Какого цвета серная кислота. Реакция серной кислоты с ионами бария

ОПРЕДЕЛЕНИЕ

Безводная серная кислота представляет собой тяжелую, вязкую жидкость, которая легко смешивается с водой в любой пропорции: взаимодействие характеризуется исключительно большим экзотермическим эффектом (~880 кДж/моль при бесконечном разбавлении) и может привести к взрывному вскипанию и разбрызгиванию смеси, если воду добавлять к кислоте; поэтому так важно всегда использовать обратный порядок в приготовлении растворов и добавлять кислоту в воду, медленно и при перемешивании.

Некоторые физические свойства серной кислоты приведены в таблице.

Безводная H 2 SO 4 — замечательное соединение с необычно высокой диэлектрической проницаемостью и очень высокой электропроводностью, которая обусловлена ионной автодиссоциацией (автопротолизом) соединения, а также эстафетным механизмом проводимости с переносом протона, обеспечивающим протекание электрического тока через вязкую жидкость с большим числом водородных связей.

Таблица 1. Физические свойства серной кислоты.

Получение серной кислоты

Серная кислота — самый важный промышленный химикат и самая дешевая из производимых в большом объеме кислот влюбой стране мира.

Концентрированную серную кислоту («купоросное масло») сначала получали нагреванием «зеленого купороса» FeSO 4 ×nH 2 O и расходовали в большом количестве на получение Na 2 SO 4 и NaCl.

В современном процессе получения серной кислоты используется катализатор, состоящий из оксида ванадия(V) с добавкой сульфата калия на носителе из диоксида кремния или кизельгура. Диоксид серы SO 2 получают сжиганием чистойсеры или при обжиге сульфидной руды (прежде всего пирита или руд Си, Ni и Zn) в процессе извлечения этихметаллов.Затем SO 2 окисляют до триоксида, а потом путем растворения в воде получают серную кислоту:

S + O 2 → SO 2 (ΔH 0 — 297 кДж/моль);

SO 2 + ½ O 2 → SO 3 (ΔH 0 — 9,8 кДж/моль);

SO 3 + H 2 O → H 2 SO 4 (ΔH 0 — 130 кДж/моль).

Химические свойства серной кислоты

Серная кислота - сильная двухосновная кислота. По первой ступени в растворах невысокой концентрации она диссоциирует практически нацело:

H 2 SO 4 ↔H + + HSO 4 — .

Диссоциация по второй ступени

HSO 4 — ↔H + + SO 4 2-

протекает в меньшей степени. Константа диссоциации серной кислоты по второй ступени, выраженная через активности ионов, K 2 = 10 -2 .

Как кислота двухосновная, серная кислота образует два ряда солей: средние и кислые. Средние соли серной кислоты называются сульфатами, а кислые - гидросульфатами.

Серная кислота жадно поглощает пары воды и поэтому часто применяется для осушения газов. Способностью поглощать воду объясняется и обугливание многих органических веществ, особенно относящихся к классу углеводов (клетчатка, сахар и т.д.), при действии на них концентрированной серной кислоты. Серная кислота отнимает от углеводов водород и кислород, которые образуют воду, а углерод выделяется в виде угля.

Концентрированная серная кислота, особенно горячая, — энергичный окислитель. Она окисляет HI и HBr (но не HCl) до свободных галогенов, уголь - до CO 2 , серу - до SO 2 . Указанные реакции выражаются уравнениями:

8HI + H 2 SO 4 = 4I 2 + H 2 S + 4H 2 O;

2HBr + H 2 SO 4 = Br 2 + SO 2 + 2H 2 O;

C + 2H 2 SO 4 = CO 2 + 2SO 2 + 2H 2 O;

S + 2H 2 SO 4 = 3SO 2 + 2H 2 O.

Взаимодействие серной кислоты с металлами протекает различно в зависимости от её концентрации. Разбавленная серная кислота окисляет своим ионом водорода. Поэтому она взаимодействует только с теми металлами, которые стоят в ряду напряжений только до водорода, например:

Zn + H 2 SO 4 = ZnSO 4 + H 2 .

Однако свинец не растворяется в разбавленной кислоте, поскольку образующаяся соль PbSO 4 нерастворима.

Концентрированная серная кислота является окислителем за счет серы (VI). Она окисляет металлы, стоящие в ряду напряжений до серебра включительно. Продукты её восстановления могут быть различными в зависимости от активности металла и от условий (концентрация кислоты, температура). При взаимодействии с малоактивными металлами, например с медью, кислота восстанавливается до SO 2:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O.

При взаимодействии с более активными металлами продуктами восстановления могут быть как диоксид, так и свободная сера и сероводород. Например, при взаимодействии с цинком могут протекать реакции:

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O;

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ + 4H 2 O;

4Zn + 5H 2 SO 4 = 4ZnSO 4 + H 2 S + 4H 2 O.

Применение серной кислоты

Применение серной кислоты меняется от страны к стране и от десятилетия к десятилетию. Так, например в США в настоящее время главная область потребления H 2 SO 4 — производство удобрений (70%), за ним следуют химическое производство, металлургия, очистка нефти (~5% в каждой области). В Великобритании распределение потребления по отраслям иное: только 30% производимой H 2 SO 4 используется в производстве удобрений, зато 18% идет на краски, пигменты и полупродукты производства красителей, 16% на химическое производство, 12% на получение мыла и моющих средств, 10% на производство натуральных и искусственных волокон и 2,5% применяется в металлургии.

Примеры решения задач

ПРИМЕР 1

Задание Определите массу серной кислоты, которую можно получить из одной тонны пирита, если выход оксида серы (IV) в реакции обжига составляет 90%, а оксида серы (VI) в реакции каталитического окисления серы (IV) - 95% от теоретического.
Решение Запишем уравнение реакции обжига пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Рассчитаем количество вещества пирита:

n(FeS 2) = m(FeS 2) / M(FeS 2);

M(FeS 2) = Ar(Fe) + 2×Ar(S) = 56 + 2×32 = 120г/моль;

n(FeS 2) = 1000 кг / 120 = 8,33 кмоль.

Поскольку в уравнении реакции коэффициент при диоксиде серы в два раза больше, чем коэффициент при FeS 2 , то теоретически возможное количество вещества оксида серы (IV) равно:

n(SO 2) theor = 2 ×n(FeS 2) = 2 ×8,33 = 16,66 кмоль.

А практически полученное количество моль оксида серы (IV) составляет:

n(SO 2) pract = η × n(SO 2) theor = 0,9 × 16,66 = 15 кмоль.

Запишем уравнение реакции окисления оксида серы (IV) до оксида серы (VI):

2SO 2 + O 2 = 2SO 3 .

Теоретически возможное количество вещества оксида серы (VI) равно:

n(SO 3) theor = n(SO 2) pract = 15 кмоль.

А практически полученное количество моль оксида серы (VI) составляет:

n(SO 3) pract = η × n(SO 3) theor = 0,5 × 15 = 14,25 кмоль.

Запишем уравнение реакции получения серной кислоты:

SO 3 + H 2 O = H 2 SO 4 .

Найдем количество вещества серной кислоты:

n(H 2 SO 4) = n(SO 3) pract = 14,25 кмоль.

Выход реакции составляет 100%. Масса серной кислоты равна:

m(H 2 SO 4) = n(H 2 SO 4) × M(H 2 SO 4);

M(H 2 SO 4) = 2×Ar(H) + Ar(S) + 4×Ar(O) = 2×1 + 32 + 4×16 = 98 г/моль;

m(H 2 SO 4) = 14,25 × 98 = 1397 кг.

Ответ Масса серной кислоты равна 1397 кг

Сера представляет собой химический элемент, который находится в шестой группе и третьем периоде таблицы Менделеева. В этой статье мы подробно рассмотрим ее химические и получение, использование и так далее. В физическую характеристику входят такие признаки, как цвет, уровень электропроводности, температура кипения серы и т. д. Химическая же описывает ее взаимодействие с другими веществами.

Сера с точки зрения физики

Это хрупкое вещество. При нормальных условиях оно пребывает в твердом агрегатном состоянии. Сера обладает лимонно-желтой окраской.

И в большинстве своем все ее соединения имеют желтые оттенки. В воде не растворяется. Обладает низкой тепло- и электропроводностью. Данные признаки характеризуют ее как типичный неметалл. Несмотря на то что химический состав серы совсем не сложен, данное вещество может иметь несколько вариаций. Все зависит от строения кристаллической решетки, с помощью которой соединяются атомы, молекул же они не образовывают.

Итак, первый вариант - ромбическая сера. Она является наиболее устойчивой. Температура кипения серы такого типа составляет четыреста сорок пять градусов по шкале Цельсия. Но для того чтобы данное вещество перешло в газообразное агрегатное состояние, ему сначала необходимо пройти жидкое. Итак, плавление серы происходит при температуре, которая составляет сто тринадцать градусов Цельсия.

Второй вариант - моноклинная сера. Она представляет собой кристаллы игольчатой формы с темно-желтой окраской. Плавление серы первого типа, а затем ее медленное охлаждение приводит к формированию данного вида. Эта разновидность обладает почти теми же физическими характеристиками. К примеру, температура кипения серы такого типа - все те же четыреста сорок пять градусов. Кроме того, есть такая разновидность данного вещества, как пластическая. Ее получают посредством выливания в холодную воду нагретой почти до кипения ромбической. Температура кипения серы данного вида такая же. Но вещество обладает свойством тянуться, как резина.

Еще одна составляющая физической характеристики, о которой хотелось бы сказать, - температура воспламенения серы.

Данный показатель может разниться в зависимости от типа материала и его происхождения. К примеру, температура воспламенения серы технической составляет сто девяносто градусов. Это довольно низкий показатель. В других случаях температура вспышки серы может составлять двести сорок восемь градусов и даже двести пятьдесят шесть. Все зависит от того, из какого материала была она добыта, какую имеет плотность. Но можно сделать вывод, что температура горения серы достаточно низкая, по сравнению с другими химическими элементами, это легковоспламеняющееся вещество. Кроме того, иногда сера может объединяться в молекулы, состоящие из восьми, шести, четырех либо двух атомов. Теперь, рассмотрев серу с точки зрения физики, перейдем к следующему разделу.

Химическая характеристика серы

Данный элемент обладает сравнительно низкой атомной массой, она равняется тридцати двум граммам на моль. Характеристика элемента сера включает в себя такую особенность данного вещества, как способность обладать разной степенью окисления. Этим она отличается от, скажем, водорода или кислорода. Рассматривая вопрос о том, какова химическая характеристика элемента сера, невозможно не упомянуть, что он, в зависимости от условий, проявляет как восстановительные, так и окислительные свойства. Итак, по порядку рассмотрим взаимодействие данного вещества с различными химическими соединениями.

Сера и простые вещества

Простыми являются вещества, которые имеют в своем составе только один химический элемент. Его атомы могут объединяться в молекулы, как, например, в случае с кислородом, а могут и не соединяться, как это бывает у металлов. Так, сера может вступать в реакции с металлами, другими неметаллами и галогенами.

Взаимодействие с металлами

Для осуществления подобного рода процесса необходима высокая температура. При таких условиях происходит реакция присоединения. То есть атомы металла объединяются с атомами серы, образуя при этом сложные вещества сульфиды. Например, если нагреть два моль калия, смешав их с одним моль серы, получим один моль сульфида данного металла. Уравнение можно записать в следующем виде: 2К + S = K 2 S.

Реакция с кислородом

Это сжигание серы. Вследствие данного процесса образуется ее оксид. Последний может быть двух видов. Поэтому сжигание серы может происходить в два этапа. Первый - это когда из одного моль серы и одного моль кислорода образуется один моль диоксида сульфура. Записать уравнение данной химической реакции можно следующим образом: S + О 2 = SO 2 . Второй этап - присоединение к диоксиду еще одного атома оксигена. Происходит это, если добавить к двум моль один моль кислорода в условиях высокой температуры. В результате получим два моль триоксида сульфура. Уравнение данного химического взаимодействия выглядит таким образом: 2SO 2 + О 2 = 2SO 3 . В результате такой реакции образуется серная кислота. Так, осуществив два описанных процесса, можно пропустить полученный триоксид через струю водяного пара. И получим Уравнение подобной реакции записывается следующим образом: SO 3 + Н 2 О = H 2 SO 4 .

Взаимодействие с галогенами

Химические как и других неметаллов, позволяют ей реагировать с данной группой веществ. К ней относятся такие соединения, как фтор, бром, хлор, йод. Сера реагирует с любым из них, за исключением последнего. В качестве примера можно привести процесс фторирования рассматриваемого нами элемента таблицы Менделеева. С помощью разогревания упомянутого неметалла с галогеном можно получить две вариации фторида. Первый случай: если взять один моль сульфура и три моль фтора, получим один моль фторида, формула которого SF 6 . Уравнение выглядит так: S + 3F 2 = SF 6 . Кроме того, есть второй вариант: если взять один моль серы и два моль фтора, получим один моль фторида с химической формулой SF 4 . Уравнение записывается в следующем виде: S + 2F 2 = SF 4 . Как видите, все зависит от пропорций, в которых смешать компоненты. Точно таким же образом можно провести процесс хлорирования серы (также может образоваться два разных вещества) либо бромирования.

Взаимодействие с другими простыми веществами

На этом характеристика элемента сера не заканчивается. Вещество также может вступать в химическую реакцию с гидрогеном, фосфором и карбоном. Вследствие взаимодействия с водородом образуется сульфидная кислота. В результате её реакции с металлами можно получить их сульфиды, которые, в свою очередь, также получают прямым путем взаимодействия серы с тем же металлом. Присоединение атомов гидрогена к атомам сульфура происходит только в условиях очень высокой температуры. При реакции серы с фосфором образуется ее фосфид. Он имеет такую формулу: P 2 S 3. Для того чтобы получить один моль данного вещества, нужно взять два моль фосфора и три моль сульфура. При взаимодействии серы с углеродом образуется карбид рассматриваемого неметалла. Его химическая формула выглядит так: CS 2 . Для того чтобы получить один моль данного вещества, нужно взять один моль углерода и два моль серы. Все описанные выше реакции присоединения происходят только при условии нагревания реагентов до высоких температур. Мы рассмотрели взаимодействие серы с простыми веществами, теперь перейдем к следующему пункту.

Сера и сложные соединения

Сложными называются те вещества, молекулы которых состоят из двух (или более) разных элементов. Химические свойства серы позволяют ей реагировать с такими соединениями, как щелочи, а также концентрированная сульфатная кислота. Реакции ее с данными веществами довольно своеобразны. Сначала рассмотрим, что происходит при смешивании рассматриваемого неметалла со щелочью. Например, если взять шесть моль и добавить к ним три моль серы, получим два моль сульфида калия, один моль сульфита данного металла и три моль воды. Такого рода реакцию можно выразить следующим уравнением: 6КОН + 3S = 2K 2 S + K2SO 3 + 3Н 2 О. По такому же принципу происходит взаимодействие, если добавить Далее рассмотрим поведение серы при добавлении к ней концентрированного раствора сульфатной кислоты. Если взять один моль первого и два моль второго вещества, получим следующие продукты: триоксид серы в количестве три моль, а также воду - два моль. Данная химическая реакция может осуществиться только при нагревании реагентов до высокой температуры.

Получение рассматриваемого неметалла

Существует несколько основных способов, с помощью которых можно добыть серу из разнообразных веществ. Первый метод - выделение ее из пирита. Химическая формула последнего - FeS 2 . При нагревании данного вещества до высокой температуры без доступа к нему кислорода можно получить другой сульфид железа - FeS - и серу. Уравнение реакции записывается в следующем виде: FeS 2 = FeS + S. Второй способ получения серы, который часто используется в промышленности, - это сжигание сульфида серы при условии небольшого количества кислорода. В таком случае можно получить рассматриваемый неметалл и воду. Для проведения реакции нужно взять компоненты в молярном соотношении два к одному. В результате получим конечные продукты в пропорциях два к двум. Уравнение данной химической реакции можно записать следующим образом: 2H 2 S + О 2 = 2S + 2Н 2 О. Кроме того, серу можно получить в ходе разнообразных металлургических процессов, к примеру, при производстве таких металлов, как никель, медь и другие.

Использование в промышленности

Самое широкое свое применение рассматриваемый нами неметалл нашел в химической отрасли. Как уже упоминалось выше, здесь он используется для получения из него сульфатной кислоты. Кроме того, сера применяется как компонент для изготовления спичек, благодаря тому, что является легковоспламеняющимся материалом. Незаменима она и при производстве взрывчатых веществ, пороха, бенгальских огней и др. Кроме того, серу используют в качестве одного из ингредиентов средств для борьбы с вредителями. В медицине ее применяют в качестве компонента при изготовлении лекарств от кожных заболеваний. Также рассматриваемое вещество используется при производстве разнообразных красителей. Кроме того, ее применяют при изготовлении люминофоров.

Электронное строение серы

Как известно, все атомы состоят из ядра, в котором находятся протоны - позитивно заряженные частицы - и нейтроны, т. е. частицы, имеющие нулевой заряд. Вокруг ядра вращаются электроны, заряд которых негативный. Чтобы атом был нейтральным, в его структуре должно быть одинаковое количество протонов и электронов. Если же последних больше, это уже отрицательный ион - анион. Если же наоборот - количество протонов больше, чем электронов - это положительный ион, или катион. Анион серы может выступать в качестве кислотного остатка. Он входит в состав молекул таких веществ, как сульфидная кислота (сероводород) и сульфиды металлов. Анион образуется в ходе электролитической диссоциации, которая происходит при растворении вещества в воде. При этом молекула распадается на катион, который может быть представлен в виде иона металла либо водорода, а также катион - ион кислотного остатка либо гидроксильной группы (ОН-).

Так как порядковый номер серы в таблице Менделеева - шестнадцать, то можно сделать вывод, что в ее ядре находится именно такое количество протонов. Исходя из этого, можно сказать, что и электронов, вращающихся вокруг, тоже шестнадцать. Количество же нейтронов можно узнать, отняв от молярной массы порядковый номер химического элемента: 32 - 16 = 16. Каждый электрон вращается не хаотично, а по определенной орбите. Так как сера - химический элемент, который относится к третьему периоду таблицы Менделеева, то и орбит вокруг ядра три. На первой из них расположено два электрона, на второй - восемь, на третьей - шесть. Электронная формула атома серы записывается следующим образом: 1s2 2s2 2p6 3s2 3p4.

Распространенность в природе

В основном рассматриваемый химический элемент встречается в составе минералов, которые являются сульфидами разнообразных металлов. В первую очередь это пирит - соль железа; также это свинцовый, серебряный, медный блеск, цинковая обманка, киноварь - сульфид ртути. Кроме того, сера может входить и в состав минералов, структура которых представлена тремя и более химическими элементами.

Например, халькопирит, мирабилит, кизерит, гипс. Можно рассмотреть каждый из них более подробно. Пирит - это сульфид феррума, или FeS 2 . Он обладает светло-желтой окраской с золотистым блеском. Данный минерал можно часто встретить как примесь в лазурите, который широко используется для изготовления украшений. Это связано с тем, что данные два минерала зачастую имеют общее месторождение. Медный блеск - халькоцит, или халькозин - представляет собой синевато-серое вещество, похожее на металл. и серебряный блеск (аргентит) имеют схожие свойства: они оба внешне напоминают металлы, имеют серую окраску. Киноварь - это коричневато-красный тусклый минерал с серыми вкраплениями. Халькопирит, химическая формула которого CuFeS 2 , - золотисто-желтый, его еще называют золотой обманкой. Цинковая обманка (сфалерит) может иметь окраску от янтарной до огненно-оранжевой. Мирабилит - Na 2 SO 4 x10H 2 O - прозрачные либо белые кристаллы. Его еще называют применяют в медицине. Химическая формула кизерита - MgSO 4 xH 2 O. Он выглядит как белый либо бесцветный порошок. Химическая формула гипса - CaSO 4 x2H 2 O. Кроме того, данный химический элемент входит в состав клеток живых организмов и является важным микроэлементом.

серная кислота, серная кислота формула
Се́рная кислота́ H2SO4 - сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота - тяжёлая маслянистая жидкость без цвета и запаха, с кислым «медным» вкусом. технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO3. Если молярное отношение SO3: H2O < 1, то это водный раствор серной кислоты, если > 1 - раствор SO3 в серной кислоте (олеум).

  • 1 Название
  • 2 Физические и физико-химические свойства
    • 2.1 Олеум
  • 3 Химические свойства
  • 4 Применение
  • 5 Токсическое действие
  • 6 Исторические сведения
  • 7 Дополнительные сведения
  • 8 Получение серной кислоты
    • 8.1 Первый способ
    • 8.2 Второй способ
  • 9 Стандарты
  • 10 Примечания
  • 11 Литература
  • 12 Ссылки

Название

В XVIII-XIX веках серу для пороха производили из серного колчедана (пирит) на купоросных заводах. Серную кислоту в то время называли «купоросным маслом» (как правило это был кристаллогидрат, по консистенции напоминающий масло), очевидно отсюда происхождение названия её солей (а точнее именно кристаллогидратов) - купоросы.

Физические и физико-химические свойства

Очень сильная кислота, при 18оС pKa (1) = −2,8, pKa (2) = 1,92 (К₂ 1,2 10−2); длины связей в молекуле S=O 0,143 нм, S-OH 0,154 нм, угол HOSOH 104°, OSO 119°; кипит, образуя азеотропную смесь (98,3 % H2SO4 и 1,7 % H2О с температурой кипения 338,8оС). Серная кислота, отвечающая 100%-ному содержанию H2SO4, имеет состав (%): H2SO4 99,5, HSO4− - 0,18, H3SO4+ - 0,14, H3O+ - 0,09, H2S2O7, - 0,04, HS2O7⁻ - 0,05. Смешивается с водой и SO3, во всех соотношениях. водных растворах серная кислота практически полностью диссоциирует на H3О+, HSO3+, и 2НSO₄−. Образует гидраты H2SO4·nH2O, где n = 1, 2, 3, 4 и 6,5.

Олеум

Основная статья: Олеум

Растворы серного ангидрида SO3 в серной кислоте называются олеумом, они образуют два соединения H2SO4·SO3 и H2SO4·2SO3.

Олеум содержит также пиросерные кислоты, получающиеся по реакциям:

Температура кипения водных растворов серной кислоты повышается с ростом её концентрации и достигает максимума при содержании 98,3 % H2SO4.

Свойства водных растворов серной кислоты и олеума
Содержание % по массе Плотность при 20 ℃, г/см³ Температура плавления, ℃ Температура кипения, ℃
H2SO4 SO3 (свободный)
10 - 1,0661 −5,5 102,0
20 - 1,1394 −19,0 104,4
40 - 1,3028 −65,2 113,9
60 - 1,4983 −25,8 141,8
80 - 1,7272 −3,0 210,2
98 - 1,8365 0,1 332,4
100 - 1,8305 10,4 296,2
104,5 20 1,8968 −11,0 166,6
109 40 1,9611 33,3 100,6
113,5 60 2,0012 7,1 69,8
118,0 80 1,9947 16,9 55,0
122,5 100 1,9203 16,8 44,7

Температура кипения олеума с увеличением содержания SO3 понижается. При увеличении концентрации водных растворов серной кислоты общее давление пара над растворами понижается и при содержании 98,3 % H2SO4 достигает минимума. С увеличением концентрации SO3 в олеуме общее давление пара над ним повышается. Давление пара над водными растворами серной кислоты и олеума можно вычислить по уравнению:

величины коэффициентов А и зависят от концентрации серной кислоты. Пар над водными растворами серной кислоты состоит из смеси паров воды, H2SO4 и SO3, при этом состав пара отличается от состава жидкости при всех концентрациях серной кислоты, кроме соответствующей азеотропной смеси.

С повышением температуры усиливается диссоциация:

Уравнение температурной зависимости константы равновесия:

При нормальном давлении степень диссоциации: 10⁻⁵ (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К).

Плотность 100%-ной серной кислоты можно определить по уравнению:

С повышением концентрации растворов серной кислоты их теплоемкость уменьшается и достигает минимума для 100%-ной серной кислоты, теплоемкость олеума с повышением содержания SO3 увеличивается.

При повышении концентрации и понижении температуры теплопроводность λ уменьшается:

где С - концентрация серной кислоты, в %.

Максимальную вязкость имеет олеум H2SO4·SO3, с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации SO3 и 92 % H2SO4 и максимально при концентрации 84 и 99,8 % H2SO4. Для олеума минимальное ρ при концентрации 10 % SO3. С повышением температуры ρ серной кислоты увеличивается. Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); криоскопическая постоянная 6,12, эбулиоскопическая постоянная 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67·10⁻⁵T3/2 см²/с.

Химические свойства

Серная кислота в концентрированном виде при нагревании - довольно сильный окислитель; окисляет HI и частично HBr до свободных галогенов, углерод до CO2, серу - до SO2, окисляет многие металлы (Cu, Hg, исключение - золото и платина). При этом концентрированная серная кислота восстанавливается до SO2, например:

Наиболее сильными восстановителями концентрированная серная кислота восстанавливается до S и H2S. Концентрированная серная кислота поглощает водяные пары, поэтому она применяется для сушки газов, жидкостей и твёрдых тел, например, в эксикаторах. Однако концентрированная H2SO4 частично восстанавливается водородом, из-за чего не может применяться для его сушки. Отщепляя воду от органических соединений и оставляя при этом чёрный углерод (уголь), концентрированная серная кислота приводит к обугливанию древесины, сахара и других веществ.

Разбавленная H2SO4 взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода с его выделением, например:

Окислительные свойства для разбавленной H2SO4 нехарактерны. Серная кислота образует два ряда солей: средние - сульфаты и кислые - гидросульфаты, а также эфиры. Известны пероксомоносерная (или кислота Каро) H2SO5 и пероксодисерная H2S2O8 кислоты.

Серная кислота реагирует также с основными оксидами, образуя сульфат и воду:

На металлообрабатывающих заводах раствор серной кислоты применяют для удаления слоя оксида металла с поверхности металлических изделий, подвергающихся в процессе изготовления сильному нагреванию. Так, оксид железа удаляется с поверхности листового железа действием нагретого раствора серной кислоты:

Качественной реакцией на серную кислоту и её растворимые соли является их взаимодействие с растворимыми солями бария, при котором образуется белый осадок сульфата бария, нерастворимый в воде и кислотах, например:

Применение

Серную кислоту применяют:

  • в обработке руд, особенно при добыче редких элементов, в т.ч. урана, иридия, циркония, осмия и т.п.;
  • в производстве минеральных удобрений;
  • как электролит в свинцовых аккумуляторах;
  • для получения различных минеральных кислот и солей;
  • в производстве химических волокон, красителей, дымообразующих и взрывчатых веществ;
  • в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;
  • в пищевой промышленности - зарегистрирована в качестве пищевой добавки E513 (эмульгатор);
  • в промышленном органическом синтезе в реакциях:
    • дегидратации (получение диэтилового эфира, сложных эфиров);
    • гидратации (этанол из этилена);
    • сульфирования (синтетические моющие средства и промежуточные продукты в производстве красителей);
    • алкилирования (получение изооктана, полиэтиленгликоля, капролактама) и др.
    • Для восстановления смол в фильтрах на производстве дистилированной воды.

Мировое производство серной кислоты ок. 160 млн тонн в год. Самый крупный потребитель серной кислоты - производство минеральных удобрений. На P₂O₅ фосфорных удобрений расходуется в 2,2-3,4 раза больше по массе серной кислоты, а на (NH₄)₂SO₄ серной кислоты 75% от массы расходуемого (NH₄)₂SO₄. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.

Токсическое действие

Серная кислота и олеум - очень едкие вещества. Они поражают кожу, слизистые оболочки, дыхательные пути (вызывают химические ожоги). При вдыхании паров этих веществ они вызывают затруднение дыхания, кашель, нередко - ларингит, трахеит, бронхит и т. д. Предельно допустимая концентрация аэрозоля серной кислоты в воздухе рабочей зоны 1,0 мг/м³, в атмосферном воздухе 0,3 мг/м³ (максимальная разовая) и 0,1 мг/м³ (среднесуточная). Поражающая концентрация паров серной кислоты 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности II. Аэрозоль серной кислоты может образовываться в атмосфере в результате выбросов химических и металлургических производств, содержащих оксиды S, и выпадать в виде кислотных дождей.

Исторические сведения

Серная кислота известна с древности, встречаясь в природе в свободном виде, например, в виде озёр вблизи вулканов. Возможно, первое упоминание о кислых газах, получаемых при прокаливании квасцов или железного купороса «зеленого камня», встречается в сочинениях, приписываемых арабскому алхимику Джабир ибн Хайяну.

В IX веке персидский алхимик Ар-Рази, прокаливая смесь железного и медного купороса (FeSO4 7H2O и CuSO4 5H2O), также получил раствор серной кислоты. Этот способ усовершенствовал европейский алхимик Альберт Магнус, живший в XIII веке.

Схема получения серной кислоты из железного купороса - термическое разложение сульфата железа (II) с последующим охлаждением смеси

Молекула серной кислоты по Дальтону

  1. 2FeSO4+7H2O→Fe2O3+SO2+H2O+O2
  2. SO2+H2O+1/2O2 ⇆ H2SO4

В трудах алхимика Валентина (XIII в) описывается способ получения серной кислоты путем поглощения водой газа (серный ангидрид), выделяющегося при сжигании смеси порошков серы и селитры. Впоследствии этот способ лег в основу т. н. «камерного» способа, осуществляемого в небольших камерах, облицованных свинцом, который не растворяется в серной кислоте. СССР такой способ просуществовал вплоть до 1955 г.

Алхимикам XV в известен был также способ получения серной кислоты из пирита - серного колчедана, более дешевого и распространенного сырья, чем сера. Таким способом получали серную кислоту на протяжении 300 лет, небольшими количествами в стеклянных ретортах. Впоследствии, в связи с развитием катализа этот метод вытеснил камерный способ синтеза серной кислоты. настоящее время серную кислоту получают каталитическим окислением (на V2O5) оксида серы (IV) в оксид серы (VI), и последующим растворением оксида серы (VI) в 70 % серной кислоте с образованием олеума.

В России производство серной кислоты впервые было организовано в 1805 году под Москвой в Звенигородском уезде. 1913 году Россия по производству серной кислоты занимала 13 место в мире.

Дополнительные сведения

Мельчайшие капельки серной кислоты могут образовываться в средних и верхних слоях атмосферы в результате реакции водяного пара и вулканического пепла, содержащего большие количества серы. Получившаяся взвесь, из-за высокого альбедо облаков серной кислоты, затрудняет доступ солнечных лучей к поверхности планеты. Поэтому (а также в результате большого количества мельчайших частиц вулканического пепла в верхних слоях атмосферы, также затрудняющих доступ солнечному свету к планете) после особо сильных вулканических извержений могут произойти значительные изменения климата. Например, в результате извержения вулкана Ксудач (п-ов Камчатка, 1907 г.) повышенная концентрация пыли в атмосфере держалась около 2 лет, а характерные серебристые облака серной кислоты наблюдались даже в Париже. Взрыв вулкана Пинатубо в 1991 году, отправивший в атмосферу 3·107 тонн серы, привёл к тому, что 1992 и 1993 года были значительно холоднее, чем 1991 и 1994 .

Получение серной кислоты

Основная статья: Производство серной кислоты

Первый способ

Второй способ

В тех редких случаях, когда сероводород(H2S) вытесняет сульфат(SO4-) из соли (с металлами Cu,Ag,Pb,Hg) побочным продуктом является серная кислота

Сульфиды данных металлов обладают высочайшей прочностью, а также отличительным черным окрасом.

Стандарты

  • Кислота серная техническая ГОСТ 2184-77
  • Кислота серная аккумуляторная. Технические условия ГОСТ 667-73
  • Кислота серная особой чистоты. Технические условия ГОСТ 1422-78
  • Реактивы. Кислота серная. Технические условия ГОСТ 4204-77

Примечания

  1. Ушакова Н. Н., Фигурновский Н. А. Василий Михайлович Севергин: (1765-1826) / Ред. И. И. Шафрановский. М.: Наука, 1981. C. 59.
  2. 1 2 3 Ходаков Ю.В., Эпштейн Д.А., Глориозов П.А. § 91. Химические свойства серной кислоты // Неорганическая химия: Учебник для 7-8 классов средней школы. - 18-е изд. - М.: Просвещение, 1987. - С. 209-211. - 240 с. - 1 630 000 экз.
  3. Ходаков Ю.В., Эпштейн Д.А., Глориозов П.А. § 92. Качественная реакция на серную кислоту и её соли // Неорганическая химия: Учебник для 7-8 классов средней школы. - 18-е изд. - М.: Просвещение, 1987. - С. 212. - 240 с. - 1 630 000 экз.
  4. лицо худруку балета Большого театра Сергею Филину плеснули серной кислотой
  5. Эпштейн, 1979, с. 40
  6. Эпштейн, 1979, с. 41
  7. см. статью «Вулканы и климат» (рус.)
  8. Русский архипелаг - Виновато ли человечество в глобальном изменении климата? (рус.)

Литература

  • Справочник сернокислотчика, под ред. К. М. Малина, 2 изд., М., 1971
  • Эпштейн Д. А. Общая химическая технология. - М.: Химия, 1979. - 312 с.

Ссылки

  • Статья «Серная кислота» (Химическая энциклопедия)
  • Плотность и значение pH серной кислоты при t=20 °C

серная кислота, серная кислота википедия, серная кислота гидролиз, серная кислота ее воздействие 1, серная кислота класс опасности, серная кислота купить в украине, серная кислота применение, серная кислота разъедает, серная кислота с водой, серная кислота формула

Серная кислота Информацию О

Общие Систематическое
наименование серная кислота Хим. формула H 2 SO 4 Физические свойства Состояние жидкость Молярная масса 98,082 г/моль Плотность 1,8356 г/см³ Термические свойства Т. плав. −10,38 °C Т. кип. 279,6 °C Т. воспл. не воспламеняется °C Удельная теплота плавления 10,73 Дж/кг Химические свойства pK a −3 Растворимость в воде смешивается Оптические свойства Показатель преломления 1,397 Структура Дипольный момент 2,72 Классификация Рег. номер CAS 7664-93-9 PubChem Рег. номер EINECS 616-954-1 Рег. номер EC 231-639-5 RTECS WS5600000 Безопасность ЛД 50 510 мг/кг Токсичность Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Олеум, дымящий на воздухе

Олеум представляет собой вязкую маслянистую бесцветную жидкость или легкоплавкие кристаллы, которые, однако, могут приобретать самые различные оттенки вследствие наличия примесей. На воздухе «дымит», реагирует с водой с выделением огромного количества тепла. Концентрация серного ангидрида может варьироваться в очень широких пределах: от единиц до десятков процентов. Олеум обладает ещё большим водоотнимающим и окислительным действием. Олеум содержит также пиросерные кислоты, получающиеся по реакциям:

H 2 S O 4 + S O 3 → H 2 S 2 O 7 ; {\displaystyle {\mathsf {H_{2}SO_{4}+SO_{3}\rightarrow H_{2}S_{2}O_{7}}};}

H 2 S O 4 + 2 S O 3 → H 2 S 3 O 10 . {\displaystyle {\mathsf {H_{2}SO_{4}+2SO_{3}\rightarrow H_{2}S_{3}O_{10}}}.}

Физические свойства

Температура кипения водных растворов серной кислоты повышается с ростом её концентрации и достигает максимума при содержании 98,3 % H 2 SO 4 . При пользовании нижеприведенной таблицы следует также ознакомиться с таблицами ГОСТ 2184-77 (действующий) и ГОСТ 2184-2013 в части массовой доли сернистого ангидрида в олеуме в процентах.

Свойства водных растворов серной кислоты и олеума
Содержание % по массе Плотность при 20 ℃, г/см³ Температура плавления , ℃ Температура кипения , ℃
H 2 SO 4 SO 3 (свободный)
98 - 1,8365 0,1 332,4
100 - 1,8305 10,4 296,2
104,5 20 1,8968 −11,0 166,6
109 40 1,9611 33,3 100,6
113,5 60 2,0012 7,1 69,8
118,0 80 1,9947 16,9 55,0
122,5 100 1,9203 16,8 44,7

С повышением температуры усиливается диссоциация:

H 2 S O 4 ⟷ H 2 O + S O 3 − Q . {\displaystyle {\mathsf {H_{2}SO_{4}\longleftrightarrow H_{2}O+SO_{3}-{\it {Q}}}}.}

Уравнение температурной зависимости константы равновесия :

Ln ⁡ K p = 14,749 65 − 6,714 64 ln ⁡ 298 T − 8,101 61 ⋅ 10 4 T 2 − 9643 , 04 T − 9,457 7 ⋅ 10 − 3 T + 2,190 62 ⋅ 10 − 6 T 2 . {\displaystyle \ln {\it {K_{p}}}=14{,}74965-6{,}71464\ln {298 \over {\it {T}}}-8{,}10161\cdot 10^{4}{\it {{T^{2}}-{{\rm {9643{,}04}} \over {\it {T}}}-{\rm {9{,}4577\cdot 10^{-3}{\it {{T}+{\rm {2{,}19062\cdot 10^{-6}{\it {{T^{2}}.}}}}}}}}}}}

При нормальном давлении степень диссоциации: 10⁻⁵ (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К).

Плотность 100%-ной серной кислоты можно определить по уравнению:

D = 1,851 7 − 1 , 1 ⋅ 10 − 3 t + 2 ⋅ 10 − 6 t 2 . {\displaystyle {\it {{d}={\rm {1{,}8517-1{,}1\cdot 10^{-3}{\it {{t}+{\rm {2\cdot 10^{-6}{\it {{t^{2}}.}}}}}}}}}}}

С повышением концентрации растворов серной кислоты их теплоёмкость уменьшается и достигает минимума для 100%-ной серной кислоты, теплоёмкость олеума с повышением содержания SO₃ увеличивается.

При повышении концентрации и понижении температуры теплопроводность λ уменьшается:

λ = 0,518 + 0,001 6 t − (0 , 25 + t / 1293) ⋅ C / 100 , {\displaystyle {\rm {\lambda =0{,}518+0{,}0016{\it {{t}-{\rm {(0{,}25+{\it {{t}/{\rm {{1293})\cdot {\it {{C}/{\rm {100,}}}}}}}}}}}}}}}

где С - концентрация серной кислоты, в %.

Максимальную вязкость имеет олеум H₂SO₄·SO₃, с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации 30 и 92 % H 2 SO 4 и максимально при концентрации 84 и 99,8 % H₂SO₄. Для олеума минимальное ρ при концентрации 10 % SO₃. С повышением температуры ρ серной кислоты увеличивается. Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); криоскопическая постоянная 6,12, эбулиоскопическая постоянная 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67⋅10 −5 T 3/2 см²/с.

Физические и физико-химические свойства

Олеум

Растворы SO 3 в cерной кислоте называются , они образуют два соединения H 2 SO 4 ·SO 3 и H 2 SO 4 ·2SO 3 . Олеум содержит также пиросерную кислоту, получающуюся по реакции:

Н 2 SO 4 + SO 3 → H 2 S 2 O 7 .

Температура кипения водных растворов cерной кислоты повышается с ростом ее концентрации и достигает максимума при содержании 98,3 % H 2 SO 4 .

Свойства водных растворов серной кислоты и олеума
Содержание % по массе Плотность при 20 °C, г/см³ Температура кристаллизации, °C Температура кипения, °C
H 2 SO 4 SO 3 (свободный)
10 - 1,0661 −5,5 102,0
20 - 1,1394 −19,0 104,4
40 - 1,3028 −65,2 113,9
60 - 1,4983 −25,8 141,8
80 - 1,7272 −3,0 210,2
98 - 1,8365 0,1 332,4
100 - 1,8305 10,4 296,2
104,5 20 1,8968 −11,0 166,6
109 40 1,9611 33,3 100,6
113,5 60 2,0012 7,1 69,8
118,0 80 1,9947 16,9 55,0
122,5 100 1,9203 16,8 44,7

Температура кипения олеума с увеличением содержания SO 3 понижается. При увеличении концентрации водных растворов cерной кислоты общее давление пара над растворами понижается и при содержании 98,3 % Н 2 SO 4 достигает минимума. С увеличением концентрации SO 3 , в олеуме общее давление пара над ним повышается. Давление пара над водными растворами серной кислоты и олеума можно вычислить по уравнению:

Lgp (Па) = A - B/T + 2,126,

величины коэффициентов А и В зависят от концентрации серной кислоты. Пар над водными растворами серной кислоты состоит из смеси паров воды, Н 2 SO 4 и SO 3 , при этом состав пара отличается от состава жидкости при всех концентрациях cерной кислоты, кроме соответствующей .

С повышением температуры усиливается диссоциация Н 2 SO 4 ↔ H 2 O + SO 3 - Q , уравнение температурной зависимости константы равновесия lnK p = 14,74965 − 6,71464ln(298/T ) - 8,10161·10 4 T ² - 9643,04/T - 9,4577·10 -3 T + 2,19062·10 -6 T ². При нормальном давлении степень диссоциации: 10 -5 (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К). Плотность 100%-ной cерной кислоты можно определить по уравнению: d = 1,8517 − 1,1·10 -3 t + 2·10 -6 t ² г/см³. С повышением концентрации растворов серной кислоты их теплоемкость уменьшается и достигает минимума для 100%-ной серной кислоты, теплоемкость олеума с повышением содержания SO³ увеличивается.

При повышении концентрации и понижении температуры теплопроводность λ уменьшается: λ = 0,518 + 0,0016t - (0,25 + t /1293)·С /100, где С -концентрация серной кислоты, в %. Максимальнаую вязкость имеет олеум Н 2 SO 4 ·SO 3 , с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации 30 и 92 % H2SO4 и максимально при концентрации 84 и 99,8 % H 2 SO 4 . Для олеума минимальное ρ при концентрации 10 % SO 3 . С повышением температуры ρ серной кислоты увеличивается. Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); 6,12, 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67·10 -5 T 3/2 см²/с.

Химические свойства

Серная кислота - довольно сильный окислитель, особенно при нагревании; окисляет HI и частично НВr до свободных , до СО 2 , - до SO 2 , окисляет многие металлы ( , и др.). При этом серная кислота восстанавливается до SO 2 , а наиболее сильными восстановителями - до S и H 2 S. Концентрированная H 2 SO 4 частично восстанавливается Н 2 . Из-за чего не может применяться для его сушки. Разбавленная H 2 SO 4 взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода, с выделением Н 2 . Окислительные свойства для разбавленной H 2 SO 4 нехарактерны. Серная кислота дает два ряда солей: средние - сульфаты и кислые - гидросульфаты, а также эфиры. Известны пероксомоносерная (или ) Н 2 SО 5 ; и пероксодисерная H 2 S 2 O 8 кислоты.

Применение

Серную кислоту применяют:

  • В производстве минеральных удобрений;
  • Как электролит в свинцовых аккумуляторах;
  • Для получения различных минеральных кислот и солей,
  • В производстве химических волокон, красителей, дымообразующих веществ и взрывчатых веществ,
  • В нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности.
  • В пищевой промышленности используется в качестве ( E513 ).
  • В промышленном органическом синтезе в реакциях:
    • дегидратации (получение , сложных эфиров);
    • гидратации (