Метод неопределенных множителей лагранжа пример. Метод множителей Лагранжа

Краткая теория

Метод множителей Лагранжа является классическим методом решения задач математического программирования (в частности выпуклого). К сожалению, при практическом применении метода могут встретиться значительные вычислительные трудности, сужающие область его использования. Мы рассматриваем здесь метод Лагранжа главным образом потому, что он является аппаратом, активно используемым для обоснования различных современных численных методов, широко применяемых на практике. Что же касается функции Лагранжа и множителей Лагранжа, то они играют самостоятельную и исключительно важную роль в теории и приложениях не только математического программирования.

Рассмотрим классическую задачу оптимизации:

Среди ограничений этой задачи нет неравенств, нет условий неотрицательности переменных, их дискретности, и функции и непрерывны и имеют частные производные по крайней мере второго порядка.

Классический подход к решению задачи дает систему уравнений (необходимые условия), которым должна удовлетворять точка , доставляющая функции локальный экстремум на множестве точек, удовлетворяющих ограничениям (для задачи выпуклого программирования найденная точка будет одновременно и точкой глобального экстремума).

Предположим, что в точке функция (1) имеет локальный условный экстремум и ранг матрицы равен . Тогда необходимые условия запишутся в виде:

есть функция Лагранжа; – множители Лагранжа.

Существуют также и достаточные условия, при выполнении которых решение системы уравнений (3) определяет точку экстремума функции . Этот вопрос решается на основании исследования знака второго дифференциала функции Лагранжа. Однако достаточные условия представляют главным образом теоретический интерес.

Можно указать следующий порядок решения задачи (1), (2) методом множителей Лагранжа:

1) составить функцию Лагранжа (4);

2) найти частные производные функции Лагранжа по всем переменным и приравнять их

нулю. Тем самым будет получена система (3, состоящая из уравнений. Решить полученную систему (если это окажется возможным!) и найти таким образом все стационарные точки функции Лагранжа;

3) из стационарных точек, взятых без координат выбрать точки, в которых функция имеет условные локальные экстремумы при наличии ограничений (2). Этот выбор осуществляется, например, с применением достаточных условий локального экстремума. Часто исследование упрощается, если использовать конкретные условия задачи.

Пример решения задачи

Условие задачи

Фирма производит товар двух видов в количествах и . Функция полезных издержек определена соотношением . Цены этих товаров на рынке равны и соответственно.

Определить, при каких объемах выпуска достигается максимальная прибыль и чему она равна, если полные издержки не превосходят

Испытываете сложности с пониманием хода решения? На сайте действует услуга Решение задач по методам оптимальных решений на заказ

Решение задачи

Экономико-математическая модель задачи

Функция прибыли:

Ограничения на издержки:

Получаем следующую экономико-математическую модель:

Кроме того, по смыслу задачи

Метод множителей Лагранжа

Составим функцию Лагранжа:

Находим частные производные 1-го порядка:

Составим и решим систему уравнений:

Так как , то

Максимальная прибыль:

Ответ

Таким образом необходимо выпускать ед. товара 1-го вида и ед. товара 2-го вида. При этом прибыль будет максимальной и составит 270.
Приведен образец решения задачи квадратичного выпуклого программирования графическим методом.

Решение линейной задачи графическим методом
Рассмотрен графический метод решения задачи линейного программирования (ЗЛП) с двумя переменными. На примере задачи приведено подробное описание построения чертежа и нахождения решения.

Модель управления запасами Уилсона
На примере решения задачи рассмотрена основная модель управления запасами (модель Уилсона). Вычислены такие показатели модели как оптимальный размер партии заказа, годовые затраты на хранение, интервал между поставками и точка размещения заказа.

Матрица коэффициентов прямых затрат и матрица "Затраты-выпуск"
На примере решения задачи рассмотрена межотраслевая модель Леонтьева. Показано вычисление матрицы коэффициентов прямых материальных затрат, матрицы «затраты-выпуск», матрицы коэффициентов косвенных затрат, векторов конечного потребления и валового выпуска.

С уть метода Лагранжа заключается в сведении задачи на условный экстремум к решению задачи безусловного экстремума. Рассмотрим модель нелинейного программирования:

(5.2)

где
– известные функции,

а
– заданные коэффициенты.

Отметим, что в данной постановке задачи ограничения заданы равенствами, отсутствует условие неотрицательности переменных. Кроме того, полагаем, что функции
непрерывны со своими первыми частными производными.

Преобразуем условия (5.2) таким образом, чтобы в левых или правых частях равенств стоял ноль :

(5.3)

Составим функцию Лагранжа. В нее входит целевая функция (5.1) и правые части ограничений (5.3), взятые соответственно с коэффициентами
. Коэффициентов Лагранжа будет столько, сколько ограничений в задаче.

Точки экстремума функции (5.4) являются точками экстремума исходной задачи и наоборот: оптимальный план задачи (5.1)-(5.2) является точкой глобального экстремума функции Лагранжа.

Действительно, пусть найдено решение
задачи (5.1)-(5.2), тогда выполняются условия (5.3). Подставим план
в функцию (5.4) и убедимся в справедливости равенства (5.5).

Таким образом, чтобы найти оптимальный план исходной задачи, необходимо исследовать на экстремум функцию Лагранжа. Функция имеет экстремальные значения в точках, где ее частные производные равны нулю . Такие точки называютсястационарными.

Определим частные производные функции (5.4)

,

.

После приравнивания нулю производных получим системуm+n уравнений сm+n неизвестными

,(5.6)

В общем случае система (5.6)-(5.7) будем иметь несколько решений, куда войдут все максимумы и минимумы функции Лагранжа. Для того чтобы выделить глобальный максимум или минимум, во всех найденных точках вычисляют значения целевой функции. Наибольшее из этих значений будет глобальным максимумом, а наименьшее – глобальным минимумом. В некоторых случаях оказывается возможным использование достаточных условий строгого экстремума непрерывных функций (см. ниже задачу 5.2):

пусть функция
непрерывна и дважды дифференцируема в некоторой окрестности своей стационарной точки(т.е.
)). Тогда:

а ) если
,
(5.8)

то – точка строгого максимума функции
;

б) если
,
(5.9)

то – точка строгого минимума функции
;

г ) если
,

то вопрос о наличии экстремума остается открытым.

Кроме того, некоторые решения системы (5.6)-(5.7) могут быть отрицательными. Что не согласуется с экономическим смыслом переменных. В этом случае следует проанализировать возможность замены отрицательных значений нулевыми.

Экономический смысл множителей Лагранжа. Оптимальное значение множителя
показывает на сколько изменится значение критерияZ при увеличении или уменьшении ресурсаj на одну единицу, так как

Метод Лагранжа можно применять и в том случае, когда ограничения представляют собой неравенства. Так, нахождение экстремума функции
при условиях

,

выполняют в несколько этапов:

1. Определяют стационарные точки целевой функции, для чего решают систему уравнений

.

2. Из стационарных точек отбирают те, координаты которых удовлетворяют условиям

3. Методом Лагранжа решают задачу с ограничениями-равенствами (5.1)-(5.2).

4. Исследуют на глобальный максимум точки, найденные на втором и третьем этапах: сравнивают значения целевой функции в этих точках – наибольшее значение соответствует оптимальному плану.

Задача 5.1 Решим методом Лагранжа задачу 1.3, рассмотренную в первом разделе. Оптимальное распределение водных ресурсов описывается математической моделью

.

Составим функцию Лагранжа

Найдем безусловный максимум этой функции. Для этого вычислим частные производные и приравняем их к нулю

,

Таким образом, получили систему линейных уравнений вида

Решение системы уравнений представляет собой оптимальный план распределения водных ресурсов по орошаемым участкам

, .

Величины
измеряются в сотнях тысяч кубических метров.
- величина чистого дохода на одну сотню тысяч кубических метров поливной воды. Следовательно, предельная цена 1 м 3 оросительной воды равна
ден. ед.

Максимальный дополнительный чистый доход от орошения составит

160·12,26 2 +7600·12,26-130·8,55 2 +5900·8,55-10·16,19 2 +4000·16,19=

172391,02 (ден. ед.)

Задача 5.2 Решить задачу нелинейного программирования

Ограничение представим в виде:

.

Составим функцию Лагранжа и определим ее частные производные

.

Чтобы определить стационарные точки функции Лагранжа, следует приравнять нулю ее частные производные. В результате получим систему уравнений

.

Из первого уравнения следует

. (5.10)

Выражение подставим во второе уравнение

,

откуда следует два решения для :

и
. (5.11)

Подставив эти решения в третье уравнение, получим

,
.

Значения множителя Лагранжа и неизвестной вычислим по выражениям (5.10)-(5.11):

,
,
,
.

Таким образом, получили две точки экстремума:

;
.

Для того чтобы узнать являются ли данные точки точками максимума или минимум, воспользуемся достаточными условиями строгого экстремума (5.8)-(5.9). Предварительно выражение для , полученное из ограничения математической модели, подставим в целевую функцию

,

. (5.12)

Для проверки условий строгого экстремума следует определить знак второй производной функции (5.11) в найденных нами экстремальных точках
и
.

,
;

.

Таким образом, (·)
является точкой минимума исходной задачи (
), а (·)
– точкой максимума.

Оптимальный план :

,
,
,

.

Описание метода

где .

Обоснование

Нижеприведенное обоснование метода множителей Лагранжа не является его строгим доказательством. Оно содержит эвристические рассуждения, помогающие понять геометрический смысл метода.

Двумерный случай

Линии уровня и кривая .

Пусть требуется найти экстремум некоторой функции двух переменных при условии, задаваемом уравнением . Мы будем считать, что все функции непрерывно дифференцируемы, и данное уравнение задает гладкую кривую S на плоскости . Тогда задача сводится к нахождению экстремума функции f на кривой S . Будем также считать, что S не проходит через точки, в которых градиент f обращается в 0 .

Нарисуем на плоскости линии уровня функции f (то есть кривые ). Из геометрических соображений видно, что экстремумом функции f на кривой S могут быть только точки, в которых касательные к S и соответствующей линии уровня совпадают. Действительно, если кривая S пересекает линию уровня f в точке трансверсально (то есть под некоторым ненулевым углом), то двигаясь по кривой S из точки мы можем попасть как на линии уровня, соответствующие большему значению f , так и меньшему. Следовательно, такая точка не может быть точкой экстремума.

Тем самым, необходимым условием экстремума в нашем случае будет совпадение касательных. Чтобы записать его в аналитической форме, заметим, что оно эквивалентно параллельности градиентов функций f и ψ в данной точке, поскольку вектор градиента перпендикулярен касательной к линии уровня. Это условие выражается в следующей форме:

где λ - некоторое число, отличное от нуля, и являющееся множителем Лагранжа.

Рассмотрим теперь функцию Лагранжа , зависящую от и λ :

Необходимым условием ее экстремума является равенство нулю градиента . В соответствии с правилами дифференцирования, оно записывается в виде

Мы получили систему, первые два уравнения которой эквивалентны необходимому условию локального экстремума (1), а третье - уравнению . Из нее можно найти . При этом , поскольку в противном случае градиент функции f обращается в нуль в точке , что противоречит нашим предположениям. Следует заметить, что найденные таким образом точки могут и не являться искомыми точками условного экстремума - рассмотренное условие носит необходимый, но не достаточный характер. Нахождение условного экстремума с помощью вспомогательной функции L и составляет основу метода множителей Лагранжа, примененного здесь для простейшего случая двух переменных. Оказывается, вышеприведенные рассуждения обобщаются на случай произвольного числа переменных и уравнений, задающих условия.

На основе метода множителей Лагранжа можно доказать и некоторые достаточные условия для условного экстремума, требующие анализа вторых производных функции Лагранжа.

Применение

  • Метод множителей Лагранжа применяется при решении задач нелинейного программирования, возникающих во многих областях (например, в экономике).
  • Основной метод решения задачи об оптимизации качества кодирования аудио и видео данных при заданном среднем битрейте (оптимизация искажений - англ. Rate-Distortion optimization ).

См. также

Ссылки

  • Зорич В. А. Математический анализ. Часть 1. - изд. 2-е, испр. и доп. - М.: ФАЗИС, 1997.

Wikimedia Foundation . 2010 .

Смотреть что такое "Множители Лагранжа" в других словарях:

    Множители Лагранжа - дополнительные множители, преобразующие целевую функцию экстремальной задачи выпуклого программирования (в частности, линейного программирования) при ее решении одним из классических методов методом разрешающих множителей… … Экономико-математический словарь

    множители Лагранжа - Дополнительные множители, преобразующие целевую функцию экстремальной задачи выпуклого программирования (в частности, линейного программирования) при ее решении одним из классических методов методом разрешающих множителей (методом Лагранжа).… … Справочник технического переводчика

    Механики. 1) Лагранжа уравнения 1 го рода дифференциальные ур ния движения механич. системы, к рые даны в проекциях на прямоугольные координатные оси и содержат т. н. множители Лагранжа. Получены Ж. Лагранжем в 1788. Для голономной системы,… … Физическая энциклопедия

    Механики обыкновенные дифференциальные уравнения 2 го порядка, описывающие движения механич. систем под действием приложенных к ним сил. Л. у. установлены Ж. Лаг ранжем в двух формах: Л. у. 1 го рода, или уравнения в декартовых координатах с… … Математическая энциклопедия

    1) в гидромеханике ур ния движения жидкости (газа) в переменных Лагранжа, к рыми являются координаты ч ц среды. Получены франц. учёным Ж. Лагранжем (J. Lagrange; ок. 1780). Из Л. у. определяется закон движения ч ц среды в виде зависимостей… … Физическая энциклопедия

    Метод множителей Лагранжа, метод нахождения условного экстремума функции f(x), где, относительно m ограничений, i меняется от единицы до m. Содержание 1 Описание метода … Википедия

    Функция, используемая при решении задач на условный экстремум функций многих переменных и функционалов. С помощью Л. ф. записываются необходимые условия оптимальности в задачах на условный экстремум. При этом не требуется выражать одни переменные … Математическая энциклопедия

    Метод решения задач на Условный экстремум; Л. м. м. заключается в сведении этих задач к задачам на безусловный экстремум вспомогательной функции т. н. функции Лагранжа. Для задачи об экстремуме функции f (х1, x2,..., xn) при… …

    Переменные, с помощью к рых строится Лагранжа функция при исследовании задач на условный экстремум. Использование Л. м. и функции Лагранжа позволяет единообразным способом получать необходимые условия оптимальности в задачах на условный экстремум … Математическая энциклопедия

    1) в гидромеханике уравнения движения жид кой среды, записанные в переменных Лагранжа, которыми являются координаты частиц среды. Из Л. у. определяется закон движения частиц среды в виде зависимостей координат от времени, а по ним… … Большая советская энциклопедия

ЛАГРАНЖА МЕТОД

Метод приведения квадратичной формы к сумме квадратов, указанный в 1759 Ж. Лагранжем (J. Lagrange). Пусть дана

от ппеременных х 0 , x 1 ,..., х п . с коэффициентами из поля k характеристики Требуется привести эту форму к канонич. виду

при помощи невырожденного линейного преобразования переменных. Л. м. состоит в следующем. Можно считать, что не все коэффициенты формы (1) равны нулю. Поэтому возможны два случая.

1) При некотором g, диагональный Тогда

где форма f 1 (х).не содержит переменную x g . 2) Если же все но то


где форма f 2 (х).не содержит двух переменных x g и x h . Формы, стоящие под знаками квадратов в (4), линейно независимы. Применением преобразований вида (3) и (4) форма (1) после конечного числа шагов приводится к сумме квадратов линейно независимых линейных форм. С помощью частных производных формулы (3) и (4) можно записать в виде


Лит. : Г а н т м а х е р Ф. Р., Теория матриц, 2 изд., М., 1966; К у р о ш А. Г., Курс высшей алгебры, 11 изд., М., 1975; Александров П. С., Лекции по аналитической геометрии..., М., 1968. И. В. Проскуряков.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ЛАГРАНЖА МЕТОД" в других словарях:

    Лагранжа метод - Лагранжа метод — метод решения ряда классов задач математического программирования с помощью нахождения седловой точки (x*, λ*) функции Лагранжа., что достигается приравниванием нулю частных производных этой функции по… … Экономико-математический словарь

    Лагранжа метод - Метод решения ряда классов задач математического программирования с помощью нахождения седловой точки (x*, ?*) функции Лагранжа., что достигается приравниванием нулю частных производных этой функции по xi и?i . См. Лагранжиан. (x , y ) = C и f 2 (х, у) = С 2 на плоскости ХО Y .

    Из этого следует метод нахождения корней системы. нелинейных уравнений:

      Определить (хотя бы приближенно) интервал существования решения системы уравнений (10) или уравнения (11). Здесь не­обходимо учитывать вид уравнений, входящих в систему, область определения каждого их уравнений и т. п. Иногда применяется подбор начального приближения решения;

      Протабулировать решение уравнения (11) по переменным x и y на выбранном интервале, либо построить графики функций f 1 (x , y ) = С, и f 2 (х,у) = С 2 (система(10)).

      Локализовать предполагаемые корни системы уравнений - найти несколько минимальных значений из таблицы табулирование­ корней уравнения (11), либо определить точки пересечения кривых, входящих в систему (10).

    4. Найти корни для системы уравнений (10) с помощью надстройки Поиск решения.