Технология производства голограмм. Голографические дисплеи: тогда и сейчас

В фотографии регистрируется распределение интенсивности световых волн в двумерной проекции изображения объекта на плоскости фотоснимка.
Однако, информация об объемности объекта заложена не только в амплитуде, но и в фазе световых волн, распространяющихся от точек регистрируемого объекта. Поэтому, под каким углом мы ни рассматривали бы фотографию, мы не видим новых ракурсов. Не можем увидеть также предметы, расположенные на заднем плане и скрытые впереди стоящими. Перспектива на фотографии видна лишь по изменению относительных размеров предметов и четкости их изображения. Итак, фотография, на первый взгляд являющаяся объективным способом регистрации изображений, при детальном рассмотрении дает весьма субъективную информацию, рассчитанную на восприятие человеческим глазом. Недостатки фотографии в полной мере компенсируются принципиально новым методом регистрации изображений, получившим название голография.

Голография основывается на двух физических явлениях - дифракции и интереференции световых волн.
Физическая идея состоит в том, что при наложении двух световых пучков, при определенных условиях возникает интерференционная картина, то есть, в пространстве возникают максимумы и минимумы интенсивности света (это подобно тому, как две системы волн на воде при пересечении образуют чередующиеся максимумы и минимумы амплитуды волн). Для того, чтобы эта интерференционная картина была устойчивой в течение времени, необходимого для наблюдения, и ее можно было записать, эти две световых волны должны быть согласованы в пространстве и во времени.Такие согласованные волны называются когерентными.
Если волны встречаются в фазе, то они складываются друг с другом и дают результирующую волну с амплитудой, равной сумме их амплитуд. Если же они встречаются в противофазе, то будут гасить одна другую. Между двумя этими крайними положениями наблюдаются различные ситуации сложения волн. Результирующая сложения двух когерентных волн будет всегда стоячей волной. То есть интерференционная картина будет устойчива во времени. Это явление лежит в основе получения и восстановления голограмм. Обычные источники света не обладают достаточной степенью когерентности для использования в голографии. Поэтому решающее значение для ее развития имело изобретение в 1960 г. оптического квантового генератора или лазера - удивительного источника излучения, обладающего необходимой степенью когерентности и могущего излучать строго одну длину волны. Деннис Габор, изучая проблему записи изображения, выдвинул замечательную идею. Сущность ее реализации заключается в следующем. Если пучок когерентного света разделить на два и осветить регистрируемый объект только одной частью пучка, направив вторую часть на фотографическую пластинку, то лучи, отраженные от объекта, будут интерферировать с лучами, попадающими непосредственно на пластину от источника света. Пучок света, падающий на пластину, назвали опорным, а пучок, отраженный или прошедший через объект, предметным. Учитывая, что эти пучки получены из одного источника излучения, можно быть уверенным в том, что они когерентны. В данном случае интерференционная картина, образующаяся на пластинке, будет устойчива во времени, т.е. образуется изображение стоячей волны.--> Голограмма формирует реальное объемное изображение, в отличие от фотографии и даже от таких подделок под объемность, как стереограммы. Реальность состоит в том, что голограмму можно наблюдать с разных точек, наблюдая части объекта или сцены, которые были скрыты при наблюдении с другой точки зрения. В этом смысле голографическое изображение ведет себя полностью как реальный объект. Особенно хорошо это иллюстрируют голографические изображения прозрачных объектов, например, голограмма линзы полностью сохраняет все свойства реальной линзы, и поэтому через изображение линзы можно просматривать увеличенное изображение расположенных за ней объектов. Правда, на голограмме не могут быть отображены самосветящиеся объекты, например, электрическая лампа. Это следует из самой технологии голографии - снимаемый объект должен быть освещен лазерным светом, и только этот свет фиксируется на голограмме.

Конец работы -

Эта тема принадлежит разделу:

Использование объективов для решения творческих задач. Основные виды операторского освещения

Экзаменационный билет.. световые коэффициенты поглощения отражения и пропускания поведение света на границе раздела двух сред отражение света..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Использование объективов для решения творческих задач
Формируя кинокадр, следует исходить из смыслового значения его изобразительных компонентов, находящихся в непосредствен­ной зависимости от общей идеи сюжета. Все технические параметры следует подчи

Короткофокусный объектив
1. широко охватывает пространство, и поэтому характерная о собенность планов, снятых такой опти­кой, - большое количество объектов, попавших в кадр. Предметы, расположенные в поле

Зеркало
В зеркальной поверхности точечный источник света отра­зится полностью, почти без потерь. В отражении мы увидим источник света. Это направленное, зеркальное отражение. шлифованная поверхнос

Пропускание света
стекло Точечный источник света полностью виден через стекло. Это направленное пропускание света.

Эффективного относительного отверстия объективов
Эффективным относительным отверстием киносъемочного объек­тива:п3 называют эквивалентное ему геометрическое относительное отверстие:п «идеального» объектива, имеющего коэ

Величины виньетирования

Частотно-контрастная характеристика объектива или коэффициент передачи контраста
В последние годы при исследовании объективов и определении качества изображения большое значение придается методу частот­но-контрастных характеристик (ЧКХ) или, как его еще называют, функции переда

Особенности съемки в режимное время
Сумерками называют время после захода и перед вос­ходом, когда солнце находится ниже горизонта до 6-8°, и до того момента, когда небо становится совершенно тем­ным и видны все звезды, наблюдаемые п

Гиперфокальное расстояние. Рабочий отрезок объектива
Гиперфокальным расстоянием называется такое расстояние на­водки объектива, при котором задняя граница резко изображаемо­го пространства лежит в бесконечности. Характерно, что при на­водке на гиперф

Формат Betacam SP. Достоинства. Применение. Недостатки
Форматы Betacam и Betacam-SP. Разработаны фирмой Sony. Реализована раздельная запись сигналов яркости и цветности на раздельных дорожках шириной 73 мкм с защитным промежутком 80 ■ Скорость за

Светофильтры, их применение для решения пластической задачи. Типы назначение
При всем многообразии фильтров, выпускаемых в настоящее время различными зарубежными фирмами, остановимся на основных типах. Эффектные фильтры подразделяются на несколько основных групп в зависимос

Поляризация света. Поляризационные светофильтры. Применение, принцип действия
Гладкие поверхности некоторых объектов съемки, такие, как стекло, вода и различные окрашенные и полированные материалы, отражают как в зеркале изображения окружающих предметов. Например, стек­лянны

Спектральный состав оптического излучения. Поток излучения и световой поток. Единицы излучения
Оптическое излучение соответствует электромагнитным волнам с длиной волны от 1 нм до 1мм и состоит из трех областей: ультрафиолетовой (УФ), видимой и инфракрасной (ИК). Ультрафиолетовая об

Экспонометрический контроль. Яркость. Освещенность. Единицы измерения
Яркость - характеристика светящихся тел. Яркость равна отношению: - силы света, излучаемого в заданном направлении; к - площади проекции светящейся поверхности, на плоско


Цветовая температура – одна из главных характеристик, которая влияет на качество снимаемой кино- или видео картинки. Без учета спектральной характеристики излучения невозможно правильно передать цв

Формат DV. Достоинства. Применение. Недостатки
DV - цифровой формат, где для сжатия используется вариант дискретного косинус-преобразования, аналогичный сжатию для формата JPEG, но с несколькими таблицами дискретизации. В DV-камере аналоговое в

Экспозиция по теням и по светам для решения творческой задачи
Определение правильной экспозиции при киносъем­ке - важнейшая задача кинооператора. Качество фотогра­фического изображения - контраст, проработка деталей в тенях и светах, цветовоспроизведение и об

Виньетирование, кома, дисторсия. Причины возникновения. Возможности устранения
Виньетированием принято называть снижение освещенности к краям поля изображения, происходящее за счет уменьшения дейст­вующей площади входного зрачка объектива, вызываемое частичным ограничением оп

1-Й этап - Запись пропускающей голограммы
Пучок лазера 1 делится на два полупрозрачным зеркалом 2. Первый пучок, называемый сигнальным, направляется зеркалом

2-Й этап - Запись отражающей голограммы
На второй стадии пропускающую голограмму 9 освещают восстанавли-вающим пучком 6, направленным противоположно опорно

Назначение цветового контроля в решении творческой задачи
В телевидении цвет получается путем смещения трех его основных составляющих – красной, зеленой и синей. Корректировка камеры под тот или иной спектр освещения происходит путем выбора источника бело

Основные световые величины и единицы
Поскольку световые величины являются производными от энергетических фотометрических величин, то их целесообразно ра

Световой поток
Световой поток F является одной из основных световых величин и представляет собой тот же лучистый поток, но оценивается по световому ощущению, которое он производит на глаз человека. Т. е. световой

Сила света
Сила света источника характеризует пространственную плотность светового потока, т. е. сила света в данном направлении равна отношению светового потока F к телесному углу ω. Для изотропного ист

Освещенность
Освещенность представляет собой поверхностную плотность светового потока, падающего на освещаемую поверхность. При равномерном распределении светового потока F в пределах освещаемой поверхности S з

Видеосигнал
Объектив камеры фокусирует изображение на светочувствительной по­верхности - это может быть «мишень» электронно-лучевой трубки каме­ры или твердотельный датчик (CCD). Здесь свет создает рельеф из к

Изображение и слово
«Чтобы понять достаточно увидеть» Анри Базэн Киноизображение может быть немым, лишенным слова, или снято с синхронно воспроизведенной речью человека, или озвучено словом, музыкой, шумами.

Фокусное расстояние
Расстояние от задней главной плоскости до плоскос­ти, где фокусируются лучи света, падающие в объектив параллельным пучком (лучи, идущие из бесконечности), называется главным фокусным расстоянием и

Кинематографической время и телевизионное время
Различные виды искусств по-разному отражают временную категорию, но только некоторым из них подвластен показ реаль­ного развития событий и явлений. Объем снятого материала, длина планов, к

Геометрической и эффективное относительное отверстие
Отношение диаметра входного отверстия (зрачка) объектива к его фокусному расстоянию называется относи­тельным отверстием. Это отношение выражается в виде дроби с числителем, равным единице, и знаме

Формат Betacam SX. Достоинства. Недостатки. Применение
Сфера формата Betacam SX - производство программ новостей, а также спортивных передач, документальных фильмов и других подобных программ. Новости - одна из основных телевизионных программ. Именно п

Точка зрения
Кино склеивается из множества кадров, каждый из которых снят со своей точки зрения. Если точка зрения на предмет привычна зрительскому глазу, то вопроса (сознательного или подсознательного), кому о

Перспектива (виды)
Психология восприятия изображения конструирует в сознании человека трехмерную схему, и мы «видим» пространственные ориентиры, которые воз­никают особенно убедительно, когда они подчеркнуты перспект

Дифракция света при съемке
Дифракция света Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определ

Новое в осветительной технике
последнее время все чаще в качестве контроллеров применяются персональные компьютеры с соответствующим ПО, подключенные к управляемым системам по определенному интерфейсу. Кроме того, есть современ

Формат D9. Достоинства. Недостатки. Применение
Развитие видеозаписи продемонстрировало, что ни один формат цифровой записи не смог удовлетворить всем требованиям телевизионного вещания. Фирма JVC, создавая формат Digital S, стремилась занять оп

Кодирование входных сигналов
Формат Digital S предполагает использование структуры дискретизации телевизионного изображения в соответствии с Рекомендацией

Основные параметры оптической системы (А, Е, Е эф.)
Освещенность, создаваемая объективом в плоскости изображения при съемке объекта, имеющего равномерную яркость, как известно, не одинакова по всему кадру и обычно убывает по мере удаления от центра

Интерференционные светофильтры. Принцип действия. Область применения
Интерференция (от латинского inter - между и ferens (ferentis) - несущий, переносящий) - это явление, наблюдаемое при сложении в пространстве двух или нескольких волн. Интерференция состоит в том,

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №12
1. Технические средства и приспособления в работе оператора. Разнообразие видов съемок и готовность режиссеров и операторов пользоваться различными видами вспомогательной операторской техн

Телевизионная оптика
Современные телевизионные объективы обязаны быть и являются двухформатными по изображению. Это форматы - 4:3 и 16:9. Сейчас в телевизионных камерах используются ПЗС нескольких размеров, а именно 2/

Объективы внестудийного применения
Объективы этого класса имеют большой диапазон изменения фокусных расстояний (80x…101x), большое (1:1,4…1:1,6) относительное отверстие, а также надежную защиту от пыли, влаги и перепада температур (

Объективы студийно-внестудийного применения
К основным техническим требованиям, предъявляемым к студийным объективам, можно отнести: угол поля зрения не менее 60°, минимальная дистанция съемки не более 0,6 м, относительное отверстие 1:1,5, к

Объективы профессионального применения
Следует отметить, что у этого класса объективов, по сравнению с объективами вещательного качества, при одинаковых значениях разрешающей способности MTF снижается на 20…30%. Они достаточно популярны

Объективы для электронной кинематографии
Объективы этой серии стали достаточно популярными в последние годы. Они позволяют получать четкое изображение (практически без дисторсии), сопоставимое по качеству с кадрами, снятыми на 35 мм пленк

Творческие требования к освещению
Независимо от того, какие творческие и технические задачи стоят перед оператором, какой реальный матери­ал действительности является объектом съемки, во все случаях изображение его на кино- и видео

Контраст освещения
При равномерно-рассеянном свете интервал яркостей объекта зависит только от соотношения отражающей спо­собности его деталей. Например, если лицо человека отра­жает 30% падающего на него света, а те

Системы PAL, NTSI, SECAM. Достоинства и недостатки
Всего в мире существует три телевизионных стандарта аналогового телевидения: NTSC, PAL и SECAM. Первой страной, начавшей цветное телевизионное вещание, стали США. 19 декабря 1953 года канал NBC пок

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №13
1. Композиция кадра как основа выразительности (золотое сечение, диагональ и др.). От выбора тех или иных характеристик кадра зависит не только условие его существования как киноизображени

Основные отличия в построении видеокадра
Основных отличий в построении композиции кадра и мизансцены от композиции картины или фотографии очень немного, но они существенны и сводятся, в основном, к дополнительным ограничениям. Главное отл


Цветовая температура любого источника электромагнитных волн, в том числе световых, определяется путем сопоставления спектральных характеристик источника и абсолютно черного тела. Абсолютно черное т

Компрессия. Сущность. Причины. Стандарты. Достоинства
В 1979 году были образованы рабочие группы SMPTE и EBU по цифровой видеозаписи. В результате интенсивной совместной работы фирм-производителей телевизионной аппаратуры, вещательных компаний и между

Специфика профессии
Творческая и производ­ственная работа кинооператора протекает в условиях индустриального производства, в творческом коллекти­ве. Это требует не только профессиональной квалифи­кации, знаний

Передвижные телевизионные станции и их перспективы развития
Претендуя на самую высокую оперативность среди всех средств массовой информации, телевидение очень долгое время оставалось достаточно неповоротливым в плане организации полномасштабных съемок вне с

Съемка в туман, дождь, снегопад
Съемка в пасмурную погоду, морось и дождь харак­теризуется следующими основными условиями: неравномерностью освещенности как для горизон­тальных, так и особенно для вертикальных по

Мы обсудили вопросы, связанные с образованием изображения обычными оптическими системами, а также определили разрешение и рассмотрели различные аберрации. Теперь займемся изучением

проблем разрешения и аберраций, а также рассмотрим такие параметры, как увеличение и отношение сигнал/шум в изображениях, восстановленных с голограмм.

2.4.5.1. Увеличение

Когда Габор еще только разрабатывал идею голографии, одним из первых предложенных применений голографии была область микроскопии.

Рис. 6. Схема записи голограммы при определении поперечного увеличения. 1 и 2 - точечные объекты; 3 - точечный опорный источник; ФП - фотопластинка.

Увеличение голографического изображения можно получить, изменяя длину волны света или геометрию освещения в процессах регистрации голограмм и восстановления с них изображений. Для того чтобы определить условие, необходимое для увеличения, воспользуемся простым устройством получения голограммы, схематически показанным на рис. 6. При получении голограммы двух точечных объектов, расположенных на расстоянии друг от друга, в качестве опорного используется внеосевой точечный источник. Если считать, что размер апертуры голограммы много меньше, чем расстояние от плоскости голограммы до источника света, то можно применить параксиальное приближение:

Используя это приближение, можно записать комплексное распределение света в плоскости голограммы, обусловленное этими точечными излучателями, в виде

Предполагая, что запись является линейной, амплитудное пропускание голограммы можно записать в виде

Затем осветим голограмму расходящимся пучком света с длиной волны как показано на рис. 7; тогда

Рис. 7. Схема восстановления изображения при определении поперечного увеличения. 1 и 2 - восстановленные изображения точечных объектов.

После довольно утомительных, но простых вычислений можно показать, что поперечное увеличение действительного изображения записывается в виде

Аналогичное выражение имеем для мнимого изображения:

Неудивительно, что предел поперечного разрешения голографического изображения практически совпадает с пределом разрешения в системе формирования изображения, образуемой сферическими линзами. Голограмма точечного объекта действует подобно сферической линзе. Поэтому при одинаковых ограничениях предел разрешения становится равным расчетному.

  • AR и VR ,
  • Блог компании WayRay ,
  • Запустить софт для моделирования и вывести полноразмерную модель для редактирования в пространстве. Включить коммуникатор и побеседовать не с плоским изображением собеседника на видеозвонке, а с его объемной проекцией, через которую просвечивает любимый ковер. Отодвинуть штору и увидеть на оконном стекле прогноз погоды, ситуацию с пробками, и вообще - как оно там. Завести двигатель автомобиля и получать на участке лобового стекла дополнительные оповещения о дорожной разметке, возможных опасностях и иных важных сведениях.

    Если раньше все это было уделом научных фантастов, то сейчас подобное перешло из разряда “Фантастика” в разряд “Ближайшее будущее”. О том, как современные ученые приближают век голографии, с чего все начиналось и какие трудности развития голографические технологии испытывают на данный момент, мы постараемся рассказать в этом посте.

    Как создаются голографические изображения

    Человеческий глаз видит физические объекты, так как от них отражается свет. Построение голографического изображения основано именно на этом принципе – создается пучок отраженного света, полностью идентичный тому, который отражался бы от физического объекта. Человек, смотря на этот пучок, видит тот же самый объект (даже если смотрит на него под разными углами).

    Голограммы же более высокого разрешения - это статические рисунки, “холст” которых - фотополимер, а “кисть” - лазерный луч, который разово меняет структуру фотополимерных материалов. В итоге обработанный таким образом фотополимер создает голографическое изображение (на плоскость голограммы падает свет, фотополимер создает его тонкую интерференционную картину).

    К слову, про саму интерференцию. Она возникает в случае, если в определенном пространстве складывается ряд электромагнитных волн, у которых совпадают частоты, причем с довольно высокой степенью. Уже в процессе записи голограммы в конкретной области складывают две волны – первая, опорная, исходит непосредственно от источника, вторая, объектная – отражается от объекта. Фотопластину с чувствительным материалом размещают в этой же области, и на ней возникает картина полос потемнения, соответствующих распределению электромагнитной энергии (интерференционная картина). Затем пластину освещают волной, близкой по характеристикам к опорной, и пластина преобразует эту волну в близкую к объектной.

    В итоге получается, что наблюдатель видит примерно такой же свет, который отражался бы от изначального объекта записи.

    Краткая историческая справка

    Шел 1947-й год. Индия получила независимость от Британии, Аргентина предоставила избирательные права женщинам, Михаил Тимофеевич Калашников создал свой знаменитый автомат, Джон Бардин и Уолтер Браттейномиз проводят эксперимент, позволивший создать первый в мире действующий биполярный транзистор, начинается производство фотоаппаратов Polaroid.

    А Деннис Габор получает первую в мире голограмму.

    Вообще, Деннис пытался повысить разрешающую способность электронных микроскопов той эпохи, но в ходе направленного на это эксперимента получил голограмму.

    Увы, Габор, как и многие умы, немного опередил свое время, и у него просто не было нужных технологий, чтобы получать голограммы хорошего качества (без когерентного источника света этого сделать невозможно, а первый лазер на кристалле искусственного рубина Теодор Мейман продемонстрирует лишь 13 лет спустя).

    А вот после 1960-го (красный рубиновый лазер с длиной волны 694 нм, импульсный, и гелий-неоновый, 633 нм, непрерывный) дело пошло куда бодрее.

    1962 . Эммет Лейт и Юрис Упатниекс, Мичиганский Технологический Институт. Создание классической схемы записи голограмм. Записывались пропускающие голограммы – в процессе восстановления голограммы свет пропускали через фотопластину, но некоторая часть света отражается от пластины и тоже создает изображение, которое видно с противоположной стороны.

    1967 . Первый голографический портрет записывают при помощи рубинового лазера.

    1968 . Совершенствуются и сами фотоматериалы, благодаря чему Юрий Николаевич Денисюк разрабатывает собственную схему записи и получает высококачественные голограммы (восстанавливали изображение путем отражения белого света). Все проходит вполне неплохо, настолько, что схема записи получает название “Схема Денисюка”, а голограммы - “Голограммы Денисюка”.

    1977 . Мультиплексная голограмма Ллойда Кросса, состоящая из нескольких десятков ракурсов, каждый из которых можно увидеть только под одним углом.

    Плюсы - размеры объекта, которые требуется записать, не ограничиваются длиной волны лазера или размером фотопластины. Можно создать голограмму предмета, которого не существует (то есть просто нарисовав придуманный предмет в сразу нескольких ракурсах).

    Минусы - отсутствие вертикального параллакса, рассмотреть такую голограмму можно только по горизонтальной оси, но не сверху или снизу.

    1986 . Абрахам Секе осознает, что нет предела совершенству, и предлагает создать источник когерентного излучения в приповерхностной области с помощью рентгеновского излучения. Пространственное разрешение в голографии всегда зависит от размеров источника излучения и его удаленности от предмета – это дало возможность восстановить в реальном пространстве атомы, которые окружали эмиттер.

    Сейчас

    Сегодня некоторые прототипы голографических видеодисплеев работают примерно так же, как и современные ЖК-мониторы: особым образом рассеивают свет, формируя псевдо-3D, а не создают интерференционную картину. С чем связан и главный минус такого подхода - нормально оценить такую картинку сможет только один человек, сидящих под правильным углом к монитору. Все остальные зрители будут не так впечатлены.

    Конечно же, любители научной фантастики и новых технологий спят и видят, как голографические дисплеи станут такой же привычной вещью, как wifi дома или фотокамера в смартфоне, сравнимая с не самой плохой мыльницей. И хотя идеальная голограмма в понимании большинства - это на самом деле не сегодня и не завтра, разработки на эту тему уже активно ведутся.

    Институт науки и передовых исследований, Корея. Рабочий прототип нового 3D-голографического дисплея, ТТХ которого примерно в пару тысяч раз лучше , чем у существующих аналогов.

    Слабое звено таких дисплеев - матрица. Пока матрицы состоят из двухмерных пикселей. Корейцы же использовали обычный (но хороший) дисплей вкупе со специальным модулятором для фронта оптического импульса. Результатом стала высококачественная голограмма, правда, небольшая - 1 кубический сантиметр.

    Было время, когда считалось, что рассеивание света - это серьезное препятствие для нормального распознавания проецируемых объектов. Но как показывает наша практика, современные 3D-дисплеи можно существенно улучшить, научившись контролировать это рассеивание. Правильное рассеивание позволило увеличить и угол обзора, и общую разрешающую способность,
    - отмечает профессор Йонкен Парк .

    Университет Гриффита, Технологический университет Суинберна, Австралия. Голографический дисплей на основе графена.

    Ученые вооружились методом Габора, упоминавшимся в самом начале этого поста, и сделали 3D-голографический дисплей высокого разрешения на основе цифрового голографического экрана, состоящего из мелких точек, отражающих свет.

    Плюсы – угол обзор в 52 градуса. Для нормального восприятия картинки не нужны никакие дополнительные приблуды в виде 3D-очков и прочего.

    К слову, о 52 градусах. Угол обзора тем больше, чем меньше будет использоваться пикселей. Оксид графена обрабатывают путем фоторедукции, что создает пиксель, которому под силу изгибать цвет для голокартинки.

    Разработчики полагают, что подобный подход в свое время сможет положить начало революции в разработке дисплеев, особенно - на мобильных устройствах.

    Бристольский университет, Великобритания. Ультразвуковая голография.

    Объект создается в воздухе с помощью множества ультразвуковых излучателей, направленных на облако водяного пара, которое также создается системой. Реализация, конечно, сложнее, чем в случае с привычными экрана, но все же.

    • туман создается не просто каплями воды, а каплями специального вещества.
    • это вещество освещается специальной лампой.
    • лампа модулирует специальный свет.

    В итоге получается проекция объекта, который можно не только рассмотреть со всех сторон, но и потрогать.

    Частота колебаний такой интерференционной картины - от 0.4 до 500 Гц.

    Одно из главных направлений деятельности, в котором разработчики предполагают полезное использование технологии - медицина. Врач сможет на основе данных медкарты и смоделированного органа “почувствовать” его. Также можно будет создавать объемные проекции каких-либо товаров на презентациях. Положительный эффект предрекают и при замене подобной технологией сенсорных дисплеев в местах массового пользования (электронные меню, терминалы, банкоматы). Как сложно и дорого будет это внедрить - само собой, уже второй вопрос.

    А уж до чего могут дойти развлекательные сервисы определенной направленности - страшно (но интересно) подумать.

    Ванкувер, Канада. Интерактивный голографический дисплей.

    Что нужно:

    • мобильное устройство
    • HDMI или wifi
    • пожертвовать 550$ на Кикстартере вот

    С тех пор, как принцесса Лея в фильме «Звездные войны. Эпизод IV: Новая надежда» предстала в виде голограммы, изменилось многое. Технологии будущего стали настоящим: например, 3D-технология телеприсутствия, которую мы видели в «Стар Треке». Совсем скоро появятся порталы для псевдоголографических видеоконференций, планшеты с голографическими дисплеями и доступные голографические проекторы. Art Electronics решил разобраться, как будет развиваться технология голографии и скоро ли нам жить в том будущем, которое придумала кинофантастика.

    Голограмма - это объемное изображение, которое создается с помощью лазера. Голограмма по сути воспроизводит изображение трехмерного объекта. Вы буквально видите реальный объект, но это лишь картинка. Голографический объект можно обойти, придать ему глубину, чего не может сделать 3D-технология. В отличие от голограмм, в 3D используется стереоэффект при рассматривании двух плоских изображений. Стереоэффект - это психофизиологический эффект интерпретации мозгом отличающихся (из-за смещения позиции наблюдения) изображений от двух глаз.

    Голограмма формируется в воздухе, а 3D-картинка ― это иллюзия объема, которая создается на плоском экране. Голография может быть гибридной: 3D-голография, или псевдоголография ― когда можно обойти изображение, и оно будет меняться так, будто вы ходите вокруг голографического объекта. Такая иллюзия возможна благодаря камерам с контроллерами движений и 3D-проекцией на цилиндрический экран.

    Несмотря на то, что современного человека окружают целые экосистемы технологий, привыкнуть к 3D-технологиям пока не получается: у некоторых зрителей быстро устают глаза, . Однако нельзя не согласиться с тем, что будущее визуальных технологий ― за объемом и реалистичностью.

    Тренд на трехмерность охватил не только сферу кино, маркетинга, но и телевидение.

    Исследователь Дэниэл Смолли из MIT Media Lab предложил технологию для голографического телевидения, основанную на использовании оптического чипа. В его блоге можно даже посмотреть схемы и описание.

    Одно из двумерных изображений, составляющих голографическую стереограмму Дэвида Смолли

    Японские разработчики уже предложили вариант голографических телевизоров, которые должны стать популярными к 2020 году. Еще в феврале 2006 года японские ученые работали над так называемыми «реалистичными 3D изображениями».


    Псевдоголография

    Псевдоголографическая технология TeleHuman , или «стерео-Skype», позволяет разговаривать с голографическими образами, делать совещания как в фильме «Звездные войны» .

    Эту технологию разработала научно-исследовательская группа профессора Роэла Вертегаала из лаборатории Human Media Lab при канадском университете Queen"s University . Технология не так сложна, как можно было бы подумать.

    TeleHuman состоит из нескольких 3D-камер с сенсорами движения Microsoft Kinect , акрилового цилиндрического дисплея высотой 1,8 м, 3D-проектора и выпуклого зеркала. Два человека в разных географических точках стоят перед своими цилиндрическими порталами–подами. 3D-камеры с контроллерами движения Microsoft Kinect , установленные по верху цилиндра, снимают человека, непрерывно конвертируют данные в изображение и в режиме реального времени передают полноразмерную трехмерную картинку на цилиндрический дисплей собеседника. Голограмму цилиндрический портал пока не показывает. Это только экран, но он способен показать человека на 360 градусов ― при желании собеседника можно увидеть сбоку и со спины.


    Планшеты с голографическими дисплеями

    Кристофер Ист из компании WaterWorks создал визуализацию идеи телефона с голографической технологией. Ист убежден, что такой телефон будет не только незаменим для презентаций и работы дизайнеров и архитекторов, но и станет важным инструментом в сферах маркетинга, урбанистики и образования.


    Голографические мероприятия

    Индустрия развлечений выходит на новый уровень благодаря технологиям мэппинга и голографии. Можно даже устраивать концерты артистов, которых уже нет в живых. Выступления голограммы Тупака Шакура на фестивале Coachella 2012 или Майкла Джексона на музыкальной премии Billboard Music Awards в 2014 стали сенсацией, но для организаторов оказались пока слишком затратными.

    Совместное выступление голограммы Тупака Шакура и Доктора Дре, 2012


    Академическая среда также заинтересовалась технологией голографии для мероприятий и использует их и как образовательный, и как маркетинговый инструмент. Большой популярностью на рынке пользуются голографические проекторы. Они показывают голограммы на 360 градусов и позволяют взаимодействовать с ними: крутить, увеличивать и уменьшать, смотреть меню.

    Голограмма размером 3 х 3 м, создаваемая четырьмя проекторами ViTech


    Голографический проектор Holo


    Голографическая телепортация

    Компания Microsoft представила процесс голографической телепортации или, проще говоря, передачи объёмного изображения собеседника на расстоянии при помощи его сканирования в реальном времени и создания 3D-модели с натянутыми на неё текстурами.

    Технология «Голопортация» от Microsoft


    Подобное возможно только при наличии двух помещений, которые оборудованы специальными камерами. Такое общение можно будет записывать на жесткий диск компьютера и пересматривать. Причем вы сможете видеть сцену со всех сторон, как бы присутствовать внутри неё, а также уменьшать или увеличивать 3D-модели.


    Осязаемая голограмма

    Специалисты японской научной лаборатории Digital Nature Group создали голограмму, которую можно безопасно потрогать руками.

    Осязаемая голограмма Digital Nature Group


    В сериале «Стар Трек» ощущение прикосновения создавалось за счет силовых полей, но японские исследователи использовали фемтосекундные лазеры. Эффект безопасной на ощупь голограммы был достигнут за счет сокращения длительности импульсов лазерного излучения и перехода с наносекунд на фемтосекунды - миллионные доли миллиардной доли секунды. Голографическое изображение состоит из крошечных объемных элементов ― вокселей. Воксел представляет собой световую точку, излучаемую плазмой, которая создается при ионизации воздуха лазером.

    Перечисленные реализованные технологии из кино только подтверждают оптимистичные прогнозы о будущем голографических технологий. Каждый год Голливуд выпускает несколько фантастических фильмов. Кто знает, какие технологии нас еще ждут в фантастическом будущем.

    Голографическое изображение сегодня находит все большее применение. Некоторые даже считают, что оно может со временем заменить известные нам средства связи. Так это или нет, но уже сейчас оно активно используется в самых разных отраслях. К примеру, всем нам знакомы голографические наклейки. Множество производителей использует их как средство защиты от подделки. На фото ниже представлены некоторые голографические наклейки. Их применение - очень эффективный способ защиты товаров или документов от подделки.

    История изучения голографии

    Объемное изображение, получаемое в результате преломления лучей, начало изучаться относительно недавно. Однако мы уже можем говорить о существовании истории его изучения. Деннис Габор, английский ученый, в 1948 году впервые определил, что такое голография. Это открытие было очень важным, но его большое значение в то время не было еще очевидным. Работавшие в 1950-е годы исследователи страдали от отсутствия источника света, обладающего когерентностью, - очень важным свойством для развития голографии. Первый лазер был изготовлен в 1960 году. С помощью этого прибора можно получить свет, имеющий достаточную когерентность. Юрис Упатниекс и Иммет Лейт, американские ученые, использовали его для создания первых голограмм. С их помощью получались трехмерные изображения предметов.

    В последующие годы исследования продолжались. Сотни научных статей, в которых изучалось понятие о голографии, с тех пор были опубликованы, а также издано множество книг, посвященных этому методу. Однако эти труды адресованы специалистам, а не широкому читателю. В данной статье мы постараемся рассказать обо всем доступным языком.

    Что такое голография

    Можно предложить следующее определение: голография - это получаемая с помощью лазера объемная фотография. Однако данное определение не совсем удовлетворительно, так как есть множество иных видов трехмерной фотографии. Тем не менее в нем отражено наиболее существенное: голография - это технический метод, который позволяет "записывать" внешний вид того или иного объекта; с ее помощью получается трехмерное изображение, выглядящее так, как реальный предмет; применение лазеров сыграло решающую роль для ее развития.

    Голография и ее применение

    Исследование голографии позволяет прояснить многие вопросы, связанные с обычной фотографией. В качестве изобразительного искусства объемное изображение может даже бросить вызов последней, поскольку оно позволяет отражать окружающий мир более точно и правильно.

    Ученые иногда выделяют эпохи в истории человечества по средствам связи, которые были известны в те или иные столетия. Можно говорить, к примеру, о существовавших в Древнем Египте иероглифах, об изобретении в 1450 году В связи с наблюдаемым в наше время техническим прогрессом новые средства связи, такие как телевидение и телефон, заняли господствующее положение. Хотя голографический принцип находится еще в младенческом состоянии, если говорить о его использовании в средствах информации, существуют основания предполагать, что основанные на нем устройства в будущем смогут заменить известные нам средства связи или хотя бы расширить область их применения.

    Научно-фантастическая литература и массовая печать нередко преподносят голографию в неверном, искаженном свете. Они часто создают неправильное представление о данном методе. Объемное изображение, увиденное впервые, завораживает. Однако не меньшее впечатление производит физическое объяснение принципа его устройства.

    Интерференционная картина

    Способность видеть предметы основана на том, что световые волны, преломляясь ими или отражаясь от них, попадают в наш глаз. Отраженные от некоторого объекта световые волны характеризуются формой волнового фронта, соответствующей форме этого объекта. Картину темных и светлых полос (или линий) создают две группы световых когерентных волн, которые интерферируют. Так образуется объемная голография. При этом данные полосы в каждом конкретном случае составляют комбинацию, зависящую лишь от формы волновых фронтов волн, которые взаимодействуют друг с другом. Такую картину именуют интерференционной. Ее можно зафиксировать, к примеру, на фотографической пластинке, если поместить ее в место, где наблюдается

    Многообразие голограмм

    Способом, позволяющим записывать (регистрировать) отраженный от предмета волновой фронт, после чего восстанавливать его так, что наблюдателю кажется, что он видит реальный предмет, и является голография. Это эффект, который объясняется тем, что получаемое изображение трехмерно в такой же мере, что и реальный предмет.

    Есть множество различных типов голограмм, в которых легко запутаться. Чтобы однозначно определить тот или иной вид, следует употребить четыре или даже пять прилагательных. Из всего их множества мы рассмотрим только основные классы, которые использует современная голография. Однако сначала нужно рассказать немного о таком волновом явлении, как дифракция. Именно она позволяет нам конструировать (вернее, реконструировать) волновой фронт.

    Дифракция

    Если какой-либо предмет оказывается на пути света, он отбрасывает тень. Свет огибает этот предмет, заходя частично в область тени. Этот эффект именуют дифракцией. Он объясняется волновой природой света, но объяснить его строго достаточно сложно.

    Только в очень малом угле проникает свет в область тени, поэтому мы почти не замечаем этого. Однако если на его пути есть множество мелких препятствий, расстояния между которыми составляют только несколько длин световой волны, данный эффект становится достаточно заметным.

    Если падение волнового фронта приходится на большое единичное препятствие, "выпадает" соответствующая его часть, что практически не влияет на оставшуюся область данного волнового фронта. Если же множество мелких препятствий находится на его пути, он изменяется в результате дифракции так, что распространяющийся за препятствием свет будет обладать качественно иным волновым фронтом.

    Трансформация настолько сильна, что свет начинает даже распространяться в другом направлении. Выходит, что дифракция позволяет нам преобразовать исходный волновой фронт в совершенно отличный от него. Таким образом, дифракция - механизм, с помощью которого мы получаем новый волновой фронт. Устройство, формирующее его вышеописанным путем, именуется Расскажем о ней подробнее.

    Дифракционная решетка

    Это небольшая пластинка с нанесенными на ней тонкими прямыми параллельными штрихами (линиями). Они отстоят друг от друга на сотую или даже тысячную часть миллиметра. Что происходит, если лазерный луч на своем пути встречает решетку, которая состоит из нескольких размытых темных и ярких полос? Его часть будет прямо проходить через решетку, а часть - загибаться. Так образуются два новых пучка, которые выходят из решетки под определенным углом к исходному лучу и находятся по обе стороны от него. В случае если один лазерный пучок обладает, к примеру, плоским волновым фронтом, два образовавшихся по бокам от него новых пучка также будут иметь плоские волновые фронты. Таким образом, пропуская через дифракционную решетку лазерный луч, мы формируем два новых волновых фронта (плоских). По-видимому, дифракционную решетку можно рассматривать как самый простой пример голограммы.

    Регистрация голограммы

    Знакомство с основными принципами голографии следует начать с изучения двух плоских волновых фронтов. Взаимодействуя, они образуют интерференционную картину, которую регистрируют на помещенной там же, где находился экран, фотографической пластинке. Эта стадия процесса (первая) в голографии называется записью (или регистрацией) голограммы.

    Восстановление изображения

    Будем считать, что одна из плоских волн - А, а вторая - В. Волна А именуется опорной, а В - предметной, то есть отраженной от того предмета, изображение которого фиксируется. Она может не отличаться ничем от опорной волны. Однако при создании голограммы трехмерного реального объекта формируется значительно более сложный волновой фронт света, отраженного от предмета.

    Интерференционная картина, представленная на фотографической пленке (то есть изображение дифракционной решетки), - это и есть голограмма. Ее можно поместить на пути опорного первичного пучка (пучка лазерного света, обладающего плоским волновым фронтом). В этом случае по обе стороны формируются 2 новых волновых фронта. Первый из них представляет собой точную копию волнового предметного фронта, который распространяется в том же направлении, что и волна В. Вышеописанная стадия именуется восстановлением изображения.

    Голографический процесс

    Которую создают две плоские после ее записи на фотопластинке представляет собой устройство, позволяющее в случае освещения одной из этих волн восстановить другую плоскую волну. Голографический процесс, таким образом, имеет следующие стадии: регистрацию и последующее "хранение" волнового предметного фронта в виде голограммы (интерференционной картины), и его восстановление спустя любое время при прохождении опорной волны через голограмму.

    Предметный волновой фронт в действительности может быть любым. К примеру, он может отражаться от некоторого реального предмета, если он при этом является когерентным опорной волне. Образованная двумя любыми волновыми фронтами, обладающими когерентностью, интерференционная картина - это и есть устройство, позволяющее благодаря дифракции преобразовать один из данных фронтов в другой. Именно здесь и спрятан ключ к такому явлению, как голография. Деннис Габор первым обнаружил это свойство.

    Наблюдение формируемого голограммой изображения

    В наше время для чтения голограмм начинает использоваться особое устройство - голографический проектор. Он позволяет преобразовать картинку из двух- в трехмерную. Однако для того чтобы просматривать простые голограммы, голографический проектор вовсе не требуется. Вкратце расскажем о том, как рассматривать такие изображения.

    Чтобы наблюдать формируемое простейшей голограммой изображение, нужно поместить ее примерно на расстоянии 1 метра от глаза. Сквозь дифракционную решетку нужно смотреть в том направлении, в котором плоские волны (восстановленные) выходят из нее. Так как именно плоские волны попадают в глаз наблюдателя, голографическое изображение также является плоским. Оно предстает перед нами будто "глухая стена", которую равномерно освещает свет, имеющий тот же цвет, что и соответствующее Так как специфических признаков эта "стена" лишена, невозможно определить, насколько далеко она находится. Кажется, будто смотришь на расположенную в бесконечности протяженную стену, но при этом видишь лишь ее часть, которую удается разглядеть сквозь небольшое "окно", то есть голограмму. Следовательно, голограмма - это равномерно светящаяся поверхность, на которой мы не замечаем ничего достойного внимания.

    Дифракционная решетка (голограмма) позволяет нам наблюдать несколько простейших эффектов. Их можно продемонстрировать и с использованием голограмм иного типа. Проходя сквозь дифракционную решетку, пучок света расщепляется, формируются два новых пучка. С помощью пучков лазерного излучения можно освещать любую дифракционную решетку. При этом излучение должно отличаться цветом от использованного при ее записи. Угол изгиба пучка цвета зависит от того, какой цвет он имеет. Если он красный (самый длинноволновой), то такой пучок изгибается под большим углом, нежели пучок синего цвета, который имеет наименьшую длину волны.

    Сквозь дифракционную решетку можно пропустить смесь всех цветов, то есть белый. В этом случае каждая цветовая компонента этой голограммы искривляется под своим собственным углом. На выходе формируется спектр, аналогичный создаваемому призмой.

    Размещение штрихов дифракционной решетки

    Штрихи дифракционной решетки следует делать очень близкими друг к другу, чтобы было заметно искривление лучей. К примеру, для искривления красного луча на 20° нужно, чтобы расстояние между штрихами не превышало 0,002 мм. Если их разместить более тесно, луч света начинает изгибаться еще сильнее. Для "записи" данной решетки нужна фотопластинка, которая способна регистрировать настолько тонкие детали. Кроме того, необходимо, чтобы пластинка в процессе экспозиции, а также при регистрации оставалась совершенно неподвижной.

    Картина может значительно смазаться даже при малейшем движении, причем настолько, что будет вовсе неразличимой. В этом случае мы увидим не интерференционную картину, а просто стеклянную пластинку, по всей своей поверхности однородно черную или серую. Конечно, в этом случае не будут воспроизводиться эффекты дифракции, формируемые дифракционной решеткой.

    Пропускающие и отражательные голограммы

    Рассмотренная нами дифракционная решетка именуется пропускающей, поскольку она действует в свете, проходящем сквозь нее. Если же нанести линии решетки не на прозрачную пластинку, а на поверхность зеркала, мы получим дифракционную решетку отражательную. Она отражает под разными углами свет различных цветов. Соответственно, есть два больших класса голограмм - отражательные и пропускающие. Первые наблюдаются в отраженном свете, а вторые - в проходящем.