Процесс компенсирующий конденсацию называется. Экологический словарь что такое конденсация, что означает и как правильно пишется

Конденсация (позднелатинское condensatio - сгущение, от латинского condenso уплотняю, сгущаю) - переход вещества из газообразного состояния в жидкое или твёрдое вследствие его охлаждения или сжатия. Конденсация пара возможна только при температурах ниже критической для данного вещества. Конденсация, как и обратный процесс - испарение , является примером фазовых превращений вещества (фазовых переходов 1-го рода). При конденсации выделяется то же количество теплоты , которое было затрачено на испарение сконденсировавшегося вещества. Дождь, снег, роса, иней - все эти явления природы представляют собой следствие конденсации водяного пара в атмосфере.

Виды конденсации

Известны два режима поверхностной конденсации: плёночный и капельный. Первый наблюдается при конденсации на смачиваемой поверхности, он характеризуется образованием сплошной плёнки конденсата . На несмачиваемых поверхностях конденсат образуется в виде отдельных капель. При капельной конденсации интенсивность теплообмена значительно выше, чем при плёночной, т. к. сплошная плёнка конденсата затрудняет теплообмен .

Скорость поверхностной конденсации тем выше, чем ниже температура поверхности по сравнению с температурой насыщения пара при заданном давлении . Наличие другого газа уменьшает скорость поверхностной конденсации, т. к. газ затрудняет поступление пара к поверхности охлаждения. В присутствии неконденсирующихся газов конденсация начинается при достижении паром у поверхности охлаждения парциального давления и температуры, соответствующих состоянию насыщения (росы точке).

Конденсация может происходить также внутри объёма пара (парогазовой смеси). Для начала объёмной конденсации пар должен быть заметно пересыщен. Мерой пересыщения служит отношение давления пара p к давлению насыщенного пара ps , находящегося в равновесии с жидкой или твёрдой фазой, имеющей плоскую поверхность. Пар пересыщен, если p/ps > 1 , при p/ps = 1 пар насыщен. Степень пересыщения p/ps , необходимая для начала. Конденсация, зависит от содержания в паре мельчайших пылинок (аэрозолей), которые являются готовыми центрами, или ядрами, конденсации. Чем чище пар, тем выше должна быть начальная степень пересыщения. Центрами конденсации могут служить также электрически заряженные частицы, в частности ионизованные атомы . На этом основано, например, действие ряда приборов ядерной физики.

Применение

Конденсация широко применяется в технике: в энергетике (например, в конденсаторах паровых турбин), в химической технологии (например, при разделении веществ методом фракционированной конденсации), в холодильной и криогенной технике , в опреснительных установках и т. д. Жидкость, образующаяся при конденсации, носит название

Конденсация водяного пара в воздухе над чашкой горячей воды

Конденсация имеет место во многих теплообменных аппаратах (например, в мазутоподогревателях на ТЭС), в опреснительных установках, технологических аппаратах (перегонные аппараты). Важнейшее применение на ТЭС - конденсаторы паровых турбин. В них конденсация происходит на охлаждаемых водой трубах. Для повышения КПД термодинамического цикла ТЭС важно снижать температуру конденсации (за счёт понижения давления), и обычно она близка к температуре охлаждающей воды (до 25÷30°С).

Конденсация - процесс, в определённом смысле обратный к кипению . Но при конденсации важнее проблемы повышения теплоотдачи, чтобы при малых температурных напорах обеспечить быстрый отбор теплоты.

Виды конденсации

Конденсация может происходить в объёме (туман, дождь) и на охлаждаемой поверхности. В теплообменных аппаратах – конденсация на охлаждаемой поверхности. Её далее и будем рассматривать. Разумеется, при такой конденсации температура поверхности стенки Tw должна быть меньше температуры насыщения Ts, то есть Tw < Ts. В свою очередь, конденсация на охлаждаемой поверхности может быть двух видов:

  • Плёночная конденсация – имеет место, когда жидкость смачивает поверхность (жидкость – смачивающая, поверхность – смачиваемая, эти свойства изучаются в курсе Физики), тогда конденсат образует сплошную плёнку.
  • Капельная конденсация – когда конденсат – несмачивающая жидкость и собирается на поверхности в капли, которые быстро стекают, оставляя почти всю поверхность чистой.

При плёночной конденсации теплоотдача намного меньше из-за термического сопротивления плёнки (плёнка мешает отводу тепла от пара к стенке). К сожалению, реализовать капельную конденсацию сложно – несмачиваемые материалы и покрытия (например, типа фторопласта) сами плохо проводят теплоту. А использование добавок – гидрофобизаторов (для воды типа масла, керосина) оказалось неэффективным. Поэтому обычно в теплообменных аппаратах имеет место пленочная конденсация . Гидрофобизатор, гидрофобность – от греческих “hydör” – “вода” и “phóbos” – страх. То есть гидрофобный – то же, что водоотталкивающий, несмачиваемый. Такие добавки для произвольных жидкостей называются лиофобизаторами.

Термин “неподвижный пар” в данном случае подразумевает отсутствие существенного вынужденного движения (разумеется, свободно-конвективное движение будет иметь место).

На поверхности стенки образуется плёнка конденсата. Она стекает вниз, при этом её толщина растёт благодаря продолжающейся конденсации (рис. …). Из-за термического сопротивления плёнки температура стенки заметно меньше температуры поверхности плёнки, причём на этой поверхности имеется небольшой скачок температур конденсата и пара (для воды скачок обычно порядка 0,02–0,04 К). Температура пара в объёме несколько выше температуры насыщения.

Сначала пленка движется стабильно ламинарно – это ламинарный режим . Затем на ней появляются волны (со сравнительно большим шагом, пробегающие по плёнке и собирающие накапливающийся конденсат, так как в более толстом слое в волне скорость движения больше, и такой режим стекания энергетически выгоднее установившегося). Это ламинарно-волновой режим . Далее при большом количестве конденсата режим может стать турбулентным .

На вертикальных трубах картина аналогична случаю вертикальной стенки.

На горизонтальной трубе теплоотдача конденсации выше, чем на вертикальной (из-за меньшей в среднем толщины пленки). При движущемся паре теплоотдача растёт, особенно при сдуве плёнки.

В случае пучков труб (в частности, в конденсаторах) имеют место особенности:

1) Скорости пара по мере прохождения по пучку уменьшаются вследствие его конденсации.

2) В горизонтальных пучках конденсат стекает с трубы на трубу, с одной стороны, увеличивая толщину плёнки на нижних трубах, что уменьшает теплоотдачу, с другой стороны, падение капель конденсата возмущает плёнку на нижних трубах, увеличивая теплоотдачу.

Интенсификация теплообмена в конденсаторах

Основной путь интенсификации – уменьшать толщину плёнки, удаляя её с поверхности теплообмена. С этой целью на вертикальных трубах устанавливают конденсатоотводные колпачки или закрученные рёбра. Например, колпачки, установленные с шагом 10 см, увеличивают теплообмен в 2÷3 раза. На горизонтальных трубах ставят невысокие рёбра, по которым конденсат быстро стекает. Эффективна подача пара тонкими струйками, разрушающими плёнку (теплообмен увеличивается в 3÷10 раз).

Влияние примеси газов на конденсацию

При движении пара это влияние много меньше, но всё равно в промышленных установках воздух приходится откачивать из конденсаторов (иначе он занимает объём аппарата). И стараются вообще исключить его присутствие в паре.

Так как конденсация – процесс, обратный к кипению, то основная расчётная формула по существу та же, что при кипении:

G = Q / γ {\displaystyle G=Q/\gamma }

где G – количество образующегося конденсата (конденсирующегося пара), кг/с;

Q – отводимый от стенки тепловой поток, Вт;

γ – теплота фазового перехода, Дж/кг.

Эта формула не учитывает теплоту охлаждения пара до температуры насыщения t s и последующего охлаждения конденсата. Их нетрудно учесть при известных температурах пара на входе и конденсата на выходе. Но, в отличие от случая кипения, здесь сложно оценить даже приближенно величину Q из-за небольшого температурного напора теплопередачи (от пара к теплоносителю, охлаждающему стенку). Формулы для различных случаев конденсации имеются в учебниках и справочниках.

Конденсация насыщенных паров

При наличии жидкой фазы вещества конденсация происходит при сколь угодно малых пересыщениях и очень быстро. В этом случае возникает подвижное равновесие между испаряющейся жидкостью и конденсирующимися парами. Уравнение Клапейрона - Клаузиуса определяет параметры этого равновесия - в частности, выделение тепла при конденсации и охлаждение при испарении.

Конденсация перенасыщенного пара

Наличие перенасыщенного пара возможно в следующих случаях:

  • отсутствие жидкой или твёрдой фазы того же вещества.
  • отсутствие ядер конденсации - взвешенных в атмосфере твёрдых частиц или капелек жидкости, а также ионов (наиболее активные ядра конденсации).
  • конденсация в атмосфере другого газа - в этом случае скорость конденсации ограничена скоростью диффузии паров из газа к поверхности жидкости.

Конденсация в твёрдую фазу

Конденсация, минуя жидкую фазу, происходит через образование мелких кристалликов (десублимация). Это возможно в случае давления паров ниже давления в тройной точке при пониженной температуре.

Конденсат на окнах

Образование конденсата на стеклах происходит в холодное время года. Образование конденсата на окнах происходит из-за понижения температуры поверхности ниже температуры точки росы . Температура точки росы зависит от температуры и влажности воздуха в помещении. Причина образования конденсата на окнах может состоять как в чрезмерном повышении влажности внутри помещения, вызванном нарушением вентиляции, так и в невысоких теплоизолирующих свойствах стеклопакета, металлопластиковой рамы, оконной коробки, в неправильной глубине монтажа окна в однородной стене, неправильной глубине монтажа относительно слоя стенового утеплителя, в полном отсутствии, либо в некачественном утеплении оконных откосов.

Конденсация пара в трубах

По мере прохождения по трубе пар постепенно конденсируется и на стенках образуется пленка конденсата. При этом расход пара G" и его скорость в связи с уменьшением массы пара уменьшаются по длине трубы, а расход конденсата G увеличивается. Основной особенностью процесса конденсации в трубах является наличие динамического взаимодействия между паровым потоком и пленкой. На пленку конденсата действует также сила тяжести. В итоге в зависимости от ориентации трубы в пространстве и скорости пара характер движения конденсата может быть различным. В вертикальных трубах при движении пара сверху вниз силы тяжести и динамического воздействия парового потока совпадают по направлению и пленка конденсата стекает вниз. В коротких трубах при небольшой скорости парового потока течение пленки в основном определяется силой тяжести аналогично случаю конденсации неподвижного пара на вертикальной стенке. Такой же оказывается и интенсивность теплоотдачи. При увеличении скорости пара интенсивность теплоотдачи растет. Это объясняется уменьшением толщины конденсатной пленки, которая под воздействием парового потока течёт быстрее. В длинных трубах при больших скоростях движения пара картина процесса усложняется. В этих условиях наблюдаются частичный срыв жидкости с поверхности пленки и образование парожидкостной смеси в ядре потока. При этом влияние силы тяжести постепенно утрачивается, и закономерности процесса перестают зависеть от ориентации трубы в пространстве. В горизонтальных трубах при не очень больших скоростях парового потока взаимодействие сил тяжести и трения пара о пленку приводит к иной картине течения. Под влиянием силы тяжести пленка конденсата стекает по внутренней поверхности трубы вниз. Здесь конденсат накапливается и образует ручей. На это движение накладывается движение конденсата в продольном направлении под воздействием парового потока. В итоге интенсивность теплоотдачи оказывается переменной по окружности трубы: в верхней части более высокая, чем в нижней. Из-за затопления нижней части сечения горизонтальной трубы конденсатом средняя интенсивность теплоотдачи при небольших скоростях пара может оказываться даже более низкой, чем при конденсации неподвижного пара снаружи горизонтальной трубы того же диаметра.

). Конденсация происходит при изотермич. сжатии, адиабатич. расширении и охлаждении или одноврем. понижении его и т-ры, к-рое приводит к тому, что конденсиров. фаза становится термодинамически более устойчивой, чем газообразная. Если при этом и т-ра выше, чем в для данного в-ва, образуется (сжижение), если ниже - в-во переходит в твердое состояние, минуя жидкое (десублимация). К онденсация широко применяется в хим. технологии для разделения смесей посредством , при и очистке в-в и др., в , напр. в конденсаторах паровых турбин, в холодильной технике для конденсации рабочего тела, в опреснит. установках и др. При конденсации в узких порах последние могут поглощать значит. кол-ва в-ва из газовой фазы (см. ). Следствие конденсации водяного в - дождь, снег, роса, иней. Конденсация в жидкое состояние. В случае конденсации в объеме или парогазовой смеси (гомогенная конденсация) конденсир. фаза образуется в виде мелких капель (тумана) или мелких . Для этого необходимо наличие центров конденсации, к-рыми могут служить очень мелкие капельки (зародыши), образующиеся в результате флуктуации плотности газовой фазы, пылинки и частицы, несущие электрич. заряд (). При отсутствии центров конденсации может в течение длит. времени находиться в т. наз. метастабильном (пересыщенном) состоянии. Устойчивая гомог. конденсация начинается при т. наз. критич. пересыщении П кp =p к /p н где р к - равновесное , соответствующее критич. диаметру зародышей, р н - насыщ. над плоской пов-стью (напр., для водяного в , очищенном от твердых частиц или , П кр =5-8). Образование тумана наблюдается как в природе, так и в технол. аппаратах, напр. при охлаждении парогазовой смеси вследствие лучеиспускания, влажных . Конденсация на пов-сти насыщенного или перегретого происходит при т-ре пов-сти, к-рая меньше, чем т-ра насыщения при его равновесном над ней. Наблюдается во многих пром. аппаратах, к-рые служат для конденсации целевых продуктов, подогрева разл. сред, разделения паровых и парогазовых смесей, охлаждения влажных и т.д. При сжижении на пов-сти , хорошо смачивающейся конденсатом, образуется сплошная пленка (пленочная конденсация); на пов-сти, не смачивающейся конденсатом или смачивающейся частично, - отдельные капли (капельная конденсация); на пов-сти с неоднородными св-вами (напр., на полированной металлической с окисленными загрязненными участками) - зоны, покрытые пленкой конденсата и каплями (смешанная конденсация). При пленочной конденсации чистых коэф. теплоотдачи определяется в осн. термич. сопротивлением пленки конденсата, к-рое зависит от режима ее течения. Последний в случае практически неподвижного определяется числом Рейнольдса пленки: Rе пл =w d /v к, где w, d - соотв. средняя по сечению скорость и толщина пленки конденсата, v к - кинематич. конденсата. Для конденсации на вертикальной или трубе при Rе пл менее 5-8 течение пленки чисто ламинарное, при превышении этих значений Rе пл - ламинарно-волновое, при Re пл >>350-400 - турбулентное. На вертикальных пoв-стях значит. высоты могут наблюдаться области с разл. режимами течения пленки конденсата. При ламинарном течении увеличение Re пл с возрастанием толщины пленки приводит к уменьшению коэф. теплоотдачи, при турбулентном течении - к его увеличению. Если перегрет, конденсация сопровождается конвективной теплоотдачей от к конденсату, т-ра поверхности к-рого практически равна т-ре насыщения при . Для в-в с большой теплотой конденсации (напр., ) теплота перегрева обычно незначительна по сравнению с теплотой конденсации, и ею можно пренебречь. В случае пленочной конденсации движущегося касательное напряжение на пов-сти раздела фаз, обусловленное межфазным и переносом импульса частицами сконденсировавшегося , к-рые присоединяются к пленке конденсата, вызывает при нисходящем потоке увеличение скорости и уменьшение толщины пленки, в результате чего коэф. теплоотдачи увеличивается. При более высоких скоростях парового потока воздействие его на пленку конденсата может приводить не только к изменению ее скорости и толщины, но и к возмущению течения (образование волн, турбулизация), интенсифицирующему теплоперенос в пленке. Если поток направлен вверх, движение ламинарной пленки конденсата тормозится, толщина ее увеличивается и коэф. теплоотдачи уменьшается по мере возрастания скорости до тех пор, пока действие межфазного не вызовет т. наз. обращенное (направленное вверх) течение пленки конденсата. При конденсации движущегося внутри трубы (канала) режимы течения и характер взаимод. паровой и жидкой фаз могут значительно изменяться в результате изменения по мере образования конденсата скорости , касательного напряжения на межфазной пов-сти и Re пл. При больших скоростях (когда действие силы тяжести на пленку конденсата пренебрежимо мало и течение ее определяется в осн. силой ) местные и средние по длине трубы коэф. теплоотдачи не зависят от пространств. ориентации трубы. Если силы тяжести и соизмеримы, условия конденсации определяются углом наклона трубы и взаимным направлением движения фаз. В случае конденсации внутри горизонтальной трубы и малой скорости кольцевая пленка конденсата образуется только на верх, части внутренней пов-сти трубы. На ниж. части возникает "ручей", в зоне к-рого в результате относительно большой толщины слоя теплоотдача значительно менее интенсивна, чем на остальном участке пов-сти. В случае конденсации на пучке горизонтальных труб расход стекающего конденсата увеличивается сверху вниз вследствие натекания конденсата с вышележащих труб на нижележащие, а расход по пути его движения снижается. В пучке с постоянным или относительно немного уменьшающимся по высоте живым сечением между трубами скорость нисходящего потока постепенно снижается, а конденсат натекает с верх, труб на нижние. Вначале это приводит к уменьшению местных коэф. теплоотдачи (осредненных по периметру труб) при увеличении отсчитываемого сверху номера горизонтального ряда труб. Однако, начиная с нек-рого ряда, в результате натекания конденсата течение пленки возмущается и ее термич. сопротивление снижается. Благодаря этому коэф. теплоотдачи могут стабилизироваться, а при возрастающем воздействии возмущения течения пленки на ниж. трубках - увеличиваться с возрастанием номера ряда. Интенсификация теплоотдачи при пленочной конденсации может достигаться профилированием ее пов-сти (напр., применением т, наз. мелковолнистой пов-сти), к-рое способствует уменьшению средней толщины пленки конденсата, созданием на пов-сти искусств, шероховатости, приводящей к тур-булизации пленки, воздействием на нее при диэлектрич. жидкой фазе (напр., при конденсации ) электростатич. полем, отсосом конденсата через пористую пов-сть и др. При конденсации жидких жидкой фазы весьма высока. Поэтому доля термич. сопротивления пленки конденсата в суммарном сопротивлении передаче тепла незначительна, и определяющим оказывается межфазное термич. сопротивление, обусловленное молекулярно-кинетич. эффектами на границе раздела фаз. Иногда пленочная конденсация на пов-сти сопровождается гомог. конденсацией в прилегающем к пов-сти раздела фаз слое . Если образование тумана при этом нежелательно (напр., в произ-ве H 2 SO 4 нитрозным способом или при улавливании летучих р-рителей), процесс проводят при макс. пересыщении ниже П кр. При капельной конденсации первичные мелкие капли, образовавшиеся на сухой вертикальной или наклонной пов-сти, растут в результате продолжения процесса, слияния близко расположенных и касающихся друг друга капель и подтягивания к ним возникающей между каплями и быстро разрывающейся конденсата. Капли, достигшие "отрывного" диаметра, стекают вниз, объединяясь (коалес-цируя) с нижележащими мелкими каплями, после чего на освободившейся пов-сти опять образуются мелкие капли, и цикл повторяется. Условия, определяющие самопроизвольное возникновение капельной конденсации, наблюдаются редко. Обычно же для осуществления капельной конденсации на твердую пов-сть наносят тонкий слой лиофобизатора - в-ва, обладающего низким и несмачиваемого конденсатом (напр., ). В случае капельной конденсации коэф. теплоотдачи намного выше (в 5-10 раз и более), чем при пленочной. Однако поддержание в условиях эксплуатации пром. аппаратов устойчивой капельной конденсации затруднительно. Поэтому конденсац. устройства хим. пром-сти, как правило, работают в режиме пленочной конденсации. Конденсация на пов-сти того же в-ва происходит в технол. аппаратах на пов-сти подаваемых в объем диспергированных (напр., с помощью распылит, форсунок) струй или стекающих по . или распределение на позволяет сильно развить пов-сть контакта фаз. В ряде случаев конденсация наблюдается при поступлении в объем в виде струй или пузырьков (барботаж), а также при образовании паровых пузырьков в объеме , напр. при кавитации. К онденсация из смеси его с неконденсирующимися (или неконденсирующимися при данной т-ре ) на пов-сти

Словарь медицинских терминов

Толковый словарь русского языка. Д.Н. Ушаков

конденсация

конденсации, ж. (спец.). Действие по глаг. конденсировать и конденсироваться. Конденсация электричества. Конденсация пара (превращение его в жидкость).

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

конденсация

[дэ], -и, ж. (спец.).

    Переход вещества из газообразного состояния в жидкое или кристаллическое. К. пара.

    Накопление в каком-н. количестве. К. энергии.

    прил. конденсационный, -ая, -ое.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

конденсация

    Накапливание чего-л. в каком-л. количестве.

    Переход вещества из газообразного состояния в жидкое или твердое вследствие охлаждения или сжатия.

Энциклопедический словарь, 1998 г.

конденсация

КОНДЕНСАЦИЯ (от позднелат. condensatio - уплотнение, сгущение) переход вещества из газообразного состояния в жидкое или твердое. Конденсация возможна только при температурах ниже критической температуры.

Конденсация

(позднелатинское condensatio ≈ сгущение, от латинского condenso уплотняю, сгущаю), переход вещества из газообразного состояния в жидкое или твёрдое вследствие его охлаждения или сжатия. К. пара возможна только при температурах ниже критической для данного вещества (см. Критическое состояние). К., как и обратный процесс ≈ испарение , является примером фазовых превращений вещества (фазовых переходов 1-го рода). При К. выделяется то же количество теплоты, которое было затрачено на испарение сконденсировавшегося вещества. Дождь, снег, роса, иней ≈ все эти явления природы представляют собой следствие конденсации водяного пара в атмосфере. К. широко применяется в технике: в энергетике (например, в конденсаторах паровых турбин), в химической технологии (например, при разделении веществ методом фракционированной конденсации), в холодильной и криогенной технике, в опреснительных установках и т. д. Жидкость, образующаяся при К., носит название конденсата. В технике К. обычно осуществляется на охлаждаемых поверхностях. Известны два режима поверхностной К.: плёночный и капельный. Первый наблюдается при К. на смачиваемой поверхности, он характеризуется образованием сплошной плёнки конденсата. На несмачиваемых поверхностях конденсат образуется в виде отдельных капель. При капельной К. интенсивность теплообмена значительно выше, чем при плёночной, т. к. сплошная плёнка конденсата затрудняет теплообмен (см. Кипение).

Скорость поверхностной К. тем выше, чем ниже температура поверхности по сравнению с температурой насыщения пара при заданном давлении. Наличие другого газа уменьшает скорость поверхностной К., т. к. газ затрудняет поступление пара к поверхности охлаждения. В присутствии неконденсирующихся газов К. начинается при достижении паром у поверхности охлаждения парциального давления и температуры, соответствующих состоянию насыщения (росы точке).

К. может происходить также внутри объёма пара (парогазовой смеси). Для начала объёмной К. пар должен быть заметно пересыщен. Мерой пересыщения служит отношение давления пара p к давлению насыщенного пара ps, находящегося в равновесии с жидкой или твёрдой фазой, имеющей плоскую поверхность. Пар пересыщен, если p/ps > 1, при p/ps = 1 пар насыщен. Степень пересыщения p/ps, необходимая для начала. К., зависит от содержания в паре мельчайших пылинок (аэрозолей), которые являются готовыми центрами, или ядрами, К. Чем чище пар, тем выше должна быть начальная степень пересыщения. Центрами К. могут служить также электрически заряженные частицы, в частности ионизованные атомы. На этом основано, например, действие ряда приборов ядерной физики (см. Вильсона камера).

Лит.: Кикоин И. К. и Кикоин А. К., Молекулярная физика, М., 1963; Исаченко В. П., Осипова В. А., Сукомел А. С., Теплопередача, 2 изд., М., 1969; Кутателадзе С. С., Теплопередача при конденсации и кипении, 2 изд., М.≈Л., 1952.

Д. А. Лабунцов.

Википедия

Конденсация (значения)

  • Конденсация.
  • Конденсация.
  • Конденсация.
  • Реакция конденсации
  • Конденсация Клайзена
  • Конденсация по Кневенагелю
  • Конденсация Бозе-Эйнштейна
  • Конденсация Доджсона

Конденсация

Конденса́ция паров - переход вещества в жидкое или твёрдое состояние из газообразного (обратный последнему процессу называется сублимация ). Максимальная температура , ниже которой происходит конденсация, называется критической. Пар, из которого может происходить конденсация, бывает насыщенным или ненасыщенным.

Конденсация (химия)

Реакция конденсации - реакция образования больших молекул из молекул с меньшей молекулярной массой, протекающая с отщеплением атомов или атомных групп; например, продуктом конденсации фенола с формальдегидом являются фенолформальдегидные смолы.

Примеры употребления слова конденсация в литературе.

Карл наклонился над столом, он вкладывал пластинку в конденсаторную печь на доконденсацию , он собирался щелкнуть затвором и отойти, после этого Эрвин должен был сфокусировать лучевой генератор в горнило печи и включить конденсацию .

Англичанин Вильсон использовал конденсационную камеру так, что в ней пути ядер атомов и других заряженных частичек стали видимыми для человеческого глаза в виде следов конденсации .

Я много раз рисовал себе и синтетические мясные грибы, и пирожки, с начинкой из искусственных сыров, и рыбное жареное филе наших подземных химических предприятий, и жирные мясные колбасы, продукт многостепенной переработки древесины, и свежайшую розовую ветчину с нежным жирком, полученную в результате конденсации горючих газов, и сочные сливочные торты, поставляемые заводами по перегонке нефти, и даже тот неудачный шашлык из бедного натурального барашка, каким пытался нас угостить Ромеро.

Когда пациенту разъяснили все эти пункты, ему настойчиво посоветовали использовать все три механизма: изменение ощущений тела, дезориентация тела, диссоциация, анестезия, амнезия и субъективная конденсация времени.

Как только температура его дойдет до точки превращения пара в туман - это будет уровень конденсации , нижняя кромка облака.

В сновидениях Лакан вслед за Фрейдом выделяет два основПроцессы внутри ных процесса: конденсацию и замещение.

Я нагревал металлический натрий в железной ложке под куском белого гипса, ожидая, что конденсация пара на холодной поверхности даст необходимое падение плотности с расстоянием.

Примерно в 1900 году дядя Карл экспериментировал с рентгеновским излучением и радиоактивностью при конденсации в пузырьковой камере, деревянном цилиндре, наполненном туманом.

Виды конденсации

Конденсация насыщенных паров

При наличии жидкой фазы вещества конденсация происходит при сколь угодно малых пересыщениях и очень быстро. В этом случае возникает подвижное равновесие между испаряющейся жидкостью и конденсирующимися парами. Уравнение Клапейрона - Клаузиуса определяет параметры этого равновесия - в частности, выделение тепла при конденсации и охлаждение при испарении.

Конденсация перенасыщенного пара

Наличие перенасыщенного пара возможно в следующих случаях:

  • отсутствие жидкой или твёрдой фазы того же вещества.
  • отсутствие ядер конденсации - взвешенных в атмосфере твёрдых частиц или капелек жидкости, а также ионов (наиболее активные ядра конденсации).
  • конденсация в атмосфере другого газа - в этом случае скорость конденсации ограничена скоростью диффузии паров из газа к поверхности жидкости.

Конденсация в твёрдую фазу

Конденсация, минуя жидкую фазу, происходит через образование мелких кристалликов (десублимация). Это возможно в случае давления паров ниже давления в тройной точке при пониженной температуре.

Конденсат на окнах

Образование конденсата на стеклах, происходит в холодное время года - либо зимой, либо поздней осенью. С точки зрения физики, образование конденсата на окнах происходит из-за разницы температур соприкасающихся поверхностей, особенно в местах стыка рамы и самого стекла. Чем больше эта разница, тем большее количество влаги оседает на единице поверхности за единицу времени. Если разница температур превышает 55-60°, то осевший конденсат может превратиться в тонкую корочку льда или инея. Причина образования конденсата на стекле состоит в замедленном циркулировании воздуха в помещении, а также в чрезмерной влажности .

См. также

Ссылки

  • О методах борьбы с конденсатом на строительном портале

Литература


Wikimedia Foundation . 2010 .

Синонимы :

Антонимы :

  • Конденсация (теплотехника)
  • Конденсатор (теплотехника)

Смотреть что такое "Конденсация" в других словарях:

    КОНДЕНСАЦИЯ - (лат. condensatio). Сгущение, уплотнение. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КОНДЕНСАЦИЯ вообще сгущение: сгущение электричества, сгущение паров какого либо вещества в жидкость (при помощи давления и… … Словарь иностранных слов русского языка

    конденсация - и, ж. condensation f. < condensatio 1. спец. Сгущение, уплотнение. БАС 1. Конденсация пара. Конденсация электричества. Уш. 1934. 2. Переход газа или пара в жидкое состояние. СИС 1954. Конденсационный ая, ое. Конденсационная вода. БАС 1.… … Исторический словарь галлицизмов русского языка

    КОНДЕНСАЦИЯ - (от позднелатинского condensatio уплотнение, сгущение), переход вещества из газообразного состояния в жидкое или твердое. Конденсация фазовый переход 1 го рода. Конденсация возможна только при температурах ниже критической точки … Современная энциклопедия

    КОНДЕНСАЦИЯ - КОНДЕНСАЦИЯ, конденсации, жен. (спец.). Действие по гл. конденсировать и конденсироваться. Конденсация электричества. Конденсация пара (превращение его в жидкость). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    КОНДЕНСАЦИЯ - (от позднелат. condensatio уплотнение, сгущение), переход в ва вследствие его охлаждения или сжатия из газообразного состояния в конденсированное (жидкое или твёрдое). К. пара возможна только при темп pax ниже критической для данного в ва (см.… … Физическая энциклопедия

    Конденсация - – переход вещества из газообразного состояния в жидкое или твердое. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ и м. А. А. Гвоздева, Москва, 2007 г. 110 стр.] Конденсация – образование… … Энциклопедия терминов, определений и пояснений строительных материалов

    Конденсация - (от позднелатинского condensatio уплотнение, сгущение), переход вещества из газообразного состояния в жидкое или твердое. Конденсация фазовый переход 1 го рода. Конденсация возможна только при температурах ниже критической точки. … Иллюстрированный энциклопедический словарь

    КОНДЕНСАЦИЯ - (от позднелат. condensatio уплотнение сгущение), переход вещества из газообразного состояния в жидкое или твердое. Конденсация возможна только при температурах ниже критической температуры … Большой Энциклопедический словарь

    конденсация - скопление, сгущение, уплотнение. Ant. разрежение Словарь русских синонимов. конденсация сущ., кол во синонимов: 7 гомополиконденсация (2) … Словарь синонимов

    Конденсация - (от лат. condense сгущаю) переход водяного пара атмосферы в жидкое состояние. Играет большую роль в водном обмене, в частности в пустынных экосистемах, где очень важна ночная конденсация влаги на поверхности растений (роса) и почвенных частиц, а… … Экологический словарь

    конденсация - – фазовый переход первого рода из газообразного состояния в жидкое или твердое. Словарь по аналитической химии конденсация капиллярная … Химические термины