Вязкость или внутреннее трение. Внутреннее трение

Трение. Вязкость - внутреннее трение

Трение - широко распространенное явление. Трение при соприкосновении твердых тел характеризуется коэффициентом трения скольжения (рис. 4.5, a ). В курсах теоретической механики изучают еще и трение качения (как всегда все сводится к связи поступательного и вращательного движений). В жидкостях и газах тела при движении испытывают вязкое трение (рис. 4.5, б ). Важно, что всякая сила трения связана со скоростью . Сила трения направлена противоположно скорости. Сила вязкого трения еще вдобавок и по величине пропорциональна скорости .

Рис. 4.5. Сила трения, действующая на движущееся тело: а - сила трения скольжения F тр = μN , μ - коэффициент трения (скольжения); б - сила вязкого трения F тр = γV = ηAV , γ - коэффициент трения (вязкого трения), η - коэффициент вязкости. Для шара величина А = 6πr и F тр = 6πηrV

Так как силы трения зависят от скорости, то они не консервативны. Работа этих сила изменяет внутреннюю энергию «трущейся пары», а не служит для преобразования кинетической и потенциальной энергий тела друг в друга, как работа консервативных сил (упругости, тяготения, кулоновской). Отметим, что неконсервативной является и сила давления газа F = рS , ведь давление газа (или жидкости) связано с молекулярными движениями, например, в газе давление пропорционально среднему квадрату скорости р ~ áV 2ñ.

Таким образом, явления, связанные с трением, находятся в связи и с механикой (скорость), и с молекулярной физикой(работа сил трения дает изменение внутренней энергии ). Такая двойственность приводит к изменениям в трактовке некоторых положений механики. Например, неприменимым становится положение об относительности покоя и движения . Когда действуют только консервативные силы, то невозможно различить равномерное движение или покой. Относительно Земли - покоимся (Кто не крутится на своем месте!), а относительно Солнца? Другое дело, если в игре есть и силы трения. Тогда при движении (даже равномерном) выделяется теплота. При учете сил трения равновесие сил наступает только при движении.

В конечном итоге это изменение возникает из-за того, что, согласно второму закону Ньютона, результат силы - ускорение, но сила трения может изменять равнодействующую силу так, что наступит равновесие и ускорения не будет. Именно путаница в этом вопросе не позволила открыть законы механики древним. Аристотель видел: две лошади - одна скорость повозки; три лошади - больше скорость повозки, следовательно, делал вывод Аристотель, скорость пропорциональна числу «лошадей», или пропорциональна силе тяги, или, вообще, пропорциональна силе. Аристотель считал, что скорость пропорциональна силе. В действительности, при увеличении силы тяги ускорение появляется, но из-за увеличения скорости увеличивается и сила трения, и очень быстро наступает равновесие при этой новой скорости. Аристотель перехода не видел. Во множестве других случаев «закон Аристотеля» не соответствовал наблюдениям. Кто движет планеты? Где лошади? Ньютон сделал «наукой» механику, когда сумел объединить и «земные», и «небесные» движения. Аристотель умел объяснять только «земные».

Возвращаясь к явлениям трения, можно сказать, что в этих явлениях всегда есть выделенная система отсчета - та, «обо что трется» тело, и силы трения зависят именно от скорости движения относительно этой системы. Сила трения «переводит» энергию движения во внутреннюю энергию именно тела (среды), о которое трется движущееся тело, и тем самым выделяет его, выделяет из всех других тел.

Итак, если силы консервативны - все движущиеся друг относительно друга с постоянными скоростями системы отсчета (они называются инерциальными ) равноправны, покой и движение с постоянной скоростью - относительны. Если силы не консервативны - зависят от скорости, то есть выделенная система отсчета - та, во внутреннюю энергию которой переходит энергия движения. Теперь покой и движение относительно этой выделенной системы можно легко различить. Если есть «перекачка» энергии движения во внутреннюю - есть движение, нет перекачки - покой.

Рассматривая только трение при движении в жидкости или газе, используют характеристику такого явления, называемую коэффициентом вязкости , часто говорят - просто вязкость η. Вязкость характеризует именно свойства среды - жидкости или газа. Отсюда следует, что вязкость не зависит от свойств движущегося тела (размеров или скорости, или еще чего-нибудь), а зависит только от характеристик среды (давления, температуры, либо еще каких-то), в которой происходит движение. В конечном итоге коэффициент вязкости зависит от свойств молекул среды, в которой движется тело.

Эти свойства легче всего выявить, рассматривая явление внутреннего трения . Действительно, не все ли равно, движется тело относительно газа (жидкость) или одна часть жидкости (газа) движется относительно другой. И в том, и в другом случае должно наблюдаться явление перекачки энергии макроскопического движения (движения чего-то «большого» - тела или части жидкости) во внутреннюю энергию - движения молекул - микроскопических (малых) частиц.

Явление внутреннего трения (часто называемое явлением вязкости ) связано с возникновением сил трения между слоями газа или жидкости , перемещающимися параллельно друг другу с различными по величине скоростями, при этом происходит выравнивание скоростей . Силы трения , которыепри этом возникают, направлены по касательной к поверхности соприкосновения слоев .

Рассмотрим механизм вязкости газов. Почему соседние слои тормозят друг друга при своем движении? Следующая модель поможет разобраться в этом: представим лодки, движущиеся вниз по реке с разными скоростями (рис. 6.6 ).

Рис. 4.6. К объяснению механизма вязкости. Подробности в тексте

Чем ближе лодки к центру реки, тем больше стараются гребцы. На лодках перевозят арбузы. Торговки решают обменяться товаром. Арбузы имеют скорость лодки, в которой они находятся. Поэтому при перебрасывании «быстрых» арбузов в медленно движущиеся лодки последние ускоряются; быстрые же лодки замедляют свое движение при попадании в них медленно движущихся арбузов.

Явление внутреннего трения подчиняется закону Ньютона для вязкого трения(часто готворят и «формула Ньютона для вязкого трения» ):

После всего сказанного эта формула кажется составленной просто «руками». Действительно: коэффициент вязкости η показывает происхождение этой силы от «трения», dV /dx показывает изменение скорости движения слоев друг относительно друга, ведь dV /dx изменение скорости на единицу длины - это предел от (V 2 – V 1)/(x 2 – х 1). Очевидно, что формула Ньютона имеет вид уравнения переноса (тип закона Фика) (4.13 ). Справа - производная (градиент), слева должен быть поток . Поток - это что-то протекающее через единицу площади S в единицу времени Δt . Площадь на нужном месте в формуле есть - стоит F /S . Следовательно, хорошо бы представить и силу как производную от «чего-то» по времени. Вспоминая второй закон Ньютона, можно увидеть, что силу можно представить как

То есть сила есть производная от импульса .

Таким образом, формула Ньютона - формула для переноса импульса . На молекулярном уровне отсюда следует, что трение между текущими (движущимися) с разными скоростями слоями жидкости или газа состоит в передаче молекул от слоя с большей скоростью в слой с меньшей скоростью (рис. 4.7 ).

Рис. 4.7. К объяснению закона вязкости. V + = V 0 + DV = V + l tgα

Все явления переноса в газе аналогичны. Это наглядно видно из соответствующих рисунков (сравните рис. 4.2 , 4.4 и 4.7 ). Диффузии соответствует разность концентраций, теплопроводности - разность внутренних энергий, внутреннему трению (вязкости) - разность скоростей в перпендикулярном силе трения (потоку импульса) направлении. Объемы же, из которых молекулы за время Δt успевают поменять «место жительства», одинаковы. Поэтому, рассчитывая поток, так же как это делалось уже дважды, найдем поток импульса:

Сравнивая с формулой Ньютона, найдем, что коэффициент вязкости имеет вид:

Эта формула хороша для газов и позволяет анализировать зависимости коэффициента вязкости от параметров газа. Для жидкостей - коэффициент вязкости - характеристика жидкости приводится в справочниках.

Часто вместо коэффициента вязкости вводят так называемый коэффициент кинематической вязкости :

В итоге закон трения (закон Ньютона) имеет форму

Величина Р - поток импульса.

Подводя итоги изучения сил вязкого трения, отметим еще раз, что сила, действующая на «тело», пропорциональна скорости V , а сила, действующая на «слой», пропорциональна производной от скорости dV /dx . Для жидкостей с большой вязкостью, когда отдельный слой превращается как бы в «плоское тело», это различие несущественно. Действительно, в таких условиях:

где а - толщина пограничного слоя, толщина жидкости, на которой значительно меняется скорость.

Силу вязкого трения, создаваемую движущимся в жидкости или газе телом (рис. 4.5, б ), называют силой Стокса . Тело приводит в движение жидкость перед собой, а вдали от тела жидкость покоится. Так возникает разность скоростей между слоями. Запись силы Стокса (формула Стокса ) получается прямо из закона Ньютона для вязкого трения (4.33 ). Применим метод анализа размерностей.

Производную в этой формуле заменим величиной той же размерности V /a , где а - как обычно (см. формулу (4.39 )), толщина жидкости, на которой значительно меняется скорость. После такой замены в законе Ньютона для силы вязкого трения возникает величина S /a , имеющая размерность длины (м). В решаемой задаче имеется только одна величина такой размерности, это размер тела. Если тело - шар, то это радиус шара r (см. рис. 4..5, б ). Теперь, когда все размерные зависимости определены, остается неопределенным числовой множитель. Оказывается, что этот множитель зависит от формы тела. Для шара он равен 6π. Получаем окончательно формулу Стокса :

F = 6πr ηV . (4.40)

Идеальная жидкость, т.е. жидкость, движущаяся без трения, является абстрактным понятием. Всем реальным жидкостям и газам в большей или меньшей степени присуща вязкость или внутреннее трение. Вязкость (внутреннее трение) наряду с диффузией и теплопроводностью относится к явлениям переноса и наблюдается только в движущихся жидкостях и газах. Вязкость проявляется в том, что возникающее в жидкости или газе движение после прекращения действия причин, его вызвавших, постепенно прекращается.

Вязкость (внутреннее трение) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла энергии, затрачиваемой на это перемещение.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

В жидкостях, где расстояния между молекулами много меньше, чем в газах, вязкость обусловлена в первую очередь межмолекулярным взаимодействием, ограничивающим подвижность молекул. В жидкости молекула может проникнуть в соседний слой лишь при образовании в нём полости, достаточной для перескакивания туда молекулы. На образование полости (на «рыхление» жидкости) расходуется так называемая энергия активации вязкого течения. Энергия активации уменьшается с ростом температуры и понижением давления. В этом состоит одна из причин резкого снижения вязкости жидкостей с повышением температуры и роста её при высоких давлениях. При повышении давления до нескольких тыс. атмосфер вязкость увеличивается в десятки и сотни раз. Строгая теория вязкости жидкостей, в связи с недостаточной разработанностью теории жидкого состояния, ещё не создана.

Вязкость отдельных классов жидкостей и растворов зависит от температуры, давления и химического состава.

Вязкость жидкостей зависит от химической структуры их молекул. В рядах сходных химических соединений (насыщенные углеводороды, спирты, органические кислоты и т.д.) Вязкость изменяется закономерно — возрастает с возрастанием молекулярной массы. Высокая вязкость смазочных масел объясняется наличием в их молекулах циклов. Две жидкости различной вязкости, которые не реагируют друг с другом при смешивании, обладают в смеси средним значением вязкости. Если же при смешивании образуется химическое соединение, то вязкость смеси может быть в десятки раз больше, чем вязкость исходных жидкостей.


Возникновение в жидкостях (дисперсных системах или растворах полимеров) пространственных структур, образуемых сцеплением частиц или макромолекул, вызывает резкое повышение вязкости. При течении «структурированной» жидкости работа внешней силы затрачивается не только на преодоление вязкости, но и на разрушение структуры.

В газах расстояния между молекулами существенно больше радиуса действия молекулярных сил, поэтому Вязкость газов определяется главным образом молекулярным движением. Между движущимися относительно друг друга слоями газа происходит постоянный обмен молекулами, обусловленный их непрерывным хаотическим (тепловым) движением. Переход молекул из одного слоя в соседний, движущийся с иной скоростью, приводит к переносу от слоя к слою определённого импульса. В результате медленные слои ускоряются, а более быстрые замедляются. Работа внешней силы F , уравновешивающей вязкое сопротивление и поддерживающей установившееся течение, полностью переходит в теплоту. Вязкость газа не зависит от его плотности (давления), так как при сжатии газа общее количество молекул, переходящих из слоя в слой, увеличивается, но зато каждая молекула менее глубоко проникает в соседний слой и переносит меньший импульс (закон Максвелла).

Вязкость — важная физико-химическая характеристика веществ. Значение вязкости приходится учитывать при перекачивании жидкостей и газов по трубам (нефтепроводы, газопроводы). Вязкость расплавленных шлаков весьма существенна в доменном и мартеновском процессах. Вязкость расплавленного стекла определяет процесс его выработки. По вязкости во многих случаях судят о готовности или качестве продуктов или полупродуктов производства, поскольку вязкость тесно связана со структурой вещества и отражает те физико-химические изменения материала, которые происходят во время технологических процессов. Вязкость масел имеет большое значение для расчёта смазки машин и механизмов и т.д.

Прибор для измерения вязкости называется вискозиметром.

Внутреннее трение возникает в жидкости вследствие взаимодействия молекул. В отличие от внешнего трения, возникающего в месте соприкосновения двух тел, внутреннее трение имеет место внутри движущейся среды между слоями с различными скоростями движения.

При скоростях выше критической скорости слои, близкие к стенкам, заметно отстают вследствие трения от средних, возникают значительные разности скоростей, что влечёт за собой образование вихрей.

Итак, вязкость , или внутреннее трение в жидкостях , обусловливает не только потери энергии на трение, но ещё и новые образования – вихри .

Ньютон установил, что сила вязкости, или внутреннего трения, должна быть пропорциональна градиенту скорости (величина, показывающая, как быстро меняется скорость при переходе от слоя к слою в направлении , перпендикулярном направлению движения слоёв) и площади , на которой обнаруживается действие этой силы. Таким образом, мы приходим к формуле Ньютона:

, (I.149)

где - коэффициент вязкости , или внутреннего трения , постоянное число, характеризующее данную жидкость или газ.

Чтобы выяснить физический смысл , положим в формуле (I.149) сек –1 , м 2 ; тогда численно ; следовательно, коэффициент вязкости равен силе трения , которая возникает в жидкости между двумя площадками в м 2 , если между ними градиент скорости равен единице .

Единица СИ динамической вязкости = паскаль - секунда (Па·с).

(Па·с) равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным (м/с) на (м), возникает сила внутреннего трения в (Н) на (м 2) поверхности касания слоёв ( Па·с= Н·с/м 2).

Единица, допускавшаяся к применению до 1980 г.: пуаз (П), по имени французского учёного Пуазейля, который один из первых (1842 г.) начал точные исследования вязкости при течении жидкостей в тонких трубках (соотношение между единицами динамической вязкости: 1 П = 0,1 Па·с)

Пуазейль , наблюдая движение жидкостей в капиллярных трубках, вывел закон , согласно которому:

, (I.150)

где - объём жидкости, протекающий по трубке за время ;

Радиус трубки (с гладкими стенками);

Разность давлений на концах трубки;

Продолжительность протекания жидкости;

Длина трубки.

Чем больше вязкость, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от температуры, причём характер этой зависимости для жидкостей и газов различен:

q динамическая вязкость жидкостей резко уменьшается с повышением температуры;

q динамическая вязкость газов увеличивается с повышением температуры.

Кроме понятия динамической вязкости применяются понятия текучести и кинематической вязкости .

Текучестью называется величина, обратная динамической вязкости.

Единица СИ текучести =м 2 /(Н·с)=1/(Па·с).

Кинематической вязкостью называется отношение динамической вязкости к плотности среды.

Единица СИ кинематической вязкости м 2 /с.

До 1980 г. к применению допускалась единица: стокс (Ст). Соотношение между единицами кинематической вязкости:

1 стокс (Ст) = 10 –4 м 2 /с.

Когда тело шарообразной формы движется в жидкости, ему приходится преодолевать силу трения:

. (I.153)

Формула (I.153) представляет собой закон Стокса .

На законе Стокса основано определение вязкости жидкости вискозиметром Гёпплера. В трубу определённого диаметра, заполненную жидкостью, вязкость которой надо определить, опускают шарик и измеряют скорость его падения, которая и является мерой вязкости жидкости.

Английский учёный О. Рейнольдс в 1883 г. в результате своих исследований пришёл к заключению, что критерием характеризующем движение жидкостей и газов, могут служить числа, определяемые безразмерной совокупностью величин, относящихся к данной жидкости и данному её движению. Состав этих отвлечённых чисел, называемых числами Рейнольдса , таков.

Вязкость (внутреннее трение) - это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой. При перемещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по касательной к поверхности слоев. Действие этих сил проявляется в том, что со стороны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоряющая сила. Со стороны же слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила.

Сила внутреннего трения F тем больше, чем больше рассматриваемая площадь поверхности слоя S (рис. 52), и зависит от того, насколько быстро меняется скорость течения жидкости при переходе от слоя к слою.

На рисунке представлены два слоя, отстоящие друг от друга на расстоянии х и движущиеся со скоростями v 1 и v 2 При этом v 1 -v 2 = v. Направление, в котором отсчитывается расстояние между слоями, перпендикулярно скорости течения слоев. Величина v/x показывает, как быстро меняется скорость при переходе от слоя к слою в направлении х, перпендикулярном направлению движения слоев, и называется градиентом скорости. Таким образом, модуль силы внутреннего трения

где коэффициент пропорциональности , зависящий от природы жидкости, называется динамической вязкостью (или просто вязкостью).

Единица вязкости - паскаль секунда (Па с):1 Па с равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным 1 м/с на 1 м, возникает сила внутреннего трения в 1 Н на 1 м 2 поверхности касания слоев (1 Па с=1 Н с/м 2).

Чем больше вязкость, тем сильнее жидкость отличается от идеальной, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от температуры, причем характер этой зависимости для жидкостей и газов различен (для жидкостей т] с увеличением температуры уменьшается, у газов, наоборот, увеличивается), что указывает на различие в них

механизмов внутреннего трения. Особенно сильно от температуры зависит вязкость масел. Например, вязкость касторового масла в интервале 18-40 ° С падает в четыре раза. Советский физик П. Л. Капица (1894-1984; Нобелевская премия 1978г.) открыл, что при температуре 2,17 К жидкий гелий переходит в сверхтекучее состояние, в котором его вязкость равна нулю.

Существует два режима течения жидкостей. Течение называется ламинарным (слоистым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними, и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).

Ламинарное течение жидкости наблюдается при небольших скоростях ее движения. Внешний слой жидкости, примыкающий к поверхности трубы, в которой она течет, из-за сил молекулярного сцепления прилипает к ней и остается неподвижным. Скорости последующих слоев тем больше, чем больше их расстояние до поверхности трубы, и наибольшей скоростью обладает слой, движущийся вдоль оси трубы.

При турбулентном течении частицы жидкости приобретают составляющие скоростей, перпендикулярные течению, поэтому они могут переходить из одного слоя в другой. Скорость частиц жидкости быстро возрастает по мере удаления от поверхности трубы, затем изменяется довольно незначительно. Так как частицы жидкости переходят из одного слоя в другой, то их скорости в различных слоях мало отличаются. Из-за большого градиента

скоростей у поверхности трубы обычно происходит образование вихрей.

Профиль усредненной скорости при турбулентном течении в трубах;(рис. 53) отличается от параболического профиля при ламинарном течении более быстрым возрастанием скорости у стенок трубы и меньшей кривизной в центральной части течения.

Английский ученый О. Рейнольдс (1842-1912) в 1883 г. установил, что характер течения зависит от безразмерной величины, называемой числом Рейнольдса:

где v = / - кинематическая вязкость;

 - плотность жидкости; (v)-средняя по сечению трубы скорость жидкости; d - характерный линейный размер, например диаметр трубы.

При малых значениях числа Рейнольдса (Re1000) наблюдается ламинарное течение, переход от ламинарного течения к турбулентному происходит в области 1000:Re2000, а при Re = 2300 (для гладких труб) течение - турбулентное. Если число Рейнольдса одинаково, то режим течения различных жидкостей (газов) в трубах разных сечений одинаков.

Вязкость - это свойство газов, жидкостей и твердых тел, характеризующее их сопротивление течению под действием внешних сил. Остановимся на вязкости газов. Благодаря вязкости, скорость движения различных слоев газа выравнивается, и происходит это потому, что молекулы из-за хаотического теплового движения могут переходить из одного слоя газа в другой. Переходя из быстро движущегося слоя в более медленный, молекулы передают последнему свой импульс. И наоборот, молекулы слоя, движущегося с меньшей скоростью, переходя в движущийся быстрый слой, оказывают тормозящее действие, так как несут с собой импульс макроскопического движения меньший, чем средний импульс быстрого слоя. Таким образом, вязкость - это явление переноса импульса макроскопического движения слоев вещества.

Рис. 4.31.

Рассмотрим закон, которому подчиняется явление вязкости. Для этого представим себе вязкую среду, находящуюся между двумя плоскими параллельными пластинами (рис. 4.31), движущимися с различными скоростями.

Пусть одна из пластин покоится, а другая движется с постоянной скоростью v, параллельной плоскости пластин (см. рис. 4.31) - то же можно сопоставить относительному движению пластин, каждая со своей не равной нулю скоростью. Если между пластинами находится вязкая среда, то для перемещения движущейся пластины с постоянной скоростью (при сохранении неизменного расстояния между пластинами) нужно приложить некоторую постоянную, направленную вдоль скорости, силу F, так как среда оказывает сопротивление такому движению. Очевидно, что и в среде между отдельными ее слоями будут действовать касательные силы. Опыт показывает, что сила F которую надо приложить к пластине, чтобы поддерживать постоянной ее скорость, пропорциональна скорости v пластины и ее площади S и обратно пропорциональна расстоянию между пластинами Лх. В пределе при Дх -» О эта сила

где п - постоянный для данной жидкости коэффициент, называемый коэффициентом динамической вязкости.

Эта сила, которую нужно приложить для того, чтобы два слоя вязкой среды скользили один по другому с постоянной скоростью. Она пропорциональна площади соприкосновения S слоев и градиенту скорости du/dx, перпендикулярному направлению движения слоев. Это утверждение является законом внутреннего трения Ньютона.

Чтобы раскрыть физический смысл коэффициента вязкости р, умножим левую и правую части уравнения (4.192) на At. В этом случае FAt

Ri(du/dx)5AA Слева стоит величина FAt (импульс силы), равная Ар (приращение импульса тела), т.е.

где Ар - изменение импульса элемента потока за счет изменения скорости движения.

Коэффициент динамической вязкости р численно равен импульсу макроскопического движения, который переносится в единицу времени через сечение единичной площади соприкасающихся слоев (перпендикулярно оси х на рис. 4.31) при градиенте скорости вдоль этого же направления, равном единице. В явлении вязкости переносимой величиной является импульс макроскопического движения молекул G(x) = mv(x). С учетом (4.181)-(4.185) выражения (4.192), (4.193) для вязкого трения дают:


За единицу динамической вязкости в СИ принимается коэффициент вязкости той среды, в которой при градиенте скорости, равном единице, через площадку в 1 м 2 переносится импульс 1 кг м/с. Таким образом, единицей коэффициента вязкости в СИ служит кг/(м с). Широкое применение имеет единица вязкости в системе СГС (г/(см с)), которая носит название пуаз (Пз) (в честь французского физика Ж. Пуазейля). В таблицах вязкость выражают обычно в дольных единицах сантипуазах (сПз). Соотношение между этими единицами: 1 кг/(м с) = 10 Пз.

Кроме коэффициента динамической вязкости для характеристики течения вводится коэффициент кинематической вязкости v, равный отношению динамической вязкости р среды к ее плотности р, т.е. v = р/р. В СИ единица кинематической вязкости м 2 /с. В СГС v измеряется в Стоксах (Ст): 1 Ст = 1 см 2 /с.

Динамическая вязкость жидкостей описывается экспоненциальной зависимостью от температуры Т вида р ~ ехр(Ь/Т), с характерной для каждой жидкости константой Ь.

Данные об основных законах и величинах в явлениях переноса, т.е. о коэффициентах диффузии, теплопроводности и вязкости приведены в табл. 4.5. Оценочные значения коэффициентов в явлениях переноса для газов, жидкостей и твердых тел - в табл. 4.6.

  • Здесь р снова импульс, p = mv.