Очень интересные и простые опыты по физике. Занимательная физика: опыты для детей

Откуда берутся настоящие ученые? Ведь кто-то совершает необыкновенные открытия, изобретает хитроумные приборы, которыми мы пользуемся. Некоторые даже получают мировое признание в виде престижных наград. Как утверждают педагоги, детство - начало пути к будущим открытиям и свершениям.

Нужна ли физика младшим школьникам

Большинство школьных программ предполагает изучение физики с пятого класса. Однако родители хорошо знают, какое множество вопросов возникает у любознательных ребят младшего школьного возраста и даже у дошколят. Открыть дорогу к чудесному миру знаний помогут опыты по физике. Для школьников 7-10 лет они, конечно, будут несложными. Несмотря на простоту опытов, но поняв основные физические принципы и законы, дети ощущают себя всемогущими волшебниками. Это прекрасно, ведь живой интерес к науке - залог успешной учебы.

Детские способности не всегда раскрываются самостоятельно. Часто требуется предложить детворе определенную научную деятельность, лишь потом проявляются склонности к тем или иным знаниям. Домашние опыты - легкий способ выяснить, интересуется ли чадо естественными науками. Маленькие открыватели мира редко остаются равнодушными к «чудесным» действиям. Даже если желание изучать физику ярко не проявится, заложить азы физических знаний все же стоит.

Простейшие опыты, проводимые дома, хороши тем, что даже стеснительные, сомневающиеся в себе дети с удовольствием занимаются домашними экспериментами. Достижение ожидаемого результата рождает уверенность в собственных силах. Ровесники восторженно принимают демонстрацию подобных «фокусов», что улучшает отношения между ребятами.

Требования к постановке опытов дома

Чтобы изучение законов физики в домашних условиях было безопасным, необходимо соблюдать меры предосторожности:

  1. Абсолютно все эксперименты проводятся с участием взрослых. Конечно, многие исследования безопасны. Беда в том, что ребята не всегда проводят четкую границу между безобидными и опасными манипуляциями.
  2. Необходимо быть особенно внимательными, если используются острые, колюще-режущие предметы, открытый огонь. Здесь присутствие старших обязательно.
  3. Использование ядовитых веществ запрещено.
  4. Ребенку нужно подробно описать порядок действий, которые следует произвести. Необходимо ясно сформулировать цель работы.
  5. Взрослые должны объяснять суть опытов, принципы действия законов физики.

Простейшие исследования

Начать знакомство с физикой можно, демонстрируя свойства веществ. Это должны быть самые простые опыты для детей.

Важно! Желательно предусмотреть возможные детские вопросы, чтобы ответить на них максимально подробно. Неприятно, когда мама или папа предлагают провести опыт, смутно понимая, что он подтверждает. Поэтому лучше подготовиться, проштудировав нужную литературу.

Разная плотность

Каждое вещество обладает плотностью, влияющей на его вес. Разные показатели этого параметра имеют интересные проявления в виде многослойной жидкости.

Даже дошкольники могут проводить такие простейшие опыты с жидкостями и наблюдать за их свойствами.
Для эксперимента понадобятся:

  • сахарный сироп;
  • растительное масло;
  • вода;
  • стеклянная банка;
  • несколько мелких предметов (например, монета, пластиковая бусина, кусочек пенопласта, булавка).

Банку нужно заполнить примерно на 1/3 сиропом, добавить такое же количество воды и масла. Жидкости не будут смешиваться, а образуют слои. Причина - плотность, вещество с меньшей плотностью легче. Затем поочередно в банку нужно опустить предметы. Они «зависнут» на разных уровнях. Все зависит от того, как соотносятся между собой плотности жидкостей и предметов. Если плотность материала меньше, чем жидкости, вещица не утонет.

Плавающее яйцо

Понадобятся:

  • 2 стакана;
  • столовая ложка;
  • соль;
  • вода;
  • 2 яйца.

Оба стакана нужно наполнить водой. В одном из них растворить 2 полные столовые ложки соли. Затем в стаканы следует опустить яйца. В обычной воде оно утонет, в соленой станет держаться на поверхности. Соль повышает плотность воды. Именно этим объясняется тот факт, что в морской воде плавать легче, чем в пресной.

Поверхностное натяжение воды

Детям следует объяснить, что молекулы на поверхности жидкости притягиваются, образуя тончайшую упругую пленку. Такое свойство воды называется поверхностным натяжением. Этим объясняется, например, способность водомерки скользить по водной глади пруда.

Непроливающаяся вода

Необходимо:

  • стеклянный стакан;
  • вода;
  • канцелярские скрепки.

Стакан до краев наполняется водой. Кажется, одной скрепки достаточно, чтобы жидкость пролилась. Необходимо осторожно погружать скрепки в стакан одну за другой. Опустив около десятка скрепок, можно увидеть, что вода не выливается, а образует на поверхности небольшой купол.

Плавающие спички

Необходимо:

  • миска;
  • вода;
  • 4 спички;
  • жидкое мыло.

В миску следует налить воду, опустить спички. Они будут практически неподвижны на поверхности. Если капнуть в центр моющее средство, спички мгновенно расплывутся к краям миски. Мыло уменьшает поверхностное натяжение воды.

Занимательные опыты

Очень зрелищной бывает для детей работа со светом и звуком. Педагоги утверждают, что занимательные опыты интересны ребятам разных возрастов. Например, предложенные здесь физические опыты подойдут и для дошкольников.

Светящаяся «лава»

Этот опыт не создает настоящий светильник, но красиво имитирует работу лампы с движущимися частицами.
Необходимо:

  • стеклянная банка;
  • вода;
  • растительное масло;
  • соль или любая шипучая таблетка;
  • пищевой краситель;
  • фонарик.

Банку нужно примерно на 2/3 наполнить окрашенной водой, затем почти до краев долить масла. Сверху следует посыпать немного соли. Затем отправиться в затемненную комнату, подсветить банку снизу фонариком. Крупинки соли станут опускаться на дно, увлекая за собой капельки жира. Позже, когда соль растворится, масло снова поднимется к поверхности.

Домашняя радуга

Солнечный свет можно разложить на составляющие спектр разноцветные лучи.

Необходимо:

  • яркий естественный свет;
  • стакан;
  • вода;
  • высокая коробка или стул;
  • большой лист белой бумаги.

В солнечный день перед окном, впускающим яркий свет, на пол нужно положить бумагу. Рядом установить коробку (стул), сверху поставить наполненный водой стакан. На полу появится радуга. Чтобы увидеть цвета полностью, достаточно подвигать бумагу и поймать ее. Прозрачная емкость с водой является призмой, раскладывающей луч на части спектра.

Стетоскоп доктора

Звук распространяется с помощью волн. Звуковые волны в пространстве можно перенаправлять, усиливать.
Понадобятся:

  • отрезок резиновой трубки (шланга);
  • 2 воронки;
  • пластилин.

В оба конца резиновой трубки нужно вставить воронку, закрепив ее пластилином. Теперь одну достаточно приставить к своему сердцу, а к другую - к уху. Ясно слышно биение сердца. Воронка «собирает» волны, внутренняя поверхность трубки не позволяет им рассеиваться в пространстве.

По этому принципу работает стетоскоп доктора. В старину примерно такое же устройство имели слуховые аппараты для слабослышащих людей.

Важно! Нельзя использовать источники громкого звука, так как это может повредить слуху.

Эксперименты

В чем разница между экспериментом и опытом? Это методы исследования. Обычно опыт проводится с заранее известным результатом, демонстрируя уже понятную аксиому. Эксперимент же призван подтвердить или опровергнуть гипотезу.

Для детей разница между этими понятиями практически неощутима, любое действие производится впервые, без научной базы.

Однако часто проснувшийся интерес толкает ребят на новые эксперименты, вытекающие из уже известных свойств материалов. Такую самостоятельность нужно поощрять.

Замораживание жидкостей

Материя меняет свойства с переменой температуры. Детей интересует изменение свойств всяческих жидкостей при обращении в лед. Различные вещества имеют отличную друг от друга температуру замерзания. Также при низкой температуре меняется их плотность.

Обратите внимание! Замораживая жидкости, следует применять только пластиковые контейнеры. Использовать стеклянные емкости нежелательно, так как они могут лопнуть. Причина в том, что жидкости, замерзая, меняют свою структуру. Молекулы образуют кристаллы, расстояние между ними увеличивается, увеличивается объем вещества.

  • Если наполнить разные формочки водой и апельсиновым соком, оставить в морозильной камере, что получится? Вода уже замерзнет, а сок частично останется жидким. Причина - температура замерзания жидкости. Подобные эксперименты можно проводить с разными веществами.
  • Налив в прозрачный контейнер воду и масло, можно увидеть уже привычное расслоение. Масло всплывает на поверхность воды, так как обладает меньшей плотностью. Что можно наблюдать при замораживании контейнера с содержимым? Вода и масло меняются местами. Сверху будет находиться лед, масло теперь окажется внизу. Замерзая, вода стала легче.

Работа с магнитом

Большой интерес у младших школьников вызывает проявление магнитных свойств различных веществ. Занимательная физика предлагает проверить эти свойства.

Варианты экспериментов (понадобятся магниты):

Проверка способности притягиваться различных предметов

Можно вести записи, указывая свойства материалов (пластик, дерево, железо, медь). Интересный материал - железная стружка, движение которой выглядит завораживающе.

Изучение способности магнита действовать сквозь другие материалы.

Например, металлический предмет подвергается воздействию магнита через стекло, картон, деревянную поверхность.

Рассмотрение способности магнитов притягиваться и отталкиваться.

Изучение магнитных полюсов (одноименные отталкиваются, разноименные притягиваются). Зрелищный вариант - прикрепление магнитов к плавающим игрушечным корабликам.

Намагниченная иголка - аналог компаса

В воде она указывает направление «север - юг». Намагниченная иголка притягивает другие мелкие предметы.

  1. Желательно не перегружать маленького исследователя информацией. Цель опытов - показать работу законов физики. Лучше подробно рассмотреть одно явление, чем ради зрелищности бесконечно менять направления.
  2. Перед каждым опытом доступно объяснить свойства и особенности предметов, участвующих в них. Затем вместе с ребенком подвести итог.
  3. Особенного внимания заслуживают правила безопасности. Начало каждого занятия сопровождается инструкциями.

Научные опыты - увлекательное дело! Возможно, оно окажется таковым и для родителей. Вместе открывать новые стороны обычных явлений интересно вдвойне. Стоит отбросить повседневные заботы, разделив детскую радость открытий.

Уже скоро начнется зима, а вместе с ней и долгожданное время . А пока предлагаем вам занять ребенка не менее увлекательными опытами в домашних условиях, ведь чудес хочется не только на Новый год, но и каждый день.

В этой статье речь пойдет об опытах, наглядно демонстрирующих детям такие физические явления как: атмосферное давление, свойства газов, движение воздушных потоков и от разных предметов.

Эти вызовут у малыша удивление и восторг, а повторить их под вашим присмотром сможет даже четырехлетка.

Как наполнить бутылку водой без рук?

Нам понадобятся:

  • миска с холодной и подкрашенной для наглядности водой;
  • горячая вода;
  • стеклянная бутылка.

В бутылку наливаем несколько раз горячую воду, чтобы она хорошо прогрелась. Пустую горячую бутылку переворачиваем горлышком вниз и опускаем в миску с холодной водой. Наблюдаем как вода из миски набирается в бутылку и вопреки закону сообщающихся сосудов – уровень воды в бутылке значительно выше чем в миске.

Почему так происходит? Изначально хорошо прогретая бутылка наполнена теплым воздухом. По мере остывания газ сжимается, заполняя все меньший объем. Таким образом, в бутылке образуется среда пониженного давления, куда направляется вода для восстановления равновесия, ведь на воду снаружи давит атмосферное давление. Цветная вода будет поступать в бутылку до тех пор, пока давление внутри стеклянного сосуда и вне его не выровняется.

Танцующая монетка

Для этого опыта нам понадобятся:

  • стеклянная бутылка с узким горлышком, которое может полностью перекрыть монета;
  • монета;
  • вода;
  • морозильная камера.

Пустую открытую стеклянную бутылку оставляем в морозильной камере (или зимой на улице) на 1 час. Достаем бутылку, монетку смачиваем водой и кладем на горлышко бутылки. Через несколько секунд монетка начнет подскакивать на горлышке и издавать характерные щелчки.

Такое поведение монетки объясняется способностью газов расширяться при нагревании. Воздух – это смесь газов, а когда мы достали бутылку из холодильника она была наполнена холодным воздухом. При комнатной температуре газ внутри стал нагреваться и увеличиваться в объеме, при этом монетка закрывала ему выход. Вот теплый воздух и стал выталкивать монетку, а та в свое время стала подпрыгивать на бутылке и щелкать.

Важно чтобы монета была мокрой и плотно прилегала к горлышку, иначе фокуса не получится и теплый воздух будет беспрепятственно покидать бутылку без подбрасывания монетки.

Стакан – непроливайка

Предложите ребенку перевернуть наполненный водой стакан так, чтобы вода из него не вылилась. Наверняка малыш откажется от такой аферы или при первой же попытке выльет воду в таз. Научите его следующему фокусу. Нам понадобятся:

  • стакан с водой;
  • кусочек картона;
  • таз/раковина для подстраховки.

Накрываем стакан с водой картоном, и придерживая последний рукой — переворачиваем стакан, после чего руку убираем. Этот опыт лучше проводить над тазом/раковиной, т.к. если стакан держать перевернутым долго — картон в конце концов промокнет и вода прольется. Бумагу вместо картона лучше не использовать по той же причине.

Обсудите с ребенком: почему картон препятствует вытеканию воды из стакана, ведь он не приклеен к стакану, да и почему картон тут же не падает под действием силы тяжести?

Хотите играть с ребенком легко и с удовольствием?

В момент намокания – молекулы картоны взаимодействуют с молекулами воды, притягиваясь друг к другу. С этого момента вода и картон взаимодействуют как одно целое. Кроме того, намокший картон препятствует попаданию воздуха в стакан, что не дает измениться давлению внутри стакана.

При этом на картон давит не только вода из стакана, но и воздух снаружи, который формирует силу атмосферного давления. Именно атмосферное давление прижимает картон к стакану, образуя своеобразную крышку, и не дает воде выливаться.

Опыт с феном и полоской бумаги

Продолжаем удивлять ребенка. Сооружаем конструкцию из книжек и крепим к ним сверху полоску бумаги (мы это делали с помощью скотча). Бумага свисает с книг, как показано на фото. Ширину и длину полоски выбираете, ориентируясь на мощность фена (мы брали 4 на 25 см).

Теперь включаем фен и направляем струю воздуха параллельно лежащей бумаги. Не смотря на то, что воздух дует не на бумагу, а рядом с ней – полоска поднимается со стола и развивается как на ветру.

Почему так происходит и что заставляет полоску двигаться? Изначально на полоску действует сила тяжести и давит атмосферное давление. Фен создает сильный поток воздуха вдоль бумаги. В этом месте образуется зона пониженного давления в сторону которого и отклоняется бумага.

Задуем свечу?

Начинаем учить малыша дуть мы еще до годика, готовя его к первому дню рождения. Когда ребенок подрос и в полной мере освоил этот навык – предложите ему через воронку. В первом случае располагая воронку таким образом, чтобы ее центр соответствовал уровню пламени. А во второй раз, чтобы пламя находилась вдоль края воронки.

Наверняка ребенок удивится, что все его старания в первом случае не дадут должного результата в виде погасшей свечи. При этом во втором случае – эффект будет моментальным.

Почему? Когда воздух попадает в воронку — он равномерно распределяется вдоль ее стенок, поэтому максимальная скорость потока наблюдается у края воронки. А в центре скорость воздуха маленькая, что не дает свече погаснуть.

Тень от свечи и от огня

Нам понадобятся:

  • свеча;
  • фонарик.

Зажигаем сечу и расположив ее у стены или другого экрана подсветим фонариком. На стене появится тень от самой свечи, а вот от огня тени не будет. Спросите ребенка, почему так получилось?

Все дело в том, что огонь сам по себе является источником света и пропускает через себя другие световые лучи. А так как тень появляется при боковом освещении предмета, не пропускающего лучи света, то огонь не может давать тень. Но не все так просто. В зависимости от сгораемого вещества – огонь может наполняться различными примесями, сажей и т.п. В этом случае можно увидеть размытую тень, которую как раз и дают эти включения.

Понравилась подборка опытов для проведения в домашних условиях? Поделитесь с друзьями, нажав на кнопочки социальных сетей, чтобы и другие мамы порадовали своих малышей интересными экспериментами!

Опыты в домашних условиях — это отличный способ познакомить детей с основами физики и химии, и облегчить понимание сложных абстрактных законов и терминов при помощи наглядной демонстрации. Причем для их проведения не нужно обзаводиться дорогими реактивами или специальным оборудованием. Ведь не задумываясь, мы каждый день проводим опыты в домашних условиях — от добавления гашеной соды в тесто до подключения батареек к фонарику. Читайте далее, чтобы узнать, как легко, просто и безопасно проводить интересные эксперименты.

Химические опыты в домашних условиях

Сразу в голове возникает образ профессора со стеклянной колбой и опаленными бровями? Не переживайте, наши химические опыты в домашних условиях совершенно безопасны, интересны и полезны. Благодаря им ребенок легко запомнит что такое экзо- и эндотермические реакции и какая между ними разница.

Итак, давайте сделаем вылупляющиеся яйца динозавра, которые с успехом можно использовать в качестве бомбочек для ванной.

Для опыта нужны:

  • маленькие фигурки динозавров;
  • пищевая сода;
  • растительное масло;
  • лимонная кислота;
  • пищевой краситель или жидкие акварельные краски.

Порядок проведения опыта

  1. Высыпьте ½ стакана соды в небольшую миску и добавьте около ¼ ч. л. жидких красок (или растворите 1—2 капли пищевого красителя в ¼ ч. л. воды), перемешайте соду пальцами, чтобы получился равномерный цвет.
  2. Добавьте 1 ст. л. лимонной кислоты. Тщательно перемешайте сухие компоненты.
  3. Добавьте 1 ч. л. растительного масла.
  4. У вас должно получиться рассыпчатое тесто, которое едва слипается при нажатии. Если оно совсем не хочет держаться вместе, то потихоньку добавляйте по ¼ ч. л. масла до тех пор, пока не добьетесь желаемой консистенции.
  5. Теперь возьмите фигурку динозавра и облепите ее тестом в форме яйца. Оно будет очень хрупкое вначале, поэтому его следует отложить на ночь (минимум 10 часов), чтобы оно затвердело.
  6. Затем можно приступить к веселому эксперименту: наберите воды в ванную и бросьте в нее яйцо. Оно будет яростно шипеть, растворяясь в воде. При прикосновении оно будет холодное, поскольку это эндотермическая реакция между кислотой и щелочью, с поглощением тепла из окружающей среды.

Обратите внимание, что ванная может стать скользкой из-за добавления масла.

Зубная паста для слона

Опыты в домашних условиях, результат которых можно пощупать и потрогать, очень нравятся детям. К ним относится и этот забавный проект, который заканчивается большим количеством плотной пышной цветной пены.

Для его проведения понадобятся:

  • защитные очки для ребенка;
  • сухие активные дрожжи;
  • теплая вода;
  • перекись водорода 6 %;
  • средство для мытья посуды или жидкое мыло (не антибактериальное);
  • воронка;
  • пластиковые блестки (обязательно неметаллические);
  • пищевые красители;
  • бутылка 0,5 л (лучше всего брать бутылку с широким дном, для большой устойчивости, но подойдет и обычная пластиковая).

Сам опыт выполняется крайне просто:

  1. 1 ч. л. сухих дрожжей разведите в 2 ст. л. теплой воды.
  2. В бутылку, поставленную в раковину или посуду с высокими бортиками, налейте ½ стакана перекиси водорода, капельку красителя, блестки и немного жидкости для мытья посуды (несколько нажатий на дозатор).
  3. Вставьте воронку и влейте дрожжи. Реакция начнется сразу, поэтому действуйте быстро.

Дрожжи выступают в качестве катализатора и ускоряют выделение водорода перекисью, а когда газ взаимодействует с мылом, то он создает огромное количество пены. Это экзотермическая реакция, с выделением тепла, поэтому если потрогать бутылку после того, как «извержение» прекратится, то она будет теплая. Поскольку водород сразу улетучивается, остается просто мыльная пена, с которой можно играть.

Опыты по физике в домашних условиях

А знаете ли вы, что лимон можно использовать в качестве батарейки? Правда, очень маломощной. Опыты в домашних условиях с цитрусовыми продемонстрируют детям работу аккумулятора и замкнутой электрической цепи.

Для эксперимента вам понадобятся:

  • лимоны — 4 шт.;
  • оцинкованные гвозди — 4 шт.;
  • небольшие куски меди (можно взять монетки)— 4 шт.;
  • аллигаторные зажимы с проводами небольшой длины (около 20 см) — 5 шт.;
  • небольшая лампочка или фонарик — 1 шт.

Да будет свет

Вот как провести опыт:

  1. Покатайте по твердой поверхности, затем слегка сожмите лимоны, чтобы они пустили сок внутри шкурки.
  2. Вставьте по одному оцинкованному гвоздю и одному куску меди в каждый лимон. Расположите их на одной линии.
  3. Подключите один конец провода к оцинкованному гвоздю, а другой — к куску меди в другом лимоне. Повторяйте этот шаг, пока все фрукты не будут соединены между собой.
  4. Когда вы закончите, у вас должен остаться один 1 гвоздь и 1 кусок меди, которые ни к чему не подключены. Подготовьте вашу лампочку, определите полярность элемента питания.
  5. Подключите оставшийся кусок меди (плюс) и гвоздь (минус) к плюсу и минусу фонарика. Таким образом, цепочка соединенных лимонов — это батарейка.
  6. Включите лампочку, которая будет работать от энергии фруктов!

Чтобы повторить такие опыты в домашних условиях также подойдет картошка, особенно зеленая.

Как это работает? Лимонная кислота, содержащаяся в лимоне, вступает в реакцию с двумя разными металлами, что заставляет ионы двигаться в одну сторону, создавая электрический ток. По этому принципу работают все химические источники электроэнергии.

Летние забавы

Необязательно оставаться в помещении, чтобы проводить Некоторые эксперименты лучше пройдут на улице, и не надо будет ничего убирать по их завершении. К ним относятся интересные опыты в домашних условиях с воздушными пузырями, причем не простыми, а огромными.

Чтобы их сделать понадобятся:

  • 2 деревянные палки длиной 50-100 см (в зависимости от возраста и роста ребенка);
  • 2 металлических вкручивающихся ушка;
  • 1 металлическая шайба;
  • 3 м хлопчатобумажного шнура;
  • ведро с водой;
  • любое моющее — для посуды, шампунь, жидкое мыло.

Вот как провести эффектные опыты для детей в домашних условиях:

  1. Вкрутите в концы палок металлические ушка.
  2. Разрежьте хлопчатобумажный шнур на две части, длиной 1 и 2 м. Можно точно не придерживаться этих мерок, но важно, чтобы между ними сохранялась пропорция 1 к 2.
  3. На длинный кусок веревки наденьте шайбу, чтобы она равномерно провисала по центру, и привяжите обе веревки к ушкам на палках, формируя петлю.
  4. В ведре с водой размешайте небольшое количество моющего.
  5. Аккуратно погружая петлю на палочках в жидкость, начинайте выдувать гигантские пузыри. Чтобы отделять их друг от друга аккуратно сводите концы двух палок вместе.

Какова же научная составляющая этого опыта? Объясните детям, что пузыри держатся за счет поверхностного натяжения — силы притяжения, которая удерживает молекулы любой жидкости вместе. Ее действие проявляется в том, что разлитая вода собирается в капли, которые стремятся обрести сферическую форму, как наиболее компактную из всех существующих в природе, или в том, что вода, когда льется, собирается в цилиндрические потоки. У пузыря слой молекул жидкости с обеих сторон зажат молекулами мыла, которые усиливают ее поверхностное натяжение при распределении по поверхности пузыря, и не дают ей быстро испариться. Пока палки держат разомкнутыми, вода удерживается в виде цилиндра, как только их сомкнуть — она стремится к сферической форме.

Вот такие опыты в домашних условиях можно провести с детьми.

Для многих школьников физика является довольно сложным и непонятным предметом. Чтобы заинтересовать ребенка этой наукой родители используют всевозможные ухищрения: рассказывают фантастические истории, показывают занимательные опыты, приводят в пример биографии великих ученых.

Как проводить опыты по физике с детьми?

  • Педагоги предостерегают, не стоит знакомство с физическими явлениями ограничивать лишь демонстрацией занимательных опытов и экспериментов.
  • Опыты должны в обязательном порядке сопровождаться подробными объяснениями.
  • Для начала ребенку необходимо объяснить, что физика является наукой, изучающей общие законы природы. Физика изучает строение материи, ее формы, ее движения и изменения. В свое время известный британский ученый лорд Кельвин довольно смело заявил, что в нашем мире существует лишь одна наука – физика, все остальное — обычное собирание марок. И в этом высказывании есть доля истины, ведь вся Вселенная, все планеты и все миры (предполагаемые и существующие) подчиняются законам физики. Конечно, высказывания самых именитых ученых о физике и ее законах вряд ли заставят младшего школьника отбросить в сторону мобильник и с упоением углубиться в изучение учебника физики.

Сегодня мы попытаемся предложить вниманию родителей несколько занимательных опытов, которые помогут заинтересовать ваших детей и ответить на многие их вопросы. И как знать, может, благодаря этим домашним экспериментам, физика станет любимым предметом у вашего ребенка. И в самом скором времени в нашей стране появится свой Исаак Ньютон.

Интересные опыты с водой для детей - 3 инструкции

Для 1 эксперимента вам понадобится два яйца, обычная пищевая соль и 2 стакана с водой.

Одно яйцо необходимо осторожно опустить в стакан, наполненный на половину холодной водой. Оно сразу же окажется на дне. Второй стакан наполните теплой водой и размешайте в нем 4-5 ст. л. соли. Подождите, пока вода в стакане станет холодной, и аккуратно опустите в него второе яйцо. Оно останется на поверхности. Почему?

Объяснение результатов опыта

Плотность простой воды ниже плотности яйца. Именно поэтому яйцо опускается на дно. Средняя плотность соленой воды существенно выше плотности яйца, поэтому оно остается на поверхности. Продемонстрировав ребенку этот опыт, можно заметить, что морская вода является идеальной средой для обучения плаванию. Ведь законы физики и в море никто не отменял. Чем вода в море более соленая, тем меньше требуется усилий, чтобы держаться на плаву. Самым соленым считается Красное море. Из-за большой плотности тело человека буквально выталкивается на поверхность воды. Учиться плавать в Красном море – сплошное удовольствие.

Для 2 эксперимента вам понадобится: стеклянная бутылка, миска с подкрашенной водой и горячая вода.

При помощи горячей воды прогреваем бутыль. Выливаем из нее горячую воду и опрокидываем горлышком вниз. Устанавливаем в миску с подкрашенной холодной водой. Жидкость из миски начнет самостоятельно затекать в бутылку. Кстати уровень подкрашенной жидкости в ней будет (по сравнению с миской) существенно выше.

Как объяснить результат опыта ребенку?

Предварительно нагретая бутылка наполнена теплым воздухом. Постепенно бутыль охлаждается, и газ сжимается. В бутылке давление понижается. На воду оказывает влияние давление атмосферы, и она поступает в бутылку. Ее приток остановится лишь тогда, когда давление не выровняется.

Для 3 опыта понадобится линейка из оргстекла или обычная пластмассовая расческа, шерстяная или шелковая ткань.

В кухне или в ванной отрегулируйте кран так, чтобы из него текла тонкая струйка воды. Попросите ребенка сильно потереть линейку (расческу) сухой шерстяной тряпочкой. Затем ребенок должен быстро приблизить линейку к струе воды. Эффект его поразит. Струя воды будет изгибаться, и тянуться к линейке. Забавный эффект можно получить, используя одновременно две линейки. Почему?

Наэлектризованная сухая расческа или линейка из оргстекла становятся источником электрического поля, именно поэтому струя вынуждена изгибаться в ее сторону.

Более подробно обо всех этих явлениях можно узнать на уроках физики. Любому ребенку захочется почувствовать себя «повелителем» воды, а это значит — урок уже никогда не будет для него скучным и неинтересным.

%20%D0%9A%D0%B0%D0%BA%20%D1%81%D0%B4%D0%B5%D0%BB%D0%B0%D1%82%D1%8C%203%20%D0%BE%D0%BF%D1%8B%D1%82%D0%B0%20%D1%81%D0%BE%20%D1%81%D0%B2%D0%B5%D1%82%D0%BE%D0%BC%20%D0%B2%20%D0%B4%D0%BE%D0%BC%D0%B0%D1%88%D0%BD%D0%B8%D1%85%20%D1%83%D1%81%D0%BB%D0%BE%D0%B2%D0%B8%D1%8F%D1%85

%0A

Как доказать, что свет движется по прямой?

Для проведения опыта потребуются 2 листа плотного картона, обычный фонарик, 2 подставки.

Ход эксперимента: В центре каждой картонки аккуратно вырезаем одинаковые по диаметру круглые отверстия. Устанавливаем их на подставки. Отверстия должны находиться на одной высоте. Включенный фонарь располагаем на заранее подготовленной подставке из книг. Можно использовать подходящую по размеру любую коробку. Луч фонаря направляем в отверстие одной из картонок. Ребенок встает с противоположной стороны и видит свет. Просим ребенка отойти, и смещаем в сторону любую из картонок. Их отверстия больше не находятся на одном уровне. Ребенка возвращаем на то же место, но света он уже не видит. Почему?

Объяснение: Свет может распространяться только по прямой линии. Если на пути света возникает препятствие, он останавливается.

Опыт – танцующие тени

Для проведения этого опыта потребуется: белый экран, вырезанные картонные фигурки, которые необходимо привесить на нитках перед экраном и обычные свечи. Свечи нужно поставить за фигурками. Нет экрана – можно использовать обычную стену

Ход эксперимента: Зажгите свечи. Если свечу отодвинуть подальше, то тень от фигурки станет меньше, если свечу сдвинуть вправо, фигурка передвинется влево. Чем больше свечей вы зажжете, тем танец фигурок будет интересней. Свечи можно зажигать по очереди, поднимать выше, ниже, создавая очень интересные танцевальные композиции.

Интересный опыт с тенью

Для следующего опыта вам понадобится экран, довольно мощная электролампа и свеча. Если направить свет мощной электролампы на горящую свечу, то на белом полотне проявится тень не только от свечи, но и от ее пламени. Почему? Все просто, оказывается и в самом пламени имеются раскаленные светонепроницаемые частицы.

Простые опыты со звуком для младших школьников

Эксперимент со льдом

Если вам повезет, и вы у себя дома найдете кусочек сухого льда, то сможете услышать необычный звук. Он довольно неприятный – очень тонкий и воющий. Для этого нужно сухой лед положить в обычную чайную ложку. Правда, звучать ложка сразу же перестанет, как только охладиться. Почему появляется этот звук?

При соприкосновении льда с ложкой (в соответствии с законами физики) выделяется углекислый газ, именно он заставляет вибрировать ложку и издавать необычный звук.

Забавный телефон

Возьмите две одинаковые коробочки. В середине дна и крышки каждой из коробочек проткните дырку при помощи толстой иглы. В коробочках разместите обычные спички. В сделанные отверстия протяните шнурок (длиной 10-15 см). Каждый конец шнурка нужно завязать за середину спички. Желательно использовать рыболовную леску из капрона или шелковую нитку. Каждый из двух участников эксперимента берет свою «трубку» и отходит на максимальное расстояние. Леска должна быть туго натянута. Один подносит трубку к уху, а другой ко рту. Вот и все! Телефон готов – можно вести светскую беседу!

Эхо

Из картона сделайте трубу. Ее высота должна быть около трехсот мм, а диаметр около шестидесяти мм. На обычную подушку разместите часы и накройте их сверху изготовленной заранее трубой. Звук часов в данном случае вы сможете услышать, если ваше ухо будет находиться прямо над трубой. Во всех остальных положениях звука часов не слышно. Однако если вы возьмете отрез картона и поместите его под углом в сорок пять градусов к оси трубы, то звук часов будет прекрасно слышен.

Как провести с ребенком дома опыты с магнитами - 3 идеи

Играть с магнитом дети просто обожают, поэтому они готовы включиться в любой эксперимент с этим предметом.

Как вытащить предметы из воды при помощи магнита?

Для первого эксперимента потребуется масса болтиков, скрепок, пружинок, пластиковая бутылка с водой и магнит.

Детям дается задание: вытащить из бутылки предметы, не замочив при этом руки, ну и стол естественно. Как правило, дети быстро находят решение этой задачи. Во время опыта родители могут рассказать детям о физических свойствах магнита и объяснить, что сила магнита действует не только сквозь пластик, но и сквозь воду, бумагу, стекло и т.д.

Как сделать компас?

В блюдце надо набрать холодной воды и на ее поверхность положить небольшой кусочек салфетки. На салфетку аккуратно кладем иголку, которую предварительно натираем об магнит. Салфетка намокает и опускается на дно блюдца, а иголка остается на поверхности. Постепенно она плавно поворачивается одним концом на север, другим на юг. Правильность самодельного компаса можно сверить по-настоящему.

Магнитное поле

Для начала нарисуйте на листе бумаги прямую линию и положите на нее обычную железную скрепку. Медленно подвигайте к линии магнит. Отметьте то расстояние, на котором скрепка притянется к магниту. Возьмите другой магнит, и проведите тот же эксперимент. Скрепка притянется к магниту с более далекого расстояния или с более близкого. Все будет зависеть исключительно от «силы» магнита. На этом примере, ребенку можно рассказать о свойствах магнитных полей. Прежде чем рассказывать ребенку о физических свойствах магнита, нужно обязательно объяснить, что магнит притягивает далеко не все «блестящие штучки». Магнит может притягивать только железо. Такие железки как никель и алюминий ему «не по зубам».

Интересно, Вы любили в школе уроки физики? Нет? Тогда у Вас есть прекрасная возможность вместе с ребенком освоить этот очень интересный предмет. Узнайте, Как провести дома интересные и простые , читайте в другой статье на нашем сайте.

Удачных Вам экспериментов!

Эксперимент – один из самых информативных способов познания. Благодаря ему удается получить разнообразные и обширные звания о исследуемом явлении или системе. Именно эксперимент играет фундаментальную роль в физических исследованиях. Красивые физические эксперименты надолго остаются в памяти последующих поколений, а также способствуют популяризации физических идей в массах. Приведем наиболее интересные физические эксперименты по мнению самих физиков из опроса Роберта Криза и Стони Бука.

1. Эксперимент Эратосфена Киренского

Этот эксперимент по праву считают одним из самых древних на сегодняшний день. В третьем веке до н.э. библиотекарь Александрийской библиотеки Эрастофен Киренский интересным способом измерил радиус Земли. в день летнего солнцестояния в Сиене солнце находилось в зените, в результате чего теней от предметов не наблюдалось. В 5000 стадиях к северу в Александрии в тоже время Солнце отклонилось от зенита на 7 градусов. Отсюда библиотекарь получил информацию, что окружность Земли 40 тысяч км., а её радиус равен 6300 км. Эрастофен получил показатели всего на 5% меньше сегодняшних, что для использованных им древних измерительных приборов просто поразительно.

2. Галилео Галилей и его самый первый эксперимент

В XVII веке Теория Аристотеля была главенствующей и беспрекословной. Согласно этой теории скорость падения тела непосредственно зависела от его веса. Примером служили перо и камень. Теория была ошибочной, так как в ней не учитывалось сопротивление воздуха.

Галилео Галилей в этой теории усомнился и решил провести серию экспериментов лично. Он взял большое пушечное ядро и запустил его с Пизанской башни, в паре с легкой пулей для мушкета. Учитывая их близкую обтекаемую форму можно было легко пренебречь сопротивлением воздуха и конечно же оба предмета приземлялись одновременно, опровергая теорию Аристотеля. считает, что нужно лично съездить в Пизу и выбросить что-нибудь похожее внешне и разное по весу с башни, дабы почувствовать себя великим ученым.

3. Второй эксперимент Галилео Галилея

Вторым утверждением Аристотеля было то, что тела под действием силы движутся с постоянной скоростью. Галилей запускал металлические шары по наклонной плоскости и фиксировал пройденное ими за определенное время расстояние. Затем он увеличил время в два раза, но шары за это время проходили в 4 раза большее расстояние. Таким образом зависимость была не линейная, то есть скорость не постоянная. Отсюда Галилей сделал вывод о ускоренном движении под действием силы.
Эти два эксперимента послужили основой для создания классической механики.

4. Эксперимент Генри Кавендиша

Ньютон является собственником формулировки закона всемирного тяготения, в которой присутствует гравитационная постоянная. Естественно возникла проблема нахождения её числового значения. Но для этого нужно было бы измерить силу взаимодействия между телами. Но проблема в том, что сила притяжения достаточно слабая, нужно было бы использовать или гигантские массы, или малые расстояния.

Джону Мичеллу далось придумать, а Кавендишу провести в 1798 году достаточно интересный эксперимент. В качестве измерительного прибора выступали крутильные весы. На них на коромысле были закреплены шарики на тонких веревочках. На шарики прикрепили зеркальца. Затем к маленьким шарикам подносили очень большие и тяжелые и фиксировали смещении по световым зайчикам. Результатом серии опытов стало определение значения гравитационной постоянной и массы Земли.

5. Эксперимент Жана Бернара Леона Фуко

Благодаря большущему (67 м) маятнику, который был установлен в парижском Пантеоне Фуко в 1851 году методом эксперимента довел факт вращения Земли вокруг оси. Плоскость вращения маятника остается неизменной по отношению к звездам, но наблюдатель вращается вместе с планетой. Таким образом можно увидеть как постепенно смещается в сторону плоскость вращения маятника. Это достаточно простой и безопасный эксперимент, в отличие от того, о котором мы писали в статье

6. Эксперимент Исаака Ньютона

И снова проверялось утверждение Аристотеля. Бытовало мнение, что различные цвета являются смесями в разной пропорции света и тьмы. Чем больше тьмы, тем ближе цвет к фиолетовому и наоборот.

Люди уже давно заметили, что большие монокристаллы разлагают свет на цвета. Серии опытов с призмами проделали чешский естествоиспытатель Марции английский Хариот. Новую серию начал Ньютон в 1672 году.
Ньютон ставил физические эксперименты в темной комнате, пропуская тонкий луч света через маленькую дырочку в плотных шторах. Этот луч попадал на призму и раскладывался на цвета радуги на экране. Явление было названо дисперсией и позже теоретически обосновано.

Но Ньютон пошел дальше, ведь его интересовала природа света и цветов. Он пропускал лучи через две призмы последовательно. На основании этих своих опытов, Ньютон сделал вывод о том, что цвет не является комбинацией света и тьмы, и тем более не есть атрибутом предмета. Белый свет состоит из всех цветов, которые можно увидеть при дисперсии.

7. Эксперимент Томаса Юнга

Вплоть до XIX века главенствовала корпускулярная теория света. Считалась, что свет как и материя состоит из частиц. Томас Юнг, английский врач и физик, в 1801 году провел свой эксперимент для проверки этого утверждения. Если предположить, что свет имеет волновую теорию, то должно наблюдаться такое же взаимодействующие волны, как и при броске двух камней на воду.

Для имитации камней Юнг использовал непрозрачный экран с двумя отверстиями и источникам света за ним. Свет проходил через отверстия и на экране образовывался рисунок из светлых и темных полос. Светлые полосы образовывались там, где волны усиливали друг друга, а темные там, где тушили.

8. Клаус Йонссон и его эксперимент

В 1961 году Немецкий физик Клаус Йонссон доказал, что элементарные частицы имеют корпускулярно-волновую природу. Он провел для этого эксперимент аналогичный эксперименту Юнга, только заменив лучи света пучками электронов. В результате все равно удалось получить интерференционную картину.

9. Эксперимент Роберта Милликена

Еще в начале девятнадцатого века возникло представление о наличии у каждого тела электрического заряда, который является дискретным и определяется неделимыми элементарными зарядами. К тому моменту было введено понятие электрона, как носителя этого самого заряда, но обнаружить экспериментально эту частицу и вычислить ее заряд не удавалось.
Американскому физику Роберт Милликен удалось разработать идеальный образчик изящества в экспериментальной физике. Он изолировал заряженные капли воды между пластинами конденсатора. Затем с помощью рентгеновских лучей ионизировал воздух между этими же пластинами и менял заряд капель.