Фракталы в живой и неживой природе. Как устроены фракталы

Недавно я узнала о таких интереснейших объектах математического мира как фракталы. Но существуют они не только в математики. Они окружают нас повсюду. Фракталы бывают природные. О том, что такое фракталы, о видах фракталов, о примерах этих объектов и их применении я и расскажу в этой статье. Для начала кратко расскажу, что такое фрактал.

Фракта́л (лат. fractus - дроблёный, сломанный, разбитый) - это сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре в целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической. Для примера я вставлю картинку с изображением четырех разных фракталов.

Расскажу немного об истории фракталов. Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово «фрактал» было введено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта The Fractal Geometry of Nature. В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

Примеров фракталов можно привести массу, потому что, как и говорила, они окружают нас повсюду. По-моему, даже вся наша Вселенная — это один огромный фрактал. Ведь все в ней, от строения атома до строения самой Вселенной, в точности повторяет друг друга. Но есть, конечно, и более конкретные примеры фракталов из разных областей. Фракталы, к примеру, присутствуют в комплексной динамике. Там они естественным образом появляются при изучении нелинейных динамических систем . Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функцией комплекса переменных на плоскости. Одними из самых известных фракталов такого вида являются множество Жюлиа, множество Мандельброта и бассейны Ньютона. Ниже по порядку на картинки изображены каждый из вышеперечисленных фракталов.

Еще одним примером фракталов являются фрактальные кривые. Объяснить, как строиться фрактал лучше всего именно на примере фрактальных кривых. Одной из таких кривых является, так называемая, Снежинка Коха. Существует простая процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. Ниже показана Снежинка (или кривая) Коха.

Фрактальных кривых так же существует огромное множество. Самые известные из них — это, уже упомянутая, Снежинка Коха, а также кривая Леви, кривая Минковского, ломанная Дракона, кривая Пиано и дерево Пифагора. Изображение данных фракталов и их историю, я думаю, при желании вы легко сможете найти в Википедии.

Третьим примером или видом фракталов являются стохастические фракталы. К таким фракталам можно отнести траекторию броуновского движения на плоскости и в пространстве, эволюции Шрамма-Лёвнера, различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр.

Существуют так же чисто математические фракталы. Это, например, канторово множество, губка Менгера, Треугольник Серпинского и другие.

Но самые, пожалуй, интересные фракталы — это природные. Природные фракталы — это такие объекты в природе, которые обладают фрактальными свойствами. И тут уже список большой. Я не буду перечислять все, потому что, наверное, всех и не перечислить, но о некоторых расскажу. Вот, к примеру, в живой природе к таким фракталам относятся наша кровеносная система и легкие. А еще кроны и листья деревьев. Так же сюда можно отнести морских звезд, морских ежей, кораллы, морские раковины, некоторые растения, такие как капуста или брокколи. Ниже наглядно показаны несколько таких природных фракталов из живой природы.

Если же рассматривать неживую природу, то там интересных примеров гораздо больше, нежели в живой. Молнии, снежинки, облака, всем известные, узоры на окнах в морозные дни, кристаллики, горные хребты — все это является примерами природных фракталов из неживой природы.

Примеры и виды фракталы мы рассмотрели. Что же касается применения фракталов, то они применяются в самых разных областях знаний. В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать ее при вычислении протяженности береговой линии. Так же фракталы активно используются в радиотехнике, в информатике и компьютерных технологиях, телекоммуникациях и даже экономике. Ну и, конечно же, фрактальное видение, активно используется в современном искусстве и архитектуре. Вот один из примеров фрактальных картин:

И так, на этом я думаю завершить свой рассказ о таком необычном математическом явлении как фрактал. Сегодня мы узнали о том, что такое фрактал, как он появился, о видах и о примерах фракталов. А так же я рассказала о их применении и продемонстрировала некоторые из фракталов наглядно. Надеюсь, вам понравилась эта небольшая экскурсия в мир удивительных и завораживающих фрактальных объектов.

Выполнила ученица 7 класса Карпюк Полина

Приода создана из самоподобных офигур, просто мы этого не замечаем. В этой галерее мы собрали образы, в которых ясно видна фрактальность.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Фракталы в природе Выполнила: ученица 7 «Б» класса Карпюк Полина Руководитель: Молчанова Ирина Павловна Рубцовск-2015

Математика, если на нее правильно посмотреть, отражает не только истину, но и несравненную красоту. Бертранд Рассел

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? Существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них - еще меньшие, и т. д., то есть ветка подобна всему дереву. Похожим образом устроена и кровеносная система: от артерий отходят артериолы, а от них - мельчайшие капилляры, по которым кислород поступает в органы и ткани. Это свойство объектов американский математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты - фракталами. Само слово «фрактал» с латыни переводится как "частичный", "разделенный", "раздробленный", а что касается содержания этого термина, то формулировки как таковой не существует. Обычно его трактуют как самоподобное множество, часть целого, которая повторяется своей структурой на микроуровне. .

Космические фотографии земных ландшафтов часто дают отличные примеры фракталов.

Береговые линии обычно имеют фрактальную форму, но различаются степенью своей изрезанности. На этом примере видны два характерных свойства природных фракталов: Отдельные протоки не являются копией друг друга, но имеют аналогичные криволинейные очертания, будто они нарисованы одним лекалом. Большие протоки аналогичны по очертаниям маленьким и очень маленьким протокам. Если мы увеличим, например, нижний левый угол картинки, мы получим нечто похожее на всю картинку целиком

Взаимодействие воды и земли порождает фрактальные структуры ландшафтов - будь то горы, реки или побережья.

Наверное, каждый знает картину японского художника Хокусаи "Большая волн\", там волна цунами изображена на фоне Фудзиямы. Если вглядываться в эту картину, то обращаешь внимание, что художник рисуя гребень волны использовал фрактал, как бы состоящий из многочисленных хищных водяных лап. Поэтому часто эту картину используют в качестве иллюстрации к книгам по теории хаоса, фракталам.

Когда песчаная дюна размывается водой, в крошечных масштабах повторяется то, что придает фрактальную форму большим земным ландшафтам.

Разряд молнии-один из примеров природных фракталов.

Эта картинка иллюстрирует не только фрактальность крон деревьев, она наводит на еще одно интересное соображение: лес как биологическое сообщество также является фракталом. Отдельные деревья - большие и маленькие - выступают тогда в качестве ветвей фрактала. Они похожи, но не повторяют друг друга.

Прожилки листьев - плоский природный фрактал. Для каждого растения характерный рисунок уникален, как уникален папиллярный рисунок на руке человека. Гете (поэт и ученый) считал, что лист - самая выразительная часть растения, в которой отражается вся его морфология.

Папортники - пример природных фракталов, которые очень похожи на компьютерные фракталы. При этом они еще интересны тем, что папортники - одни из самых эволюционно древних растений, наряду с различными мхами и прочими низшими растениями

Это еще один знаменитый и очень впечатляющий пример природного фрактала, который обладает математически четкими формами. Прослеживается как минимум три уровня самоподобных хитроумных пирамидок Капуста романеско

Волшебно красивый фрактал, который бы вполне мог вдохновить какого-нибудь художника. А между тем, приглядитесь: это всего лишь тугой пучок капустных листьев.

Это любопытные примеры фрактальной структуры в минеральном мире. Карбонат-апатит Золотой самородок - изысканное сокровище, изготовленное самой природой.

Вы задумывались когда-нибудь, что мы буквально мыслим фракталами? Тут есть о чем задуматься – кто будет спорить, что мозг – одно из самых удивительных и уникальных творений природы. И оказывается, он внешне имеет те же фрактальные признаки, что и атмосферная облачность или корневая система крапивы.

Тут еще все сложнее: переплетаются два отдельных фрактальных дерева - по одному подается венозная кровь, по другому отводится обогащенная кислородом артериальная. А в совокупности легкое - потрясающая по сложности система трех фракталов - одного дыхательного и двух кровеносных.

Сетчатка содержит светочувствительные клетки, благодаря которым мы видим. На этом снимке они желтовато-зеленые. Они действительно образуют сеть (сетчатку), но эта сеть хаотична и фрактальна.

Это живот свиньи. Пятна его окраса, кажется, тоже подчиняются фрактальным правилам. Это интересная тема и, главное, имеет массу применений, в том числе имеет и военное значение. По каким правилам должен составляться рисунок камуфляжа, чтобы его носитель сливался с природными формами - ландшафта и растительности?

Спасибо за внимание!!!

Математические формы, известные как фракталы, принадлежат гению выдающегося ученого Бенуа Мандельброта. Большую часть жизни он провёл в Соединенных Штатах, где преподавал математику в Йельском университете. В 1977 и 1982 годах Мандельброт опубликовал научные труды, посвященные изучению «фрактальной геометрии» или «геометрии природы», в которых разбивал на первый взгляд случайные математические формы на составные элементы, оказавшиеся при ближайшем рассмотрении повторяющимися, - что и доказывает наличие некого образца для копирования. Открытие Мандельброта возымело весомые позитивные последствия в развитии физики, астрономии и биологии.

Как устроен фрактал

Фрактал (от латинского «fractus» - разбитый, дробленый, сломанный) представляет собой сложную геометрическую фигуру, которая составлена из нескольких бесконечной последовательности частей, каждая из которых подобна всей фигуре целиком, и повторяется при уменьшении масштаба.

Структура фрактала на всех шкалах является нетривиальной. Здесь нужно уточнить, что имеется в виду. Так вот, регулярные фигуры, такие как окружность, эллипс или график гладкой функции устроены таким образом, что при рассмотрении небольшого фрагмента регулярной фигуры в достаточно крупном масштабе он будет схожим с фрагментом прямой. Для фракталов же увеличение масштаба не приводит к упрощению структуры фигуры, и на всех шкалах мы видим однообразно сложную картину.

В природе фрактальными свойствами обладают многие объекты, например: кроны деревьев, цветная капуста, облака, кровеносная и альвеолярная системы человека и животных, кристаллы, снежинки, элементы которых выстраиваются в одну сложную структуру, побережья (фрактальная концепция позволила ученым измерить береговую линию Британских островов и другие, ранее неизмеримые, объекты).

Рассмотрим строение цветной капусты. Если разрезать один из цветков, очевидно, что в руках остаётся всё та же цветная капуста, только меньшего размера. Можно продолжать резать снова и снова, даже под микроскопом - однако все, что мы получим - это крошечные копии цветной капусты. В этом простейшем случае даже небольшая часть фрактала содержит информацию обо всей конечной структуре.

Ярким примером фрактала в природе является «Романеску», она же «романская брокколи» или «цветная коралловая капуста». Первые упоминания об этом экзотическом овоще относятся к Италии 16 века. Почки этой капусты растут по логарифмической спирали. Ей не перестают восхищаться 3D-художники, дизайнеры и кулинары. Последние, причём, особенно ценят овощ за самый утончённый вкус (сладковато-ореховый, а не сернистый оттенок), какой только может быть у капусты, и за то, что он менее рассыпчатый, чем обычная цветная капуста. Кроме того, романская брокколи богата витамином С, антиоксидантами и каротиноидами.

Фракталы в цифровой технике

Фрактальная геометрия внесла неоценимый вклад в разработку новых технологий в области цифровой музыки, а так же сделала возможной сжатие цифровых изображений. Существующие фрактальные алгоритмы сжатия изображения основаны на принципе хранения сжимающего изображения вместо самой цифровой картинки. Для сжимающего изображения основная картинка остаётся неподвижной точкой. Фирма «Microsoft» использовала один из вариантов данного алгоритма при издании своей энциклопедии, но по тем или иным причинам широкого распространения эта идея не получила.

Принцип фрактального сжатия информации для компактного сохранения сведений об узлах сети «Netsukuku» использует система назначения IP-адресов. Каждый её узел хранит 4 килобайта информации о состоянии соседних узлов. Любой новый узел подключается к общей сети Интернет, не требуя центрального регулирования раздачи IP-адресов. Можно сделать вывод, что принцип фрактального сжатия информации обеспечивает децентрализованную работу всей сети, а потому работа в ней протекает максимально устойчиво.

Фракталы широко применяются в компьютерной графике - при построении изображений деревьев, кустов, поверхности морей, горных ландшафтов, и других природных объектов. Благодаря фрактальной графике был изобретён эффективный способ реализации сложных неевклидовых объектов, чьи образы похожи на природные: это алгоритмы синтеза коэффициентов фрактала, позволяющие воспроизвести копию любой картинки максимально близко к оригиналу. Интересно, что кроме фрактальной «живописи» существуют так же фрактальная музыка и фрактальная анимация. В изобразительном искусстве существует направление, занимающееся получением изображения случайного фрактала - «фрактальная монотипия» или «стохатипия».

В математической основе фрактальной графики лежит фрактальная геометрия, где в основу методов построения «изображений-наследников» помещён принцип наследования от исходных «объектов-родителей». Сами понятия фрактальной геометрии и фрактальной графики появилось всего около 30 лет назад, но уже прочно вошли в обиход компьютерных дизайнеров и математиков.

Базовыми понятиями фрактальной компьютерной графики являются:

  • Фрактальный треугольник - фрактальная фигура - фрактальный объект (иерархия в порядке убывания)
  • Фрактальная прямая
  • Фрактальная композиция
  • «Объект-родитель» и «Объект наследник»
Также как в векторной и трёхмерной графике, создание фрактальных изображений математически вычисляемо. Главное отличие от первых двух видов графики в том, что фрактальное изображение строится по уравнению или системе уравнений, - ничего кроме формулы в памяти компьютера для выполнения всех вычислений хранить не нужно, - и такая компактность математического аппарата позволила использование этой идеи в компьютерной графике. Просто изменяя коэффициенты уравнения, можно с лёгкостью получить совершенно иное фрактальное изображение - при помощи нескольких математических коэффициентов задаются поверхности и линии очень сложной формы, что позволяет реализовать такие приёмы композиции, как горизонтали и вертикали, симметрию и асимметрию, диагональные направления и многое другое.

Как построить фрактал?

Создатель фракталов выполняет роль художника, фотографа, скульптора, и ученого-изобретателя одновременно. Какие предстоят этапы работы сотворения рисунка «с нуля»?

  • задать форму рисунка математической формулой
  • исследовать сходимость процесса и варьировать его параметры
  • выбрать вид изображения
  • выбрать палитру цветов
Рассмотрим устройство произвольной фрактальной геометрической фигуры. В её центре находится простейший элемент - равносторонний треугольник, получивший одноимённое название: «фрактальный». На среднем отрезке сторон построим равносторонние треугольники со стороной, равной одной трети от стороны исходного фрактального треугольника. По тому же принципу строятся ещё более мелкие треугольники-наследники второго поколения - и так до бесконечности. Объект, который в результате получился, называется «фрактальной фигурой», из последовательностей которой получаем «фрактальную композицию».

Среди фрактальных графических редакторов и прочих графических программ можно выделить:

«Art Dabbler»
«Painter» (без компьютера ни один художник никогда не достигнет заложенных программистами возможностей лишь посредством с помощью карандаша и пера кисти)
«Adobe Photoshop» (но здесь изображение «с нуля» не создается, а, как правило, только обрабатывается)

Природа — совершенное творение, убеждаются учёные, которые открывают в строении человеческого тела пропорции золотого сечения, а в головке цветной капусты — фрактальные фигуры.

«Изучение и наблюдение природы породило науку», — писал Цицерон в первом столетии до нашей эры. В более поздние времена с развитием науки и отдалением её от изучения природы, учёные с удивлением открывают то, что было известно ещё нашим предкам, но не было подтверждено научными методами.

Интересно находить схожие образования в микро- и макромире, вдохновлять может и то, что геометрию этих образований наука может описать. Кровеносная система, река, молния, ветки деревьев… всё это — схожие системы, состоящие из разных частиц и различные по масштабу.

Пропорции «золотого сечения»

Ещё древние греки, а, возможно, и египтяне, знали пропорцию «золотого сечения». Лука Пачоли, математик эпохи Возрождения, назвал это соотношение «божественной пропорцией». Позже учёные обнаружили, что золотое сечение, которое так приятно глазу человека и которое часто встречается в классической архитектуре, искусстве и даже поэзии, можно повсеместно найти и в природе.

Пропорция золотого сечения — это деление отрезка на две неравные части, в котором короткая часть так относится к длинной, как длинная ко всему отрезку. Отношение длинной части ко всему отрезку — это бесконечное число, иррациональная дробь 0,618…, отношение короткой — соответственно 0,382…

Если построить прямоугольник со сторонами, соотношение которых будет равно пропорции «золотого сечения», и вписать в него ещё один «золотой прямоугольник», в тот — ещё один, и так до бесконечности внутрь и наружу, то по угловым точкам прямоугольников можно провести спираль. Интересно то, что такая спираль совпадёт со срезом раковины наутилуса, а также другими встречающимися в природе спиралями.

Иллюстрация: Homk/wikipedia.org

Окаменелость Наутилуса.
Фото: Studio-Annika/Photos.com

Раковина Наутилуса.
Фото: Chris 73/en.wikipedia.org

Пропорция золотого сечения воспринимается человеческим глазом как красивая, гармоничная. А ещё пропорция 0,618… равняется отношению предыдущего к последующему числу в ряде Фибоначчи. Числа ряда Фибоначчи повсеместно проявляются в природе: это спираль, по которой веточки растений примыкают к стеблю, спираль, по которой вырастают чешуйки на шишке или зёрна на подсолнухе. Что интересно, количество рядов, закручивающихся против часовой стрелки и по часовой стрелке, — это соседние числа в ряде Фибоначчи.

Спирально закручивается головка капусты брокколи и бараний рог… Да и в самом человеческом теле, разумеется, здоровом и нормальных пропорций, встречаются соотношения золотого сечения.

Витрувианский человек. Рисунок Леонардо да Винчи.


1, 1, 2, 3, 5, 8, 13, 21, … — числа ряда Фибоначчи, в котором каждый последующий член получаем из суммы двух предыдущих. Далёкие спиральные галлактики, которые засняли спутники, также закручиваются по спиралям Фибоначчи.


Спиральная галлактика.
Фото: NASA

Три тропических циклона.
Фото: NASA

Двойной спиралью закручена молекула ДНК.


Закрученная спиралью ДНК человека.
Иллюстрация: Zephyris/en.wikipedia.org

Ураган закручивается по спирали, спирально плетёт свою паутину паук.

Паутина паука-крестовика.
Фото: Vincent de Groot/videgro.net

«Золотую пропорцию» можно увидеть и в строении тела бабочки, в отношении грудной и брюшной частей её тельца, а также у стрекозы. Да и большинство яиц вписывается если не в прямоугольник золотого сечения, то в производный от него.

Иллюстрация: Adolphe Millot

Фракталы

Другими интересными фигурами, которые мы можем повсеместно увидеть в природе, являются фракталы. Фракталы — это фигуры, составленные из частей, каждая из которых подобна целой фигуре — не напоминает ли это принцип золотого сечения?

Деревья, молния, бронхи и кровеносная система человека имеют фрактальную форму, идеальными природными иллюстрациями фракталов называют также папоротники и капусту брокколи. «Всё так сложно, всё так просто» устроено в природе, замечают люди, с уважением прислушиваясь к ней.

«Природа наделила человека стремлением к обнаружению истины», — писал Цицерон, словами которого хотелось бы и закончить первую часть статьи о геометрии в природе.


Брокколи — идеальная природная иллюстрация фрактала.
Фото: pdphoto.org


Листья папоротника имеют форму фрактальной фигуры — они самоподобны.
Фото: Stockbyte/Photos.com

Зеленые фракталы: листья папоротника.
Фото: John Foxx/Photos.com


Жилки на пожелтевшем листе, имеющие форму фрактала.
Фото: Diego Barucco/Photos.com

Трещины на камне: фрактал в макро.
Фото: Bob Beale/Photos.com


Разветвления кровеносной системы на ушах кролика.
Фото: Lusoimages/Photos.com

Удар молнии — фрактальная ветка.
Фото: John R. Southern/flickr.com

Веточка артерий в человеческом теле.


Вьющаяся река и её ответвления.
Фото: Jupiterimages/Photos.com


Лёд, замерзший на стекле имеет самоподобный рисунок.
Фото: Schnobby/en.wikipedia.org

Листик плюща с разветвлением прожилок — фракталов по форме.
Фото: Wojciech Plonka/Photos.com

Как был открыт фрактал

Математические формы, известные как фракталы, принадлежат гению выдающегося ученого Бенуа Мандельброта. Большую часть жизни он преподавал математику в Йельском университете США. В 1977 - 1982 годах Мандельброт опубликовал научные труды, посвященные изучению «фрактальной геометрии» или «геометрии природы», в которых разбивал на первый взгляд случайные математические формы на составные элементы, оказавшиеся при ближайшем рассмотрении повторяющимися, - что и доказывало наличие некого образца для копирования. Открытие Мандельброта возымело весомые последствия в развитии физики, астрономии и биологии.



Фракталы в природе

В природе фрактальными свойствами обладают многие объекты, например: кроны деревьев, цветная капуста, облака, кровеносная и альвеолярная системы человека и животных, кристаллы, снежинки, элементы которых выстраиваются в одну сложную структуру, побережья (фрактальная концепция позволила ученым измерить береговую линию Британских островов и другие, ранее неизмеримые, объекты).


Рассмотрим строение цветной капусты. Если разрезать один из цветков, очевидно, что в руках остаётся всё та же цветная капуста, только меньшего размера. Можно продолжать резать снова и снова, даже под микроскопом - однако все, что мы получим - это крошечные копии цветной капусты. В этом простейшем случае даже небольшая часть фрактала содержит информацию обо всей конечной структуре.

Фракталы в цифровой технике

Фрактальная геометрия внесла неоценимый вклад в разработку новых технологий в области цифровой музыки, а так же сделала возможной сжатие цифровых изображений. Существующие фрактальные алгоритмы сжатия изображения основаны на принципе хранения сжимающего изображения вместо самой цифровой картинки. Для сжимающего изображения основная картинка остаётся неподвижной точкой. Фирма «Microsoft» использовала один из вариантов данного алгоритма при издании своей энциклопедии, но по тем или иным причинам широкого распространения эта идея не получила.


В математической основе фрактальной графики лежит фрактальная геометрия, где в основу методов построения «изображений-наследников» помещён принцип наследования от исходных «объектов-родителей». Сами понятия фрактальной геометрии и фрактальной графики появилось всего около 30 лет назад, но уже прочно вошли в обиход компьютерных дизайнеров и математиков.

Базовыми понятиями фрактальной компьютерной графики являются:

  • Фрактальный треугольник - фрактальная фигура - фрактальный объект (иерархия в порядке убывания)
  • Фрактальная прямая
  • Фрактальная композиция
  • «Объект-родитель» и «Объект наследник»

Также как в векторной и трёхмерной графике, создание фрактальных изображений математически вычисляемо. Главное отличие от первых двух видов графики в том, что фрактальное изображение строится по уравнению или системе уравнений, - ничего кроме формулы в памяти компьютера для выполнения всех вычислений хранить не нужно, - и такая компактность математического аппарата позволила использование этой идеи в компьютерной графике. Просто изменяя коэффициенты уравнения, можно с лёгкостью получить совершенно иное фрактальное изображение - при помощи нескольких математических коэффициентов задаются поверхности и линии очень сложной формы, что позволяет реализовать такие приёмы композиции, как горизонтали и вертикали, симметрию и асимметрию, диагональные направления и многое другое.

Как построить фрактал?

Создатель фракталов выполняет роль художника, фотографа, скульптора, и ученого-изобретателя одновременно. Какие предстоят этапы работы сотворения рисунка «с нуля»?

  • задать форму рисунка математической формулой
  • исследовать сходимость процесса и варьировать его параметры
  • выбрать вид изображения
  • выбрать палитру цветов

Среди фрактальных графических редакторов и прочих графических программ можно выделить:

  • «Art Dabbler»
  • «Painter» (без компьютера ни один художник никогда не достигнет заложенных программистами возможностей лишь посредством с помощью карандаша и пера кисти)
  • «Adobe Photoshop» (но здесь изображение «с нуля» не создается, а, как правило, только обрабатывается)

Рассмотрим устройство произвольной фрактальной геометрической фигуры. В её центре находится простейший элемент - равносторонний треугольник, получивший одноимённое название: «фрактальный». На среднем отрезке сторон построим равносторонние треугольники со стороной, равной одной трети от стороны исходного фрактального треугольника. По тому же принципу строятся ещё более мелкие треугольники-наследники второго поколения - и так до бесконечности. Объект, который в результате получился, называется «фрактальной фигурой», из последовательностей которой получаем «фрактальную композицию».

Источник: http://www.iknowit.ru/

Фракталы и древние мандалы

Это мандала для привлечения денег. Утверджают, что красный цвет работает как денежный магнит. А витиеватые узоры вам ничего не напоминают? Мне они показались очень знакомыми и я занялась исследованием мандал в качестве фрактала.

В принципе, мандала — это геометрический символ сложной структуры, который интерпретируется как модель Вселенной, «карта космоса». Вот и первый признак фрактальности!

Их вышивают на ткани, рисуют на песке, выполняют цветными порошками и делают из металла, камня, дерева. Яркий и завораживающий вид, делает её красивым украшением полов, стен и потолков храмов в Индии. На древнем индийском языке «мандала» обозначает мистический круг взаимосвязи духовных и материальных энергий Вселенной или по-другому цветок жизни.

Мне хотелось написать обзор о фрактальных мандалах совсем небольшим, с минимумом абзацев, показав, что взаимосвязь явно существует. Однако, пытаясь найти осознать и связать информацию о фракталах и мандалах в единое целое, у меня было ощущение квантового скачка в неизвестное мне пространство.

Демонстрирую необъятность этой темы цитатой: ”Такие фрактальные композиции или мандалы могут использоваться как в виде картин, элементов дизайна жилого и рабочего помещения, носимых амулетов, в форме видеокассет, компьютерных программ…” В общем, тема для исследования фракталов просто огромнейшая.

Одно я могу сказать точно, мир гораздо разнообразнее и богаче, чем убогие представления нашего ума о нем.

Фрактальные морские животные


Мои догадки о фрактальных морских животных были не беспочвенны. Вот и первые представители. Осьминог - морское придонное животное из отряда головоногих.

Взглянув на эту фотографию, мне стало очевидно фрактальное строение его тела и присосок на всех восьми щупальцах этого животного. Присосок на щупальцах взрослого осьминога достигает до 2000.

Интересен то факт, что у осьминога три сердца: одно (главное) гонит голубую кровь по всему телу, а два других — жаберных — проталкивают кровь через жабры. Некоторые виды этих глубоководных фракталов ядовиты.

Приспосабливаясь и маскируясь под окружающую среду, осьминог обладает весьма полезной способностью изменять окраску.

Осьминогов считают самыми «умными» среди всех беспозвоночных. Узнают людей, привыкают к тем, кто их кормит. Интересно было бы посмотреть на осьминогов, которые легко поддаются дрессировке, имеют хорошую память и даже различают геометрические фигуры. Но век этих фрактальных животных недолог - максимум 4 года.

Человек использует чернила этого живого фрактала и других головоногих. Они пользуются спросом у художников за их стойкость и красивый коричневый тон. В средиземноморской кухне осьминог является источником витаминов B3, B12, калия, фосфора и селена. Но я думаю, что этих морских фракталов нужно уметь готовить, чтобы получать удовольствие от их употребления в виде пищи.

Кстати, нужно заметить, что осьминоги - хищники. Своими фрактальными щупальцами они удерживают жертву в виде моллюсков, ракообразных и рыбы. Жаль, если пищей этих морских фракталов становится вот такой красивый моллюск. По-моему, тоже типичный представитель фракталов морского царства.


Это родственник улиток, брюхоногий голожаберный моллюск Главк, он же Глаукус, он же Glaucus atlanticus, он же Glaucilla marginata. Это фрактал еще и необычен тем, что живет и передвигается под поверхностью воды, удерживаясь за счет поверхностного натяжения. Т.к. моллюск является гермафродитом, то после спаривания оба "партнера" откладывают яйца. Этот фрактал встречается во всех океанах тропического пояса.

Фракталы морского царства



Каждый из нас хотя бы раз в жизни держал в руках и с неподдельным детским интересом рассматривал морскую раковину.

Обычно раковины являются красивым сувениром, напоминающим о поездке на море. Когда смотришь на это спиралевидное образование беспозвоночных моллюсков, нет никаких сомнений в его фрактальной природе.

Мы, люди, чем-то напоминаем этих мягкотелых моллюсков, обитая в благоустроенных бетонных домах-фракталах, помещая и перемещая свое тело в быстрых автомобилях.


Еще одни типичнейшим представителем фрактального подводного мира является коралл.
В природе известно свыше 3500 разновидностей кораллов, в палитре которых различают до 350 цветовых оттенков.

Коралл - это материал скелета колонии коралловых полипов, тоже из семейства беспозвоночных. Их огромные скопления образуют целые коралловые рифы, фрактальный способ образования которых очевиден.

Коралл с полной уверенностью можно назвать фракталом из морского царства.

Он также используется человеком в виде сувенира или сырья для ювелирных изделий и украшений. Но повторить красоту и совершенство фрактальной природы очень сложно.

Почему-то не сомневаюсь, что в подводном мире также отыщется и множество фрактальных животных .

В очередной раз, исполняя ритуал на кухне с ножом и разделочной доской, а потом, опустив нож в холодную воду, я вся в слезах в очередной раз придумывала, как бороться со слезоточивым фракталом, который практически ежедневно появляется на моих глазах.

Принцип фрактальности тот же, что и у знаменитой матрешки - вложенность. Именно поэтому фрактальность замечается не сразу. К тому же, светлый однородный окрас и его природная способность вызывать неприятные ощущения не способствуют пристальному наблюдению за мирозданием и выявлению фрактальных математических закономерностей.

А вот салатный лук сиреневого цвета в силу своего окраса и отсутствия слезоточивых фитонцидов навел на размышления о природной фрактальности этого овоща. Конечно, фрактал он незамысловатый, обычные окружности разного диаметра, можно даже сказать примитивнейший фрактал. Но не мешало бы вспомнить, что шар считается идеальной геометрической фигурой в пределах нашей Вселенной.

О полезных свойствах лука в Интернете опубликовано немало статей, но как-то никто не пытался изучать этот природный экземпляр с точки зрения фрактальности. Я могу только констатировать факт полезности применения фрактала в виде лука на своей кухне.

P.S. А овощерезку для измельчения фрактала я уже приобрела. Теперь придется поразмышлять, насколько фрактален такой полезный овощ, как обычная белокачанная капуста. Тот же принцип вложенности.

Фракталы в народном творчестве


Мое внимание привлекла история всемирно известной игрушки «Матрешка». Присмотревшись внимательней, с уверенностью можно сказать, что эта игрушка-сувенир - типичный фрактал.

Принцип фрактальности очевиден, когда все фигурки деревянной игрушки выстроены в ряд, а не вложены друг в друга.

Мои небольшие исследования истории появления этого игрушечного фрактала на мировом рынке показали, что корни у этой красавицы - японские. Матрешка всегда считалась исконно русским сувениром. Но оказалось, что она прототип японской фигурки старика-мудреца Фукурума, привезенного когда-то в Москву из Японии.

Но именно российский игрушечный промысел принес этой японской фигурке мировую славу. Откуда возникла идея фрактальной вложенности игрушки, лично для меня, так и осталось загадкой. Скорей всего автор этой игрушки использовал принцип вложенности фигурок друг в друга. А самый простой способ вложения - это подобные фигурки разных размеров, а это уже - фрактал.


Не менее интересный объект исследования представляет собой роспись игрушки-фрактала. Это декоративная роспись - хохлома. Традиционные элементы хохломы - это травяные узоры из цветов, ягод и веток.

Снова все признаки фрактальности. Ведь один и тот же элемент можно повторять несколько раз в разных вариантах и пропорциях. В итоге получается народная фрактальная роспись.

И если новомодной росписью компьютерных мышек, крышек ноутбуков и телефонов никого уже не удивишь, то фрактальный тюнинг автомобиля в народном стиле - это что-то новое в автодизайне. Остается только удивляться проявлению мира фракталов в нашей жизни таким необычным образом в таких обычных для нас вещах.

Фракталы на кухне

Каждый раз, разбирая цветную капусту на небольшие соцветия для бланширования в кипящей воде, я ни разу не обращала внимания на явные признаки фрактальности, пока у меня в руках не оказался этот экземпляр.

Типичный представитель фрактала из растительного мира красовался на моем кухонном столе.

При всей моей любви к цветной капусте мне все время попадались экземпляры с однородной поверхностью без видимых признаков фрактальности, и даже большое число соцветий, вложенных друг в друга, не давали мне повода увидеть в этом полезном овоще фрактал.

Но поверхность именно этого экземпляра с явно выраженной фрактальной геометрией не оставляла ни малейшего сомнения во фрактальном происхождении этого вида капусты.

Очередной поход в гипермаркет только подтвердил фрактальный статус капусты. Среди огромного числа экзотических овощей красовался целый ящик с фракталами. Это была Романеску, или романская брокколи, цветная коралловая капуста.



Оказывается, дизайнеры и 3D-художники восторгаются ее экзотическими формами, похожими на фракталы.

Капустные почки нарастают по логарифмической спирали. Первые упоминания о капусте романеску пришли из Италии 16-го века.

А капуста броколли совсем не частая гостья в моем рационе, хотя по содержанию полезных веществ и микроэлементов она превосходит цветную капусту в разы. Но ее поверхность и форма настолько однородны, что мне никогда не приходило в голову увидеть в ней овощной фрактал.

Фракталы в квиллинге

Увидев ажурные поделки в технике квиллинг, меня никогда не покидало ощущение, что что-то они мне напоминают. Повторение одних и тех же элементов в разных размерах - конечно же, это принцип фрактальности.


Посмотрев очередной мастер-класс по квилингу, не осталось даже сомнений в фрактальности квиллинга. Ведь для изготовления различных элементов для поделок из квиллинга используется специальная линейка с окружностями разного диаметра. При всей красоте и неповторимости изделий, это - невероятно простая техника.

Почти все основные элементы для поделок в квиллинге делаются из бумаги. Чтобы запастись бумагой для квиллинга бесплатно, проведите дома ревизию своих книжных полок. Наверняка, там вы обнаружите пару-тройку ярких глянцевых журналов.

Инструменты для квиллинга просты и недороги. Все что вам необходимо для выполнения любительских работ в стиле квиллинг, вы можете найти среди своих домашних канцелярских принадлежностей.

А история квиллинга начинается в 18 веке в Европе. В эпоху Ренессанса монахи из французских и итальянских монастырей с помощью квиллинга украшали книжные обложки и даже не подозревали о фрактальности изобретенной ими техники бумагокручения. Девушки из высшего общества даже проходили курс по квиллингу в специальных школах. Вот так эта техника начала распространяться по странам и континентам.

Этот мастер-класс видео квиллинг по изготовлению роскошного оперения можно даже назвать "фракталы своими руками". С помощью фракталов из бумаги получаются чудесный эксклюзивные открытки-валентики и много разных других интересных вещей. Ведь фантазия, как и природа неисчерпаема.


Ни для кого не секрет, что японцы по жизни сильно ограничены в пространстве, в связи с чем, им приходится всячески изощряться в эффективном его использовании. Такеши Миякава показывает, как это можно делать одновременно эффективно и эстетично. Его фрактальный шкаф подтверждение тому, что использование фракталов в дизайне - это не только дань моде, но и гармоничное конструкторское решение в условиях ограниченного пространства.

Этот пример использования фракталов в реальной жизни, применительно к дизайну мебели показал мне, что фракталы реальны не только на бумаге в математических формулах и компьютерных программах.

И, похоже, что принцип фрактальности природа использует повсеместно. Только нужно присмотреться к ней внимательней, и она проявит себя во всем своем великолепном изобилии и бесконечности бытия.