Магнетизм земли его характеристики. Большая энциклопедия нефти и газа

Земной магнетизм, геомагнетизм, магнитное поле Земли и околоземного космического пространства; раздел геофизики, изучающий распределение в пространстве и изменения во времени геомагнитного поля, а также связанные с ним геофизические процессы в Земле и верхней атмосфере.

В каждой точке пространства геомагнитное поле характеризуется вектором напряжённости Т, величина и направление которого определяются 3 составляющими X, Y, Z (северной, восточной и вертикальной) в прямоугольной системе координат (рис. 1 ) или 3 элементами З. м.: горизонтальной составляющей напряжённости Н, склонением магнитным D (угол между Н и плоскостью географического меридиана) и наклонением магнитным I (угол между Т и плоскостью горизонта).

З. м. обусловлен действием постоянных источников, расположенных внутри Земли и испытывающих лишь медленные вековые изменения (вариации), и внешних (переменных) источников, расположенных в магнитосфере Земли и ионосфере . Соответственно различают основное (главное, ~99%) и переменное (~1%) геомагнитные поля.

Основное (постоянное) геомагнитное поле . Для изучения пространственного распределения основного геомагнитного поля измеренные в разных местах значения Н, D, I наносят на карты (магнитные карты ) и соединяют линиями точки равных значений элементов. Такие линии называют соответственно изодинамами , изогонами , изоклинами . Линия (изоклина) I = 0, т. е. магнитный экватор, не совпадает с географическим экватором. С увеличением широты значение I возрастает до 90° в магнитных полюсах . Полная напряжённость Т (рис. 2 ) от экватора к полюсу растет с 33,4 до 55,7 а/м (от 0,42 до 0,70 э). Координаты северного магнитного полюса на 1970: долгота 101,5° з. д.(западная долгота), широта 75,7° с. ш.(северная широта); южного магнитного полюса: долгота 140,3° в. д.(восточная долгота), широта 65,5° ю. ш.(южная широта) Сложную картину распределения геомагнитного поля в первом приближении можно представить полем диполя (эксцентричного, со смещением от центра Земли приблизительно на 436 км ) или однородного намагниченного шара, магнитный момент которого направлен под углом 11,5° к оси вращения Земли. Полюсы геомагнитные (полюсы однородно намагниченного шара) и полюсы магнитные задают соответственно систему геомагнитных координат (широта геомагнитная, меридиан геомагнитный, экватор геомагнитный) и магнитных координат (широта магнитная, меридиан магнитный). Отклонения действительного распределения геомагнитного поля от дипольного (нормального) называют магнитными аномалиями . В зависимости от интенсивности и величины занимаемой площади различают мировые аномалии глубинного происхождения, например Восточно-Сибирскую, Бразильскую и др., а также аномалии региональные и локальные. Последние могут быть вызваны, например, неравномерным распределением в земной коре ферромагнитных минералов. Влияние мировых аномалий сказывается до высот ~ 0,5R 3 над поверхностью Земли (R 3 - радиус Земли). Основное геомагнитное поле имеет дипольный характер до высот ~3R 3 .

Оно испытывает вековые вариации, неодинаковые на всём земном шаре. В местах наиболее интенсивного векового хода вариации достигают 150g в год (1g = 10 -5 э). Наблюдается также систематический дрейф магнитных аномалий к западу со скоростью около 0,2°в год и изменение величины и направления магнитного момента Земли со скоростью ~20g в год. Из-за вековых вариаций и недостаточной изученности геомагнитного поля на больших пространствах (океанах и полярных областях) возникает необходимость заново составлять магнитные карты. С этой целью проводятся мировые магнитные съёмки на суше, в океанах (на немагнитных судах), в воздушном пространстве (аэромагнитная съёмка ) и в космическом пространстве (при помощи искусственных спутников Земли). Для измерений применяют: компас магнитный, теодолит магнитный, магнитные весы, инклинатор , магнитометр , аэромагнитометр и др. приборы. Изучение З. м. и составление карт всех его элементов играет важную роль для морской и воздушной навигации, в геодезии, маркшейдерском деле.

Изучение геомагнитного поля прошлых эпох производится по остаточной намагниченности горных пород (см. Палеомагнетизм ), а для исторического периода - по намагниченности изделий из обожжённой глины (кирпичи, керамическая посуда и т.д.). Палеомагнитные исследования показывают, что направление основного магнитного поля Земли в прошлом многократно изменялось на противоположное. Последнее такое изменение имело место около 0,7 млн. лет назад.

А. Д. Шевнин.

Происхождение основного геомагнитного поля. Для объяснения происхождения основного геомагнитного поля выдвигалось много различных гипотез, в том числе даже гипотезы о существовании фундаментального закона природы, согласно которому всякое вращающееся тело обладает магнитным моментом. Делались попытки объяснить основное геомагнитное поле присутствием ферромагнитных материалов в коре Земли или в её ядре; движением электрических зарядов, которые, участвуя в суточном вращении Земли, создают электрический ток; наличием в ядре Земли токов, вызываемых термоэлектродвижущей силой на границе ядра и мантии и т.д., и, наконец, действием так называемого гидромагнитного динамо в жидком металлическом ядре Земли. Современные данные о вековых вариациях и многократных изменениях полярности геомагнитного поля удовлетворительно объясняются только гипотезой о гидромагнитном динамо (ГД). Согласно этой гипотезе, в электропроводящем жидком ядре Земли могут происходить достаточно сложные и интенсивные движения, приводящие к самовозбуждению магнитного поля, аналогично тому, как происходит генерация тока и магнитного поля в динамо-машине с самовозбуждением. Действие ГД основано на электромагнитной индукции в движущейся среде, которая в своём движении пересекает силовые линии магнитного поля.

Исследования ГД опираются на магнитную гидродинамику . Если считать скорость движения вещества в жидком ядре Земли заданной, то можно доказать принципиальную возможность генерации магнитного поля при движениях различного вида, как стационарных, так и нестационарных, регулярных и турбулентных. Усреднённое магнитное поле в ядре можно представить в виде суммы двух составляющих - тороидального поля В j и поля Вр, силовые линии которого лежат в меридиональных плоскостях (рис. 3 ). Силовые линии тороидального магнитного поля В j замыкаются внутри земного ядра и не выходят наружу. Согласно наиболее распространённой схеме земного ГД, поле B j в сотни раз сильнее, чем проникающее из ядра наружу поле В р , имеющее преимущественно дипольный вид. Неоднородное вращение электропроводящей жидкости в ядре Земли деформирует силовые линии поля В р и образует из них силовые линии поля В (. В свою очередь, поле В р генерируется благодаря индукционному взаимодействию движущейся сложным образом проводящей жидкости с полем В j. Для обеспечения генерации поля В р из В j движения жидкости не должны быть осесимметричными. В остальном, как показывает кинетическая теория ГД, движения могут быть весьма разнообразными. Движения проводящей жидкости создают в процессе генерации, кроме поля В р , также др. медленно изменяющиеся поля, которые, проникая из ядра наружу, вызывают вековые вариации основного геомагнитного поля.

Общая теория ГД, исследующая и генерацию поля, и «двигатель» земного ГД, т. е. происхождение движений, находится ещё в начальной стадии развития, и в ней ещё многое гипотетично. В качестве причин, вызывающих движения, выдвигаются архимедовы силы, обусловленные небольшими неоднородностями плотности в ядре, и силы инерции .

Первые могут быть связаны либо с выделением тепла в ядре и тепловым расширением жидкости (термическая конвекция ), либо с неоднородностью состава ядра вследствие выделения примесей на его границах. Вторые могут вызываться ускорением, обусловленным прецессией земной оси. Близость геомагнитного поля к полю диполя с осью, почти параллельной оси вращения Земли, указывает на тесную связь между вращением Земли и происхождением З. м. Вращение создаёт Кориолиса силу , которая может играть существенную роль в механизме ГД Земли. Зависимость величины геомагнитного поля от интенсивности движения вещества в земном ядре сложна и изучена ещё недостаточно. Согласно палеомагнитным исследованиям, величина геомагнитного поля испытывает колебания, но в среднем, по порядку величины, она сохраняется неизменной в течение длительного времени - порядка сотен млн. лет.

Функционирование ГД Земли связано со многими процессами в ядре и в мантии Земли, поэтому изучение основного геомагнитного поля и земного ГД является существенной частью всего комплекса геофизических исследований внутреннего строения и развития Земли.

С. И. Брагинский.

Переменное геомагнитное поле. Измерения, выполненные на спутниках и ракетах, показали, что взаимодействие плазмы солнечного ветра с геомагнитным полем ведёт к нарушению дипольной структуры поля с расстояния ~3от центра Земли. Солнечный ветер локализует геомагнитное поле в ограниченном объёме околоземного пространства - магнитосфере Земли, при этом на границе магнитосферы динамическое давление солнечного ветра уравновешивается давлением магнитного поля Земли. Солнечный ветер сжимает земное магнитное поле с дневной стороны и уносит геомагнитные силовые линии полярных областей на ночную сторону, образуя вблизи плоскости эклиптики магнитный хвост Земли протяжённостью не менее 5 млн. км (см. рис. в статьях Земля и Магнитосфера Земли ). Приблизительно дипольная область поля с замкнутыми силовыми линиями (внутренняя магнитосфера) является магнитной ловушкой заряженных частиц околоземной плазмы (см. Радиационные пояса Земли ).

Обтекание магнитосферы плазмой солнечного ветра с переменной плотностью и скоростью заряженных частиц, а также прорыв частиц в магнитосферу приводят к изменению интенсивности систем электрических токов в магнитосфере и ионосфере Земли. Токовые системы в свою очередь вызывают в околоземном космическом пространстве и на поверхности Земли колебания геомагнитного поля в широком диапазоне частот (от 10 -5 до 10 2 гц ) и амплитуд (от 10 -3 до 10 -7 э ). Фотографическая регистрация непрерывных изменений геомагнитного поля осуществляется в магнитных обсерваториях при помощи магнитографов . В спокойное время в низких и средних широтах наблюдаются периодические солнечно-суточные и лунно-суточные вариации магнитные с амплитудами 30-70g и 1-5g соответственно. Другие наблюдаемые неправильные колебания поля различной формы и амплитуды называют магнитными возмущениями, среди которых выделяют несколько типов магнитных вариаций.

Магнитные возмущения, охватывающие всю Землю и продолжающиеся от одного (рис. 4 ) до нескольких дней, называются мировыми магнитными бурями , во время которых амплитуда отдельных составляющих может превзойти 1000g. Магнитная буря - одно из проявлений сильных возмущений магнитосферы, возникающих при изменении параметров солнечного ветра, особенно скорости его частиц и нормальной составляющей межпланетного магнитного поля относительно плоскости эклиптики. Сильные возмущения магнитосферы сопровождаются появлением в верхней атмосфере Земли полярных сияний, ионосферных возмущений, рентгеновского и низкочастотного излучений.

Практические применения явлений З. м. Под действием геомагнитного поля магнитная стрелка располагается в плоскости магнитного меридиана. Это явление с древнейших времён используется для ориентирования на местности, прокладывания курса судов в открытом море, в геодезической и маркшейдерской практике, в военном деле и т.д. (см. Компас , Буссоль ).

Исследование локальных магнитных аномалий позволяет обнаружить полезные ископаемые, в первую очередь железную руду (см. Магнитная разведка ), а в комплексе с др. геофизическими методами разведки - определить место их залегания и запасы. Широкое распространение получил магнитотеллурический способ зондирования недр Земли, в котором по полю магнитной бури вычисляют электропроводность внутренних слоев Земли и оценивают затем существующие там давление и температуру.

Одним из источников сведений о верхних слоях атмосферы служат геомагнитные вариации. Магнитные возмущения, связанные, например, с магнитной бурей, наступают на несколько часов раньше, чем под её воздействием происходят изменения в ионосфере, нарушающие радиосвязь. Это позволяет делать магнитные прогнозы, необходимые для обеспечения бесперебойной радиосвязи (прогнозы «радиопогоды»). Геомагнитные данные служат также для прогноза радиационной обстановки в околоземном пространстве при космических полётах.

Постоянство геомагнитного поля до высот в несколько радиусов Земли используется для ориентации и маневра космических аппаратов.

Геомагнитное поле воздействует на живые организмы, растительный мир и человека. Например, в периоды магнитных бурь увеличивается количество сердечно-сосудистых заболеваний, ухудшается состояние больных, страдающих гипертонией, и т.д. Изучение характера электромагнитного воздействия на живые организмы представляет собой одно из новых и перспективных направлений биологии.

А. Д. Шевнин.

Лит.: Яновский Б. М., Земной магнетизм, т. 1-2, Л., 1963-64; его же, Развитие работ по геомагнетизму в СССР за годы Советской власти. «Изв. АН(Академия наук) СССР, Физика Земли», 1967, № 11, с. 54; Справочник по переменному магнитному полю СССР, Л., 1954; Околоземное космическое пространство. Справочные данные, пер.(перевод) с англ.(английский), М., 1966; Настоящее и прошлое магнитного поля Земли, М., 1965; Брагинский С. И., Об основах теории гидромагнитного динамо Земли, «Геомагнетизм и аэрономия»,1967, т.7, № 3, с. 401; Солнечно-земная физика, М., 1968.

Рис. 4. Магнитограмма, на которой зафиксирована малая магнитная буря: Н 0 , D 0 , Z 0 - начало отсчёта соответствующей составляющей земного магнетизма; стрелками показано направление отсчёта.

Рис. 2. Карта полной напряжённости геомагнитного поля (в эрстедах) для эпохи 1965 г.; чёрные кружочки - магнитные полюсы (М. П.). На карте указаны мировые магнитные аномалии: Бразильская (Б. А.) и Восточно-Сибирская (В.-С. А.).

Рис. 3. Схема магнитных полей в гидромагнитном динамо Земли: NS - ось вращения Земли: В р - поле, близкое к полю диполя, направленного вдоль оси вращения Земли; B j - тороидальное поле (порядка сотен гаусс), замыкавщееся внутри земного ядра.

Земля обладает свойствами, позволяющими считать нашу планету магнитом с двумя полюсами (северным и южным). Вокруг Земли расположено магнитное поле. Основная его часть создается источниками, расположенными внутри Земли. Южный магнитный полюс находится в северном полушарии на полуострове Бутия, на самом севере Канады, а северный - в южном полушарии в Антарктиде, на меридиане о. Тасмания.

Магнитное поле наглядно проявляется в воздействии на магнитную стрелку компаса. От одного магнитного полюса к другому идут силовые линии, огибающие земной шар. Плоскости, в которых лежат магнитные линии, образуют магнитные меридианы.

Направление стрелки компаса на магнитный полюс (магнитный меридиан) земной поверхности не совпадает с направлением географического меридиана. Между ними образуется угол, который называют магнитным склонением. Каждое место на земной поверхности имеет свой угол склонения. При отклонении магнитной стрелки на восток склонение считается восточным (положительным), при отклонении на запад-западным (отрицательным). Зная склонение магнитной стрелки в данном месте, можно легко определить направление истинного (географического) меридиана. А если известна и широта, то определяют географические координаты, или местоположение точки. Так как магнитные полюсы находятся внутри Земли, то магнитная стрелка не располагается горизонтально, а наклонена к горизонту. Угол этого наклона, т. е. угол между направлением силовых линий магнитного поля и горизонтальной плоскостью, называется магнитным наклонением. По мере приближения к магнитным полюсам угол наклонения увеличивается. На магнитном полюсе магнитная стрелка принимает вертикальное положение и магнитное наклонение достигает на полюсах 90°. Вблизи магнитного экватора оно равно нулю.

В некоторых районах Земли величины, характеризующие магнитное поле, резко отличаются от средних значений. Эти места, где стрелка компаса показывает аномальное склонение, получили название магнитных аномалий. Большинство их объясняется залеганием горных пород, содержащих железные руды. На территории СССР известен ряд магнитных аномалий: Курская, Криворожская и др.

Иногда можно наблюдать неправильные колебания магнитной стрелки. Такие быстрые отклонения ее от нормального положения вызываются магнитными бурями, связанными с вторжением с большой скоростью в атмосферу Земли излучаемых Солнцем электрически заряженных частиц. Это усиление магнитного поля и действует на стрелку. Результат магнитных бурь-полярные сияния (см. Атмосферные оптические и электрические явления). Магнитное поле Земли простирается до 60 тыс. км над земной поверхностью; пространство, заполненное магнитным полем, называется магнитосферой Земли. Эта сфера захватывает электрически заряженные частицы, летящие от Солнца, которые образуют радиационные пояса Земли.

Магнетизм Земли

У Земли есть магнитное поле, причины существования кото­рого не установлены. Магнитное поле имеет два магнитных по­люса и магнитную ось. Положение магнитных полюсов не совпа­дает с положением географических. Магнитные полюсы располо­жены в Северном и Южном полушариях несимметрично относи­тельно друг друга. В связи с этим линия, соединяющая их, - магнитная ось Земли образует с осью ее вращения угол до 11°.

Магнетизм Земли характеризуется магнитной напряженностью, склонением и наклонением. Магнитная напряженность изме­ряется в эрстедах.

Магнитным склонением называется угол отклоне­ния магнитной стрелки от географического меридиана в данном месте. Поскольку магнитная стрелка указывает направление магнитного меридиана, то магнитное склонение будет соответ­ствовать углу между магнитным и географическим меридианами. Склонение может быть восточным и западным. Линии, соединя­ющие на карте одинаковые склонения, называются изого­нами. Изогона склонения, равного нулю, называется нулевым магнитным меридианом. Изогоны исходят из магнитного полюса, расположенного в Южном полушарии, и сходятся в магнитном полюсе, находящемся в Северном полушарии.

Магнитным наклонением называется угол на­клона магнитной стрелки к горизонту. Линии, соединяющие точки с равным наклонением, называются изоклинами. Нулевая изо­клина называется магнитным экватором. Изоклины, подобно параллелям, вытягиваются в широтном направлении и изме­няются от 0 до 90°.

Плавный ход изогон и изоклин в некоторых местах земной поверхности довольно резко нарушается, что связано с существо­ванием магнитных аномалий. Источниками таких аномалий могут служить крупные скопления железных руд. Самая крупная маг­нитная аномалия - Курская. Магнитные аномалии могут быть вызваны также разрывами в земной коре - сбросами, взбросами, в результате чего происходит соприкосновение пород с различными магнитными характеристиками, и т. п. Магнитные аномалии широко используются для поиска месторождений полезных иско­паемых и изучения строения недр.

Величины магнитных напряженностей, склонений и наклоне­ний испытывают суточные и вековые колебания (вариации).

Суточные вариации вызываются солнечными и лунными воз­мущениями ионосферы и проявляются больше летом, чем зимой, и больше днем, чем ночью. Гораздо значительнее интенсивность


вековых вариаций. Считается, что они обусловлены изменениями, происходящими в верхних слоях земного ядра. Вековые вариации в разных географических точках различны.

Внезапные, длящиеся несколько суток магнитные колебания (магнитные бури) связаны с солнечной активностью и наиболее интенсивно проявляются в высоких широтах.

§ 4. Теплота Земли

Земля получает тепло из двух источников: от Солнца и из собственных недр. Тепловое состояние поверхности Земли почти полностью зависит от нагрева ее Солнцем. Однако под влиянием многих факторов происходит перераспределение солнечного тепла, попавшего на поверхность Земли. Различные точки земной по­верхности получают неодинаковое количество тепла вследствие наклонного положения оси вращения Земли относительно пло­скости эклиптики.

Для сравнения температурных условий введены понятия о среднесуточных, среднемесячных и среднегодовых температурах на отдельных участках поверхности Земли.

Наибольшие колебания температур испытывает верхняя толща Земли. Вглубь от поверхности суточные, месячные и годовые колебания температур постепенно уменьшаются. Толща земной коры, в пределах которой породы испытывают влияние солнечного тепла, называется гелиотермической зоной. Глубина этой зоны варьирует от нескольких метров до 30 м.

Под гелиотермической зоной располагается пояс постоянной температуры, где сезонные колебания температуры не сказы­ваются. В районе Москвы он находится на глубине 20 м.

Ниже пояса постоянной температуры расположена зона гео­термии. В этой зоне происходит повышение температуры с глуби­ной за счет внутренней теплоты Земли - в среднем на 1 °С на каждые 33 м. Этот интервал глубин называется „геотерми­ческой ступенью. Прирост температуры при углублении внутрь Земли на 100 м называется геотермическим градиентом. Величины геотермических ступени и гра­диента обратно пропорциональны и различны для разных районов Земли. Их произведение - величина постоянная и равна 100. Если, например, ступень равна 25 м, то градиент равен 4 °С.

Различия в величинах геотермической ступени могут быть обусловлены разной радиоактивностью и теплопроводностью гор­ных пород, гидрохимическими процессами в недрах, характером залегания горных пород, температурой подземных вод, удален­ностью от океанов и морей.

Величина геотермической ступени изменяется в широких пределах. В районе Пятигорска она равна 1,5 м, Ленинграда - 19,6 м, Москвы - 38,4 м, в Карелии - более 100 м, в районе Поволжья и Башкирии - 50 м и т. д. 14


Главным источником внутренней теплоты Земли является радиоактивный распад веществ, сосредоточенных в основном в зем­ной коре. Предполагают, что теплота в ней увеличивается в соот­ветствии с геотермической ступенью до глубины 15-20 км. Глубже происходит резкое возрастание величины геотермической ступени. Специалисты считают, что температура в центре Земли не превышает 4000 °С. Если бы величина геотермической ступени сохранилась одинаковой до центра Земли, то температура на глу­бине 900 км равнялась бы 27 000 °С, а в центре Земли достигла бы примерно 193 000 °С.

ЗЕМНОЙ МАГНЕТИЗМ (геомагнетизм) - раздел геофизики, изучающий магнитное поле Земли (МПЗ), его распределение на земной поверхности, пространств. структуру (магнитосферу Земли , радиац. пояса), его взаимодействие с межпланетным магн. полем, вопросы его происхождения. Магнитное поле Земли имеет постоянную составляющую - осн. поле (вклад его ~ 99%) и переменную (~ 1%). Осн. МПЗ по форме близко к полю диполя, центр к-рого смещён относительно центра Земли, а ось наклонена к оси вращения Земли на 11,5°, так что геомагн. полюса отстоят от географич. на 11,5°, причём в северном полушарии находится южный магн. полюс (вектор магн. индукции направлен вниз). Величина магн. момента диполя в наст. время составляет 8,3.10 22 А.м 2 . Ср. величина магн. индукции вблизи земной поверхности равна ~ 5.10 -5 Тл. Напряжённость геомагн. поля убывает от магн. полюсов к магн. экватору от 55,7 до 33,4 А/м (от 0,70 до 0,42 Э). Отклонения от поля диполя, имеющие на поверхности Земли характерный размер ~ 10 4 км и величину в макс. до 10 -5 Тл, образуют т. н. мировые магн. аномалии (напр., Бразильская, Сибирская, Канадская). Осн. МПЗ испытывает лишь медленные изменения во времени (т. н. в е к о в ы е вариации, ВВ) с периодом от 10 до 10 4 лет, причём имеется чётко выраженный их полосовой характер 10-20, 60-100, 600-1200 и 8000 лет. Главный период - ок. 8000 лет - характеризуется изменением дипольного момента в 1,5-2 раза. В ходе ВВ мировые аномалии движутся, распадаются и возникают вновь. В низких географич. широтах хорошо выражен западный дрейф МПЗ со скоростью ~ 0,2° в год. В результате ВВ геомагн. полюс прецессирует относительно географич. с периодом ~ 1200 лет. Сведения о распределении МПЗ и о ВВ получены из прямых измерений величины и направления МПЗ, к-рые начаты с 19 в., навигац. измерений магн. склонения (угла между направлением стрелки компаса и географич. меридианом в точке измерения) в 15- 20 вв. и из археомагн. и палеомагн. данных. МПЗ измеряется с помощью магнитометров наземными стационарными магн. обсерваториями, а также проводятся магн. съёмки - морские, на самолётах, ракетах и ИСЗ. В совр. 3. м. выделились два новых направления - археомагнетизм и палеомагнетизм, к-рые дали возможность изучить ВВ и обнаружить переплюсовку МПЗ. Археомагнетизм - раздел 3. м., изучающий величину и направление МПЗ, существовавшего в момент обжига керамики, кирпичей, черепиц, пода очагов и др. предметов человеческой деятельности, изготовленных из материалов, содержащих высококоэрцитивные ферримагн. минералы на основе окислов железа. При остывании от темп-ры выше Кюри точки минералы приобретают незначительную, но весьма стабильную термоостаточную . Вместе с данными о времени обжига (историч. сведения или радиоуглеродный метод) величина и направление этой намагниченности позволяют восстановить пространственно-временную структуру МПЗ за 8-10 тыс. лет. Палеомагнитология - раздел 3. м., изучающий величину и направление древнего МПЗ по намагниченности осадочных горных пород, содержащих ферримагн. минералы. Изучение палеомагн. методами показало, что МПЗ существовало, по крайней мере, 2,5 млрд. лет тому назад (возраст Земли ~4,6 млрд. лет) и имело величину, близкую к современной. Среднее за 10 4 -10 5 лет положение геомагн. полюсов совпадает с географическими. Характеристики геомагн. поля сохраняются неизменными в течение 10 5 -10 7 лет, потом МПЗ неожиданно уменьшается в 3-10 раз, и в этот относительно короткий (10 3 -10 4 лет) переходный период может измениться знак магн. поля (инверсия). Через нек-рое время величина МПЗ снова достигает нормального уровня и опять сохраняется достаточно долго (10 5 -10 7 лет). При пониж. значении поля в переходный период может произойти одна, неск. (2-3) или ни одной инверсии. Моменты наступления переходных периодов распределены во времени случайно - вероятность их наступления описывается законом Пуассона. За последние ~ 30 млн. лет ср. время между инверсиями составляет ~ 150 000 лет; однако эта величина может меняться в значит. пределах: на протяжении последних 500 млн. лет она менялась на порядок с периодом ~ 200 млн. лет. Палеомагн. измерения направления магн. поля на континентах позволили определить, на какой географич. широте располагался данный континент в момент образования изучаемой горной породы. Эти данные подтвердили гипотезу о дрейфе континентов. Кроме мировых аномалий, в распределении геомагн. поля на поверхности наблюдаются местные аномалии, связанные с намагниченностью горных пород, слагающих земную кору. Почти все горные породы содержат нек-рое количество ферримагн. минералов на основе окислов железа, к-рые намагничиваются в МПЗ и создают аномалии. Размеры этих аномалий лежат в пределах от единиц до сотен км, их величина в среднем для всей поверхности Земли составляет 2.10 - 7 Тл, но в отд. исключит. случаях достигает 10 - 5 Тл (Курская магн. аномалия). Изучение аномалий магн. поля имеет важное значение для поисков полезных ископаемых и изучения глубинного строения земной коры до глубины 20-50 км (темп-ра более глубоких слоев превышает точку Кюри всех ферримагн. минералов). Пространственная структура геомагнитного поля. МПЗ имеет пространств. распределение вокруг Земли, формируя совместно с солнечным ветром магнитосферу - многосвязную систему электрич. и магн. полей и потоков заряж. частиц. Магнитосфера не симметрична относительно дневной и ночной стороны: магн. поле с дневной стороны сжато солнечным ветром до расстояния ~ 10R з (R з - радиус Земли) и имеет вытянутый "хвост" с ночной стороны на многие млн. км. Линии магн. поля в магнитосфере делятся на замкнутые (}