеялся, что там может быть жизнь. Наверное, помните эти кричащие заголовки «есть ли жизнь на Марсе?».

Сегодня установлено благодаря взятым материалам с планеты, спутникам, что жизни на Марсе нет, нет именно в форме земной жизни. Однако там были найдены бактерии, свидетельствующие о возможной в прошлом жизни.

Марсоходы, причалившие на Марс делали фотографии. Благодаря этому были найдены сходные с цианобактериальными матами следы, что говорит о подобие жизни на дне водоемов красной планете в прошлом.

Проведенные анализы подтвердили, что микроорганизмы были ранее активны.

Ныне любые доводы в обоснование возможности жизни на Марсе, Венере, Меркурии и других планетах терпят крах по одной из главных причин — вокруг этих планет нет атмосферы, а часть из них слишком приближена к Солнцу и при такой жаре существование жизни нереально, другие же, напротив, отдалены и там холодно.

Венера, например, близка к Солнцу, как и Меркурий… Юпитер удален от Солнца и там холодно…

И вообще Юпитер, Сатурн, Уран и Нептун — так называемые «газовые гиганты», жизнь там наиболее невероятна, там нет ни воды, ни атмосферы, ни температуры, ни земных условий.

Венера, Меркурий, Марс, Земля — планеты земной группы, здесь наиболее вероятна жизнь, однако Венера близка к Солнцу, на Марсе по заключениям ученых относительно благоприятные условия для жизни — температура от минус 140 до плюс 20 градусов по Цельсию, разряженная атмосфера, в 160 меньше земного. Найденные на Марсе, пусть и погибшие бактерии, дали огромную надежду ученым на осуществление грандиозных планов по дальнейшему освоению планеты. Насчет колонизации Марса — весьма сомнительно на данный момент, возможно, в далеком-далеком будущем люди хотя бы смогут слетать туда… Но лично я сомневаюсь, что люди будут там жить.

А вообще состояние Марса с его разряженной атмосферой и бактериями наводит на мысль о том, что мы чего-то важного не знаем… Например, ведь и Земля однажды (согласно историческим данным) впадала в подобие анабиоза после падения метеорита (либо иной причины вымирания живого) и гибели динозавров, и кто знает как она выглядела в этот период. Возможно, Марс переживает цикл сна, и жизнь на нем восстановится всего лишь через каких-то пару миллионов-миллиардов лет… но это догадки.

Для того чтобы жизнь на Марсе стала возможной - нужно создать атмосферную оболочку вокруг планеты, добиться поддержания оптимального для жизни уровня температуры на поверхности Марса. Все это ученые исследовали, все способы, как это можно сделать… Мы ждем новых открытий, версий, свершений. Однако пока ясно одно - мы на Земле ямы на дорогах залатать не можем и жилье в кредит купить, унять народ и не вести войн - какое освоение Марса с такими сложными технологиями???

Но пока Марс - одна из главных планет, на которой после Земли наиболее возможна жизнь…

Самые оптимальные условия для существования живых видов на Земле, идеальная удаленность от Солнца, атмосфера, 2/3 воды. Наша планета единственная во всей Солнечной системе, где есть жизнь, более того — такая активная жизнь с перенаселением.

Ряд ученых главным условием возникновения жизни считают именно наличие жидкой воды. На Марсе вода заморожена на поверхности, однако в почве есть жидкая вода. На Венере вода в парообразном состоянии.

Теоретически жизнь может развиться молниеносно, начать развиваться, для этого нужно совпадение нескольких факторов… Однако процесс эволюции может длиться миллиарды, миллионы лет. Впрочем, тут уже вопрос не только астрономический, но и философский, биологический, теологический - жизнь это не только совокупность бактерий, условий, жизнь - это нечто нам неведомое, и оно дается кем-то свыше, потому что, как говорят верующие - если нет воли, значит и жизни не будет.

«По концепции Троицкого, носителем жизни в космосе может быть и вирус и органическая молекула — при космических условиях они приобретает неживую кристаллическую структуру, а недавно обнаруженная новая «космическая» форма жизни – нанобактерии («колобки»). Попадая «верхом» на космической пыли на планету, где есть жидкая вода, жизнь разворачивается, начинает размножаться и включается механизм эволюции».

Стоит только быть на поверхности либо в почве жидкой воде — возникновение жизни согласно множеству теорий реально! Однако опять же все это теории, жизни на данный момент нет.

Но! Те самые метеориты, что попадали к нам на Землю в мелком количестве и в крупном варианте — в них были найдены формы полужизни. Что это значит? Что в зачаточном, анабиозном, недоразвитом состоянии примитивные формы жизни присутствуют в Космосе, и для их развития не хватает условий — атмосферы, жидкой воды, температуры, почвы… Но при соединении всех условий вполне возможно зарождение жизни и ее развитие.

То что на Земле зародилась жизнь каким-то чудным образом - наводит на предположения о том, что где-то в галактиках возможна тоже жизнь, с чего мы решили что мы единственные? Возможно, на одной из далеких-далеких планет попивает чаек такой же человек, давно использующий нанотехнологии и думает, что как раз таки его планета одна единственная?

Астроном Иосиф Шкловский приводил догадки о существовании условий для возникновения жизни и на других планетах, в частности вращающихся возле холодных и достаточно стабильных одиночных «звёзд спектрального класса G, K, M (близких по свойствам к Солнцу). Число таких звёзд в нашей галактике можно оценить как 109».

Но это очень далеко и нам до туда не добраться в этом тысячелетии точно…

«Открытие планет у других звёздных систем также косвенно указывает на наличие мест во вселенной, благоприятных для возникновения жизни в «обитаемой зоне». Возможности современной астрономии не позволяют оценить условия жизни на таких планетах, но если в будущем технические возможности позволят определить, скажем, наличие кислорода в атмосфере, это станет важным свидетельством в пользу доказательства наличия жизни за пределами Земли.

Наличие на Земле форм жизни, которые могут сохранить способность к размножению после пребывания в экстремальных условиях (выдерживать высокие перепады температур, давления, неблагоприятную среду) позволяет говорить о том, что жизнь может зародиться и сохраниться в условиях, далёких от земных».

Возможно, что и наше планета когда-то будет для кого-то Марсом, безжизненным и холодным… ее будут изучать, пытаться колонизировать.. пришельцы с Венеры например. А у нее просто сон, до очередного периода эволюции.. Но это все фантастика. Больше верится в Страшный суд и Апокалипсис, чем в колонизацию Марса.

А вы верите что что есть жизнь вне нашей планеты?