Механическая работа и мощность. Механическая работа и мощность силы Как обозначается и в чем измеряется работа

ОПРЕДЕЛЕНИЕ

Механическая работа – это произведение силы, приложенной к объекту, на перемещение, совершённое этой силой.

– работа (может обозначаться как ), – сила, – перемещение.

Единица измерения работы — Дж (джоуль) .

Указанная формула применима к телу, движущемуся прямолинейно и постоянном значении воздействующей на него силы. Если между вектором силы и прямой, описывающей траекторию тела есть угол, то формула принимает вид:

Кроме того, понятие работы можно определить как изменение энергии тела:

Именно такое применение этого понятия чаще всего встречается в задачах.

Примеры решения задач по теме «Механическая работа»

ПРИМЕР 1

Задание Двигаясь по окружности радиусом 1м тело переместилось на противоположную точку окружности под действием силы 9Н. Найти работу, совершённую этой силой.
Решение Согласно формуле, работу нужно искать исходя не из пройденного пути, а из перемещения, то есть не нужно считать длину дуги окружности. Достаточно просто учесть, что при перемещении на противоположную точку окружности тело совершило перемещение, равное диаметру окружности, то есть 2м. По формуле:
Ответ Совершенная работа равна Дж.

ПРИМЕР 2

Задание Под действием некоторой силы тело движется вверх по наклонной плоскости под углом к горизонту. Найти силу, действующую на тело, если при продвижении тела на 5 м в вертикальной плоскости его энергия увеличилась на 19 Дж.
Решение По определению изменение энергии тела и есть работа, над ним совершённая.

Однако, мы не можем найти силу, подставив исходные данные в формулу, так как не знаем перемещение тела. Нам известно только его перемещение по оси (обозначим его ). Найдём перемещение тела с помощью определения функции :

Определение

В том случае, если под воздействием силы происходит изменение модуля скорости движения тела, то говорят о том, что сила совершает работу . Считают, что если скорость увеличивается, то работа является положительной, если скорость уменьшается, то работа, которую совершает сила – отрицательна. Изменение кинетической энергии материальной точки в ходе ее движения между двумя положениями равно работе, которую совершает сила:

Действие силы на материальную точку можно охарактеризовать не только с помощью изменения скорости движения тела, но при помощи величины перемещения, которое совершает рассматриваемое тело под действием силы ().

Элементарная работа

Элементарная работа некоторой силы определяется как скалярное произведение:

Радиус – вектор точки, к которой приложена сила, - элементарное перемещение точки по траектории, – угол между векторами и . Если является тупым углом работа меньше нуля, если угол острый, то работа положительная, при

В декартовых координатах формула (2) имеет вид:

где F x ,F y ,F z – проекции вектора на декартовы оси.

При рассмотрении работы силы, приложенной к материальной точке можно использовать формулу:

где – скорость материальной точки, – импульс материальной точки.

Если на тело (механическую систему) действуют несколько сил одновременно, то элементарная работа, которую совершают эти силы над системой, равна:

где проводится суммирование элементарных работ всех сил, dt – малый промежуток времени, за который совершается элементарная работа над системой.

Результирующая работа внутренних сил, даже если твердое тело движется, равна нулю.

Пусть твердое тело вращается около неподвижной точки - начала координат (или неподвижной оси, которая проходит через эту точку). В таком случае, элементарная работа всех внешних сил (допустим, что их число равно n), которые действуют на тело, равна:

где – результирующий момент сил относительно точки вращения, – вектор элементарного поворота, – мгновенная угловая скорость.

Работа силы на конечном участке траектории

Если сила выполняет работу по перемещению тела на конечном участке траектории его движения, то работа может быть найдена как:

В том случае, если вектор силы – величина постоянная на всем отрезке перемещения, то:

где – проекция силы на касательную к траектории.

Единицы измерения работы

Основной единицей измерения момента работы в системе СИ является: [A]=Дж=Н м

В СГС: [A]=эрг=дин см

1Дж=10 7 эрг

Примеры решения задач

Пример

Задание. Материальная точка движется прямолинейно (рис.1) под воздействием силы, которая задана уравнением: . Сила направлена по движению материальной точки. Чему равна работа данной силы на отрезке пути от s=0 до s=s 0 ?

Решение. За основу решения задачи примем формулу расчёта работы вида:

где , та как по условию задачи . Подставим выражение для модуля силы заданное условиями, возьмем интеграл:

Ответ.

Пример

Задание. Материальная точка перемещается по окружности. Ее скорость изменяется в соответствии с выражением: . При этом работа силы, которая действует на точку, пропорциональна времени: . Каково значение n?

«Физика - 10 класс»

Закон сохранения энергии - фундаментальный закон природы, позволяющий описывать большинство происходящих явлений.

Описание движения тел также возможно с помощью таких понятий динамики, как работа и энергия.

Вспомните, что такое работа и мощность в физике.

Совпадают ли эти понятия с бытовыми представлениями о них?

Все наши ежедневные действия сводятся к тому, что мы с помощью мышц либо приводим в движение окружающие тела и поддерживаем это движение, либо же останавливаем движущиеся тела.

Этими телами являются орудия труда (молоток, ручка, пила), в играх - мячи, шайбы, шахматные фигуры. На производстве и в сельском хозяйстве люди также приводят в движение орудия труда.

Применение машин во много раз увеличивает производительность труда благодаря использованию в них двигателей.

Назначение любого двигателя в том, чтобы приводить тела в движение и поддерживать это движение, несмотря на торможение как обычным трением, так и «рабочим» сопротивлением (резец должен не просто скользить по металлу, а, врезаясь в него, снимать стружку; плуг должен взрыхлять землю и т. д.). При этом на движущееся тело должна действовать со стороны двигателя сила.

Работа совершается в природе всегда, когда на какое-либо тело в направлении его движения или против него действует сила (или несколько сил) со стороны другого тела (других тел).

Сила тяготения совершает работу при падении капель дождя или камня с обрыва. Одновременно совершает работу и сила сопротивления, действующая на падающие капли или на камень со стороны воздуха. Совершает работу и сила упругости, когда распрямляется согнутое ветром дерево.

Определение работы.


Второй закон Ньютона в импульсной форме Δ = Δt позволяет определить, как меняется скорость тела по модулю и направлению, если на него в течение времени Δt действует сила .

Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуются величиной, зависящей как от сил, так и от перемещений тел. Эту величину в механике и называют работой силы .

Изменение скорости по модулю возможно лишь в том случае, когда проекция силы F r на направление перемещения тела отлична от нуля. Именно эта проекция определяет действие силы, изменяющей скорость тела по модулю. Она совершает работу. Поэтому работу можно рассматривать как произведение проекции силы F r на модуль перемещения |Δ| (рис. 5.1):

А = F r |Δ| . (5.1)

Если угол между силой и перемещением обозначить через α, то F r = Fcosα .

Следовательно, работа равна:

А = |Δ|cosα . (5.2)

Наше бытовое представление о работе отличается от определения работы в физике. Вы держите тяжёлый чемодан, и вам кажется, что вы совершаете работу. Однако с точки зрения изики ваша работа равна нулю.

Работа постоянной силы равна произведению модулей силы и перемещения точки приложения силы и косинуса угла между ними.

В общем случае при движении твёрдого тела перемещения его разных точек различны, но при определении работы силы мы под Δ понимаем перемещение её точки приложения. При поступательном движении твёрдого тела перемещение всех его точек совпадает с перемещением точки приложения силы.

Работа, в отличие от силы и перемещения, является не векторной, а скалярной величиной. Она может быть положительной, отрицательной или равной нулю.

Знак работы определяется знаком косинуса угла между силой и перемещением. Если α < 90°, то А > 0, так как косинус острых углов положителен. При α > 90° работа отрицательна, так как косинус тупых углов отрицателен. При α = 90° (сила перпендикулярна перемещению) работа не совершается.

Если на тело действует несколько сил, то проекция равнодействующей силы на перемещение равна сумме проекций отдельных сил:

F r = F 1r + F 2r + ... .

Поэтому для работы равнодействующей силы получаем

А = F 1r |Δ| + F 2r |Δ| + ... = А 1 + А 2 + ... . (5.3)

Если на тело действует несколько сил, то полная работа (алгебраическая сумма работ всех сил) равна работе равнодействующей силы.

Совершённую силой работу можно представить графически. Поясним это, изобразив на рисунке зависимость проекции силы от координаты тела при его движении по прямой.

Пусть тело движется вдоль оси ОХ (рис. 5.2), тогда

Fcosα = F x , |Δ| = Δ х .

Для работы силы получаем

А = F|Δ|cosα = F x Δx .

Очевидно, что площадь прямоугольника, заштрихованного на рисунке (5.3, а), численно равна работе при перемещении тела из точки с координатой х1 в точку с координатой х2.

Формула (5.1) справедлива в том случае, когда проекция силы на перемещение постоянна. В случае криволинейной траектории, постоянной или переменной силы мы разделяем траекторию на малые отрезки, которые можно считать прямолинейными, а проекцию силы на малом перемещении Δ - постоянной.

Тогда, вычисляя работу на каждом перемещении Δ а затем суммируя эти работы, мы определяем работу силы на конечном перемещении (рис. 5.3, б).

Единица работы.


Единицу работы можно установить с помощью основной формулы (5.2). Если при перемещении тела на единицу длины на него действует сила, модуль которой равен единице, и направление силы совпадает с направлением перемещения её точки приложения (α = 0), то и работа будет равна единице. В Международной системе (СИ) единицей работы является джоуль (обозначается Дж):

1 Дж = 1 Н 1 м = 1 Н м .

Джоуль - это работа, совершаемая силой 1 Н на перемещении 1 если направления силы и перемещения совпадают.

Часто используют кратные единицы работы - килоджоуль и мега джоуль:

1 кДж = 1000 Дж ,
1 МДж = 1000000 Дж .



Работа может быть совершена как за большой промежуток времени, так и за очень малый. На практике, однако, далеко не безразлично, быстро или медленно может быть совершена работа. Временем, в течение которого совершается работа, определяют производительность любого двигателя. Очень большую работу может совершить и крошечный электромоторчик, но для этого понадобится много времени. Потому наряду с работой вводят величину, характеризующую быстроту, с которой она производится, - мощность.

Мощность - это отношение работы А к интервалу времени Δt, за который эта работа совершена, т. е. мощность - это скорость совершения работы:

Подставляя в формулу (5.4) вместо работы А её выражение (5.2), получаем

Таким образом, если сила и скорость тела постоянны, то мощность равна произведению модуля вектора силы на модуль вектора скорости и на косинус угла между направлениями этих векторов. Если же эти величины переменные, то по формуле (5.4) можно определить среднюю мощность подобно определению средней скорости движения тела.

Понятие мощности вводится для оценки работы за единицу времени, совершаемой каким-либо механизмом (насосом, подъёмным краном, мотором машины и т. д.). Поэтому в формулах (5.4) и (5.5) под всегда подразумевается сила тяги.

В СИ мощность выражается в ваттах (Вт) .

Мощность равна 1 Вт, если работа, равная 1 Дж, совершается за 1 с.

Наряду с ваттом используются более крупные (кратные) единицы мощности:

1 кВт (киловатт) = 1000 Вт ,
1 МВт (мегаватт) = 1 000 000 Вт .

Одно из важнейших понятий механики – работа силы .

Работа силы

Все физические тела в окружающем нас мире приводятся в движение с помощью силы. Если на движущееся тело в попутном или противоположном направлении действует сила или несколько сил со стороны одного или нескольких тел, то говорят, что совершается работа .

То есть, механическая работу совершает действующая на тело сила. Так, сила тяги электровоза приводит в движение весь поезд, тем самым совершая механическую работу. Велосипед приводится в движение мускульной силой ног велосипедиста. Следовательно, эта сила также совершает механическую работу.

В физике работой силы называют физическую величину, равную произведению модуля силы, модуля перемещения точки приложения силы и косинуса угла между векторами силы и перемещения.

A = F · s · cos (F, s) ,

где F модульсилы,

s – модуль перемещения.

Работа совершается всегда, если угол между ветрами силы и перемещения не равен нулю. Если сила действует в направлении, противоположном направлению движения, величина работы имеет отрицательное значение.

Работа не совершается, если на тело не действуют силы, или если угол между приложенной силой и направлением движения равен 90 о (cos 90 o = 0).

Если лошадь тянет телегу, то мускульная сила лошади, или сила тяги, направленная по ходу движения телеги, совершает работу. А сила тяжести, с которой извозчик давит на телегу, работы не совершает, так как она направлена вниз, перпендикулярно направлению перемещения.

Работа силы – величина скалярная.

Единица работы в системе измерений СИ - джоуль. 1 джоуль – это работа, которую совершает сила величиной в 1 ньютон на расстоянии 1 м, если направления силы и перемещения совпадают.

Если на тело или материальную точку действуют несколько сил, то говорят о работе, совершаемой их равнодействующей силой.

В случае, если приложенная сила непостоянна, то её работа вычисляется как интеграл:

Мощность

Сила, приводящая в движение тело, совершает механическую работу. Но как совершается эта работа, быстро или медленно, иногда очень важно знать на практике. Ведь одна и та же работа может быть совершена за разное время. Работу, которую выполняет большой электромотор, может выполнить и маленький моторчик. Но ему для этого понадобится гораздо больше времени.

В механике существует величина, характеризующая быстроту выполнения работы. Эта величина называется мощностью .

Мощность – это отношение работы, выполненной за определённый промежуток времени, к величине этого промежутка.

N = A /∆ t

По определению А = F · s · cos α , а s/∆ t = v , следовательно

N = F · v · cos α = F · v ,

где F – сила, v скорость, α – угол между направлением силы и направление скорости.

То есть мощность – это скалярное произведение вектора силы на вектор скорости движения тела .

В международной системе СИ мощность измеряется в ваттах (Вт).

Мощность в 1 ватт – это работа в 1 джоуль (Дж), совершаемая за 1 секунду (с).

Мощность можно увеличить, если увеличить силу, совершающую работу, или скорость, с которой эта работа совершается.

Механическая работа – это скалярная физическая величина, которая характеризует изменение положения тела под действием силы и равна произведению модуля силы на модуль перемещения (путь).

A = Fs

За единицу измерения работы в СИ принят 1 джоуль .

[А] = 1Н×1м = 1 Дж

Анализ формулы механической работы:

1. Работа силы положительная
А > 0 , если направление силы и направление перемещения совпадают;

Пример: кот падает с крыши. Направление движение кота совпадает с направлением действия силы тяжести. Значит, работа силы тяжести положительная .

2. Работа силы отрицательна
А < 0 , если направление силы и направление перемещения направлены в противоположные стороны;

Пример: кота подбросили вверх. Направление движение кота противоположно направлению действия силы тяжести. Значит, работа силы тяжести отрицательная .

3. Работа силы равна нулю
А = 0 , если
1. под действием силы тело не перемещается, т.е когда s = 0
2. величина силы равна нулю, т.е. F = 0
3. угол между направлениями перемещения и силой равен 90°.

Пример: кот просто идёт по дорожке. Направление движения кота перпендикулярно направлению действия силы тяжести. Значит, работа силы тяжести равна нулю .

Если построить график зависимости значения силы от перемещения (пути), пройдённого телом, то этот график будет представлять собой отрезок прямой, параллельной оси перемещения (пути).

Из рисунка видно, что заштрихованная область под графиком представляет собой прямоугольник со сторонами F и s. Площадь данного прямоугольника равна F s.
Геометрический смысл механической работы заключается в том, что работа силы численно равна площади фигуры под графиком зависимости силы от перемещения тела.