Что такое капиллярные явления. Капиллярные явления в природе и технике

Если вы любите пить коктейли или другие напитки из трубочки, то наверняка замечали, что когда один из ее концов опущен в жидкость, уровень напитка в ней несколько выше, чем в чашке или бокале. Почему так происходит? Обычно люди над этим не задумываются. А вот физики подобные феномены уже давно успели хорошо изучить и даже дали им собственное название - капиллярные явления. Пришел и наш черед выяснить, почему так происходит и как объясняется данные феномен.

Почему происходят капиллярные явления

В природе всему происходящему есть разумное объяснение. Если жидкость является смачивающей (к примеру, вода в пластмассовой трубке), она будет подниматься вверх по трубочке, а если несмачивающей (например, ртуть в стеклянной колбочке) - то опускаться. Причем чем меньше радиус такого капилляра, тем на большую высоту поднимется или опустится жидкость. Чем объясняются такие капиллярные явления? Физика говорит, что они происходят в результате воздействия сил Если приглядеться к поверхностному слою жидкости в капилляре, то можно заметить, что по своей форме он представляет собой некую окружность. Вдоль ее границы на стенки трубочки оказывает так называемого поверхностного натяжения. Причем, для смачивающей жидкости вектор ее направления обращен вниз, а для несмачивающей - вверх.

Согласно третьему она неизбежно вызывает равное ей по модулю противодействующее давление. Как раз оно и заставляет подниматься или опускаться жидкость в узкой трубке. Этим и объясняются всевозможные капиллярные явления. Впрочем, наверняка у многих уже возник закономерный вопрос: «А когда же прекратится подъем или опускание жидкости?» Это произойдет в том случае, когда сила тяжести, или сила Архимеда, уравновесит силу, заставляющую жидкость двигаться по трубочке.

Как можно использовать капиллярные явления?

С одним из применений данного явления, которое получило широкое распространение в производстве канцелярских изделий, знаком практически каждый студент или ученик. Вы, наверное уже догадались, что речь идет о


Ее устройство позволяет писать практически в любом положении, а тонкий и четкий след на бумаге давно сделал этот предмет весьма популярным среди пишущей братии. также широко используют в сельском хозяйстве для регулирования движения и сохранения влаги в почве. Как известно, земля, где выращиваются культуры, имеет рыхлое строение, в котором между отдельными ее частицами находятся узкие промежутки. По сути, это не что иное, как капилляры. По ним вода поступает к корневой системе и обеспечивает растения необходимой влагой и полезными солями. Однако по этим путям почвенные воды также поднимаются вверх и достаточно быстро испаряются. Чтобы предотвратить этот процесс, следует разрушить капилляры. Как раз для этого и проводят рыхление почвы. А иногда возникает и обратная ситуация, когда требуется усилить движение воды по капиллярам. В этом случае грунт укатывают, и благодаря этому число узких каналов увеличивается. В быту капиллярные явления используют при самых разных обстоятельствах. Использование промокательной бумаги, полотенец и салфеток, применение фитилей в и в технике - все это возможно благодаря наличию в их составе узких длинных каналов.

МОУ «Лицей № 43»

(естественно-технический)

КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ
Рожков Дмитрий

Саранск


2013
Оглавление

Обзор литературы 3

Свойства жидкостей. Поверхностное натяжение 3

Опыт Плато 6

Явления смачивания и не смачивания. Краевой угол. 7

Капиллярные явления в природе и технике 8

Кровеносные сосуды 10

Пена на службе у человека 11

Практическая часть 11

«Изучение капиллярных свойств различных образцов пористой бумаги» 11

Выводы и заключения 13

Библиографический список 13

Обзор литературы

Капиллярные явления – это физические явления, обусловленные поверхностным натяжением на границе раздела несмешивающихся сред. К таким явлениям относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с другой жидкостью, газом или собственным паром.

Капиллярные явления охватывают различные случаи равновесия и движения поверхности жидкости под действием сил межмолекулярного взаимодействия и внешних сил (в первую очередь, силы тяжести). В простейшем случае, когда внешние силы отсутствуют или скомпенсированы, поверхность жидкости всегда искривлена. Так в условиях невесомости ограниченный объём жидкости, не соприкасающейся с другими телами, принимает под действием поверхностного натяжения форму шара. Эта форма отвечает устойчивому равновесию жидкости, поскольку шар обладает минимальной поверхностью при данном объёме и, следовательно, поверхностная энергия жидкости в этом случае минимальна. Форму шара жидкость принимает и в том случае, если она находится в другой, равной по плотности жидкости (действие силы тяжести компенсируется архимедовой выталкивающей силой).

Свойства систем, состоящих из многих мелких капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их образования во многом определяются кривизной поверхности частиц, то есть капиллярными явлениями. Не меньшую роль капиллярные явления играют и при образовании новой фазы: капелек жидкости при конденсации паров, пузырьков пара при кипении жидкостей, зародышей твердой фазы при кристаллизации.

При контакте жидкости с твердыми телами на форму её поверхности существенно влияют явления смачивания, обусловленные взаимодействием молекул жидкости и твердого тела.

Капиллярное впитывание играет существенную роль в водоснабжении растений, передвижении влаги в почвах и других пористых телах. Капиллярная пропитка различных материалов широко применяется в процессах химической технологии.

Искривление свободной поверхности жидкости под действием внешних сил обусловливает существование так называемых капиллярных волн («ряби» на поверхности жидкости). Капиллярные явления при движении жидких поверхностей раздела рассматривает физико-химическая гидродинамика.

Капиллярные явления впервые были открыты и исследованы Леонардо да Винчи, Б.Паскалем (17 в.) и Дж. Жюреном (Джурин, 18 в.) в опытах с капиллярными трубками. Теория капиллярных явлений развита в работах П. Лапласа (1806), Т. Юнга (Янг, 1805), Дж. У. Гиббса (1875) и И.С. Громеки (1879, 1886).

Свойства жидкостей. Поверхностное натяжение

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком (рис. 1).

Вследствие плотной упаковки молекул сжимаемость жидкостей, т. е. изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах.

Жидкости, как и твердые тела, изменяют свой объем при изменении температуры. Для не очень больших интервалов температур относительное изменение объема ΔV/V 0 пропорционально изменению температуры ΔT:

Коэффициент β называют температурным коэффициентом объемного расширения. Тепловое расширение воды имеет интересную и важную аномалию для жизни на Земле. При температуре ниже 4°С вода расширяется. Максимум плотности ρ в = 10 3 кг/м 3 вода имеет при температуре 4°С.

При замерзании вода расширяется, поэтому лед остается плавать на поверхности замерзающего водоема. Температура замерзающей воды подо льдом равна 0°С. В более плотных слоях воды, у дна водоема, температура оказывается порядка 4 °С. Благодаря этому, может существовать жизнь в воде замерзающих водоемов.

Наиболее интересной особенностью жидкостей является наличие свободной поверхности. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости (рис.2)

Рис.2

Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т. е. увеличить площадь поверхности жидкости), надо затратить положительную работу внешних сил ΔA внеш, пропорциональную изменению ΔS площади поверхности:
ΔA внеш = σΔS.
Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу.

В СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный (Дж/м 2) или в ньютонах на метр (1 Н/м = 1 Дж/м 2).

Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией. Потенциальная энергия E p поверхности жидкости пропорциональна ее площади:
E p = A внеш = σS.
Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму (рис.3)
.

Рис.3
Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения.

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т. е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости.

Так как всякая система самопроизвольно переходит в состояние, при котором ее потенциальная энергия минимальна, то жидкость должна самопроизвольно переходить в такое состояние, при котором площадь ее свободной поверхности имеет наименьшую величину. Это можно показать с помощью следующего опыта.

На проволоке, изогнутой в виде буквы П, укрепляют подвижную поперечину (рис. 4). Полученную таким образом рамку затягивают мыльной пленкой, опуская рамку в мыльный раствор. После вынимания рамки из раствора поперечина перемещается вверх, т. е. молекулярные силы действительно уменьшают площадь свободной поверхности жидкости.

Рис.4
Поскольку при одном и том же объеме наименьшая площадь поверхности имеется у шара, жидкость в состоянии невесомости принимает форму шара. По этой же причине маленькие капли жидкости имеют шарообразную форму. Форма мыльных пленок на различных каркасах всегда соответствует наименьшей площади свободной поверхности жидкости.

Опыт Плато

Естественная форма всякой жидкости – шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если сосуда нет, либо же принимает форму сосуда. Находясь внутри другой жидкости такой же плотности, жидкость принимает естественную, шарообразную форму.

Рис.5
Оливковое масло всплывает в воде, но тонет в спирте. Можно приготовить такую смесь воды и спирта, в которой масло будет находиться в равновесии. Введём с помощью стеклянной трубки или шприца в эту смесь немного оливкового масла: масло соберётся в одну шарообразную каплю, которая будет висеть неподвижно в жидкости. Если пропустить через центр масляного шара проволоку и вращать её, то масляный шар начинает сплющиваться, а затем, через несколько секунд, от него отделяется кольцо из маленьких шарообразных капелек масла. Этот опыт впервые произвел бельгийский физик Плато.

В гигантских масштабах такое явление можно наблюдать у нашей звезды Солнца и планет-гигантов. Вращаются эти небесные тела вокруг своей оси очень быстро. В результате такого вращения тела очень сильно сжаты у полюсов.



Рис.6

Явления смачивания и не смачивания. Краевой угол.

Смачивание и не смачивание – капиллярные явления широко распространены в природе и технике. Они важны как в повседневной жизни, так и для решения важнейших научно-технических задач. Знания по этим вопросам позволяют ответить на многие вопросы. Например, что капиллярные явления позволяют всасывать питательные элементы, влагу из почвы корневой системой растительности, что кровообращение в живых организмах основано на капиллярном явлении, что такое флотация и где она нашла применение, почему одни твердые тела хорошо смачиваются жидкостью, другие плохо и т. д.

Если опустить стеклянную палочку в ртуть и затем вынуть ее, то ртути на ней не окажется. Если же эту палочку опустить в воду, то после вытаскивания на ее конце останется капля воды. Этот опыт показывает, что молекулы ртути притягиваются друг к другу сильнее, чем к молекулам стекла, а молекулы воды притягиваются друг к другу слабее, чем к молекулам стекла.

Если молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твердого вещества, то жидкость называют смачивающей это вещество. Например, вода смачивает чистое стекло и не смачивает парафин. Если молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твердого вещества, то жидкость называют не смачивающей это вещество. Ртуть не смачивает стекло, однако она смачивает чистые медь и цинк.

Расположим горизонтально плоскую пластинку из какого-либо твердого вещества и капнем на нее исследуемую жидкость. Тогда капля расположится либо так, как показано на рис.7(а ), либо так, как показано на рис. 7(б).


а) б)

Рис.7.
В первом случае жидкость смачивает твердое вещество, а во втором - нет. Отмеченный на рис.5 угол θ называют краевым углом . Краевой угол образуется плоской поверхностью твердого тела и плоскостью, касательной к свободной поверхности жидкости, где граничат твердое тело, жидкость и газ; внутри краевого угла всегда находится жидкость. Для смачивающих жидкостей краевой угол – острый, а для не смачивающих - тупой. Чтобы действие силы тяжести не искажало краевой угол, каплю надо брать как можно меньше.

Поскольку краевой угол θ сохраняется при вертикальном положении твердой поверхности, то смачивающая жидкость у краев сосуда, в который она налита, приподнимается, а несмачивающая жидкость опускается

При полном смачивании θ = 0, cos θ = 1.

Рис.8

Капиллярные явления в природе и технике

Подъем жидкости в капилляре продолжается до тех пор, пока сила тяжести, действующая на столб жидкости в капилляре, не станет равной по модулю результирующей F н сил поверхностного натяжения, действующих вдоль границы соприкосновения жидкости с поверхностью капилляра: F т = F н, где F т = mg = ρhπr 2 g, F н = σ2πr cos θ.

Отсюда следует:

Искривление поверхности жидкости в узких трубках приводит к кажущемуся нарушению закона сообщающихся сосудов.

Из формулы видно, что высота h тем больше, чем меньше внутренний радиус трубки r . Подъем воды имеет значительную величину в трубках, внутренний диаметр которых соизмерим с диаметром волоса (или еще меньше); поэтому такие трубки называют капиллярами (от греческого «капиллярис» - волосной, тонкий). Смачивающая жидкость в капиллярах поднимается вверх (рис.9, а), а несмачивающая - опускается вниз (рис.9, б).

Рис.9


Капиллярные явления можно наблюдать не только в трубках, но и в узких щелях. Если опустить в воду две стеклянные пластины так, чтобы между ними образовалась узкая щель, то вода между пластинами поднимется, и тем выше, чем ближе они расположены. Капиллярные явления играют большую роль в природе и технике. Множество мельчайших капилляров имеется в растениях. В деревьях по капиллярам влага из почвы поднимается до вершин деревьев, где через листья испаряется в атмосферу. В почве имеются капилляры, которые тем уже, чем плотнее почва. Вода по этим капиллярам поднимается до поверхности и быстро испаряется, а земля становится сухой. Ранняя весенняя вспашка земли разрушает капилляры, т. е. сохраняет подпочвенную влагу и увеличивает урожай.

В технике капиллярные явления имеют огромное значение, например, в процессах сушки капиллярно-пористых тел и т. п. Большое значение капиллярные явления имеют в строительном деле. Например, чтобы кирпичная стена не сырела, между фундаментом дома и стеной делают прокладку из вещества, в котором нет капилляров. В бумажной промышленности приходится учитывать капиллярность при изготовлении различных сортов бумаги. Например, при изготовлении писчей бумаги ее пропитывают специальным составом, закупоривающим капилляры. В быту капиллярные явления используют в фитилях, в промокательной бумаге, в перьях для подачи чернил и т. п.

Большинство растительных и животных тканей пронизано громадным числом капиллярных сосудов. Именно в капиллярах происходят основные процессы, связанные с дыханием и питанием организма, вся сложнейшая химия жизни тесно связана с диффузионными явлениями. Стволы деревьев, ветви и стебли растений пронизаны огромным числом капиллярных трубочек, по которым питательные вещества поднимаются до самых верхних листочков. Корневая система растений оканчивается тончайшими нитями-капиллярами. И сама почва, источник питания для корня, может быть представлена как совокупность капиллярных трубочек, по которым в зависимости от структуры и обработки быстрее или медленнее поднимается к поверхности вода с растворёнными в ней веществами. Высота подъёма жидкости в капиллярах тем больше, чем меньше его диаметр. Отсюда ясно, что для сохранения влаги надо почву перекапывать, а для осушения – утрамбовывать.

Роль поверхностных явлений в природе разнообразна. Например, поверхностная плёнка воды является для многих организмов опорой при движении. Такая форма движения встречается у мелких насекомых и паукообразных. Наиболее известны водомерки, опирающиеся на воду только конечными члениками широко расставленных лапок. Лапка, покрытая воскообразным налётом, не смачивается водой, поверхностный слой воды прогибается под давлением лапки, образуя небольшое углубление. Подобным образом перемещаются береговые пауки некоторых видов, но их лапки располагаются не параллельно поверхности воды, как у водомерок, а под прямым углом к ней.

Некоторые животные, обитающие в воде, но не имеющие жабер, подвешиваются снизу к поверхностной плёнке воды с помощью не смачивающихся щетинок, окружающих их органы дыхания. Этим приёмом «пользуются» личинки комаров (в том числе и малярийных).

Перья и пух водоплавающих птиц всегда обильно смазаны жировыми выделениями особых желёз, что объясняет их непромокаемость. Толстый слой воздуха, заключённый между перьями утки и не вытесняемый оттуда водой, не только защищает утку от потери тепла, но и чрезвычайно увеличивает запас плавучести, действуя подобно спасательному поясу.

Воскообразный налёт на листьях препятствует заливанию так называемых устьиц, которое могло бы привести к нарушению правильного дыхания растений. Наличием того же воскового налёта объясняется водонепроницаемость соломенной кровли, стога сена и т.д.

Основной потребляющий влагу орган, где постоянно нужна вода, в том числе для фотосинтеза, – это лист, расположенный далеко от корня. Кроме того, лист окружён воздухом, который часто «отнимает» у него воду, чтобы «насытиться» водяными парами. Возникает противоречие: листу вода нужна постоянно, но он её всё время теряет, а корень постоянно имеет воду в избытке, хотя не прочь от неё избавиться. Решение этой проблемы очевидно: надо перекачать избыток воды из корня в листья. Роль такого водопровода берёт на себя стебель. Он доставляет воду к листьям по специальным трубочкам – капиллярам. У покрытосеменных они самые совершенные и представляют собой длинные (в рост самого растения) полые сосуды, стенки которых выстланы целлюлозой и лигнином. Система таких проводящих сосудов называется ксилемой (от греч. ксилон – дерево , деревянный брусок ).

Если в просвете сосудов ксилемы корня сконцентрировать минеральные вещества, которые всосал корень из почвы, в ксилему из окружающих клеток корня по механизму осмоса устремляется вода.

Механизм «водокачки» состоит из двух осмотических насосов и капиллярных сил стенок сосудов.

Кровеносные сосуды

Всё тело пронизывают кровеносные сосуды. По строению они неодинаковы. Артерии – это сосуды, по которым движется кровь от сердца. Они имеют плотные упругие эластичные стенки, в состав которых входят гладкие мышцы. Сокращаясь, сердце выбрасывает в артерию кровь под большим давлением. Благодаря плотности и упругости стенки артерии выдерживают это давление и растягиваются.

Крупные артерии по мере удаления от сердца ветвятся. Самые мелкие артерии распадаются на тончайшие капилляры. Их стенки образованы одним слоем плоских клеток. Сквозь стенки капилляров вещества, растворённые в плазме крови, проходят в тканевую жидкость, а из неё попадают в клетки. Продукты жизнедеятельности клеток проникают сквозь стенки капилляров из тканевой жидкости в кровь. В организме человека примерно 150 миллиардов капилляров. Если все капилляры вытянуть в одну линию, то ею можно опоясать земной шар по экватору два с половиной раза. Кровь из капилляров собирается в вены – сосуды, по которым кровь движется к сердцу. Давление в венах невелико, стенки их тоньше стенок артерий.

Пена на службе у человека

К самой идее флотации привела не теория, а внимательное наблюдение случайного факта. В конце XIX в. американская учительница Карри Эверсон, стирая замасленные мешки, в которых хранился медный колчедан, обратила внимание на то, что крупинки колчедана всплывают с мыльной пеной. Это и послужило толчком к развитию способа флотации. Этот способ широко используется в горно-металлургической промышленности для обогащения руд, т.е. для увеличения относительного содержания в них ценных составляющих. Сущность флотации состоит в следующем. Тонко измельчённая руда загружается в чан с водой и маслянистыми веществами, которые способны обволакивать частицы полезного минерала тончайшей плёнкой, не смачиваемой водой. Смесь энергично перемешивается с воздухом, так что образуется множество мельчайших пузырьков – пена. При этом частицы полезного минерала, облачённые в тонкую маслянистую плёнку, при соприкосновении с оболочкой воздушного пузырька пристают к ней, повисают на пузырьке и выносятся с ним наверх, как на воздушном шарике. Частицы же пустой породы, не обволакиваемые маслянистым веществом, не пристают к оболочке и остаются в жидкости. В итоге частицы полезного минерала почти все оказываются в пене на поверхности жидкости. Пену снимают и направляют на дальнейшую обработку – для получения так называемого концентрата.

Техника флотации позволяет при надлежащем подборе примешиваемых жидкостей отделить требуемый полезный минерал от пустой породы любого состава.


Практическая часть

«Изучение капиллярных свойств различных образцов пористой бумаги»

Цель работы : изучить капиллярные свойства различных образцов пористой бумаги (на примере бумажных салфеток разных производителей).

Приборы и материалы : образцы бумаги, вода дистиллированная, линейка, ванночка.

Метод выполнения:


Наименование производителя





Расчетный радиус капилляра, 10 -5 м





2,25
2,3

2,25

0,6621

4

ООО «БРИЗ» г. Новороссийск

1,8
1,75

1,78

0,837

3



1,3
1,25

1,32

1,1286

2



2,5
2,1

2,26

0,6592

4

Повторил эксперимент, заменив воду молоком.

Молоко 2,5%;

В вычислениях использовал следующие табличные значения:

 – плотность молока (1,03х10 3 кг/м 3);

 – поверхностное натяжение (для молока на границе с воздухом = 46х10 -3 Н/м)


Наименование производителя

Высота поднятия жидкости, 10 -2 м

Среднее значение высоты поднятия жидкости, 10 -2 м

Расчетный радиус капилляра, 10 -3 м

Оценка качества впитывания влаги по 4-х балльной системе

ООО «Русская бумага АЛЛ Продукция» г. Брянск

1,1
1,1

1,09

0,836

4

ООО «БРИЗ» г. Новороссийск

0,8
0,55

0,64

1,424

3

ООО «Новые технологии» г. Краснодар

0,3
0,38

0,31

2,94

2

ИП Китайкин А.Б. г. Новошахтинск Ростовская обл.

0,98
1,0

0,97

0,94

4

Выводы и заключения



  1. В результате проведенной работы получена объективная оценка качества салфеток бумажных различных производителей.

  2. Наилучшие результаты показали образцы следующих производителей: ООО «Русская бумага АЛЛ Продукция» г. Брянск и ИП Китайкин А.Б. г. Новошахтинск Ростовская обл.

  3. Худшими оказались салфетки ООО «Новые технологии» г. Краснодар, изготовленные для сети магазинов «Магнит».

  4. Лучшие салфетки могут быть рекомендованы для использования в столовой лицея №43.

Библиографический список


  1. Физическая энциклопедия. http://enc-dic.com/enc_physics/Kapilljarne-javlenija-911.html

  2. Свойства жидкостей http://physics.kgsu.ru/index.php?option=com_content&view=article&id=161&Itemid=72#q3

  3. Капиллярные явления. http://seaniv2006.narod.ru/1191.html (03.12.12)

Капиллярные явления , поверхностные явления на границе жидкости с др. средой, связанные с искривлением ее поверхности. Искривление поверхности жидкости на границе с газовой фазой происходит в результате действия поверхностного натяжения жидкости, которое стремится сократить поверхность раздела и придать ограниченному объему жидкости форму шара. Поскольку шар обладает минимальной поверхностью при данном объеме, такая форма отвечает минимуму поверхностной энергии жидкости, т.е. ее устойчивому равновесному состоянию. В случае достаточно больших масс жидкости действие поверхностного натяжения компенсируется силой тяжести, поэтому маловязкая жидкость быстро принимает форму сосуда, в который она налита, а ее своб. поверхность представляется практически плоской.

В отсутствие силы тяжести или в случае очень малых масс жидкость всегда принимает сферическую форму (капля), кривизна поверхности которой определяет мн. свойства вещества. Поэтому капиллярные явления ярко выражены и играют существенную роль в условиях невесомости, при дроблении жидкости в газовой среде (или распылении газа в жидкости) и образовании систем, состоящих из многих капель или пузырьков (эмульсий, аэрозолей, пен), при зарождении новой фазы капель жидкости при конденсации паров, пузырьков пара при вскипании, зародышей кристаллизации. При контакте жидкости с конденсированными телами (другой жидкостью или твердым телом) искривление поверхности раздела происходит в результате действия межфазного натяжения.

В случае смачивания, например, при соприкосновении жидкости с твердой стенкой сосуда, силы притяжения, действующие между молекулами твердого тела и жидкости, заставляют ее подниматься по стенке сосуда, вследствие чего примыкающий к стенке участок поверхности жидкости принимает вогнутую форму. В узких каналах, например, цилиндрических капиллярах, образуется вогнутый мениск - полностью искривленная поверхность жидкости (рис. 1).

Рис. 1. Капиллярное поднятие на высоту h жидкости, смачивающей стенки капилляра радиуса r; q - краевой угол смачивания.

Капиллярное давление.

Так как силы поверхностного (межфазного) натяжения направлены по касательной к поверхности жидкости, искривление последней ведет к появлению составляющей, направленной внутрь объема жидкости. В результате возникает капиллярное давление, величина которого Dp связана со средним радиусом кривизны поверхности r 0 уравнением Лапласа :

Dp = p 1 - p 2 = 2s 12 /r 0 , (1)

где p 1 и p 2 - давления в жидкости 1 и соседней фазе 2 (газе или жидкости), s 12 - поверхностное (межфазное) натяжение.

Если поверхность жидкости вогнута (r 0 < 0), давление в ней оказывается пониженным по сравнению с давлением в соседней фазе p 1 < р 2 и Dp < 0. Для выпуклых поверхностей (r 0 > 0) знак Dp изменяется на обратный. Отрицательное капиллярное давление, возникающее в случае смачивания жидкостью стенок капилляра, приводит к тому, что жидкость будет всасываться в капилляр до тех пор, пока вес столба жидкости высотой h не уравновесит перепад давления Dp. В состоянии равновесия высота капиллярного поднятия определяется формулой Жюрена:


где r 1 и r 2 - плотности жидкости 1 и среды 2, g - ускорение силы тяжести, r - радиус капилляра, q - краевой угол смачивания. Для несмачивающих стенки капилляра жидкостей cos q < 0, что приводит к опусканию жидкости в капилляре ниже уровня плоской поверхности (h < 0).

Из выражения (2) следует определение капиллярной постоянной жидкости а = 1/2 . Она имеет размерность длины и характеризует линейный размер Z [ а, при котором становятся существенными капиллярные явления Так, для воды при 20 °С а = 0,38 см. При слабой гравитации (g: 0) значение а возрастает. На участке контакта частиц капиллярная конденсация приводит к стягиванию частиц под действием пониженного давления Dp < 0.

Уравнение Кельвина.

Искривление поверхности жидкости приводит к изменению над ней равновесного давления пара р по сравнению с давлением насыщенного пара p s над плоской поверхностью при той же температуре Т. Эти изменения описываются уравнением Кельвина:

где - молярный объем жидкости, R - газовая постоянная. Понижение или повышение давления пара зависит от знака кривизны поверхности: над выпуклыми поверхностями (r 0 > 0) p > p s ; над вогнутыми (r 0 < 0) р < р s . . Так, над каплями давление пара повышено; в пузырьках, наоборот, понижено.

На основании уравнения Кельвина рассчитывают заполнение капилляров или пористых тел при капиллярной конденсации . Так как значения р различны для частиц разных размеров или для участков поверхности, имеющей впадины и выступы, уравнение (3) определяет и направление переноса вещества в процессе перехода системы к состоянию равновесия. Это приводит, в частности, к тому, что относительно крупные капли или частицы растут за счет испарения (растворения) более мелких, а неровности поверхности некристаллические тела сглаживаются за счет растворения выступов и залечивания впадин. Заметные различия давления пара и растворимости имеют место лишь при достаточно малых r 0 (для воды, например, при r 0 . Поэтому уравнение Кельвина часто используется для характеристики состояния коллоидных систем и пористых тел и процессов в них.

Рис. 2. Перемещение жидкости на длину l в капилляре радиуса r; q - краевой угол.

Капиллярная пропитка.

Понижение давления под вогнутыми менисками - одна из причин капиллярного перемещения жидкости в сторону менисков с меньшим радиусом кривизны. Частным случаем этого является пропитка пористых тел - самопроизвольное всасывание жидкостей в лиофильные поры и капилляры (рис. 2). Скорость v перемещения мениска в горизонтально расположенном капилляре (или в очень тонком вертикальном капилляре, когда влияние силы тяжести мало) определяется уравнением Пуазейля :

где l - длина участка впитавшейся жидкости, h - ее вязкость, Dp - перепад давления на участке l , равный капиллярному давлению мениска: Dp = — 2s 12 cos q/r. Если краевой угол q не зависит от скорости v, можно рассчитать количество впитавшейся жидкости за время t из соотношения:

l (t ) = (rts 12 cos q/2h) l/2 . (5)

Если q есть функция v , то l и v связаны более сложными зависимостями.

Уравнения (4) и (5) используют для расчетов скорости пропитки при обработке древесины антисептиками , крашении тканей, нанесении катализаторов на пористые носители, выщелачивании и диффузионном извлечении ценных компонентов горных пород и др. Для ускорения пропитки часто используют ПАВ, улучшающие смачивание за счет уменьшения краевого угла q. Один из вариантов капиллярной пропитки - вытеснение из пористой среды одной жидкости другой, не смешивающейся с первой и лучше смачивающей поверхность пор. На этом основаны, например, методы извлечения остаточной нефти из пластов водными растворами ПАВ, методы ртутной порометрии. Капиллярное впитывание в поры растворов и вытеснение из пор несмешивающихся жидкостей, сопровождающиеся адсорбцией и диффузией компонентов, рассматриваются физико-химической гидродинамикой .

Помимо описанных равновесных состояний жидкости и ее движения в порах и капиллярах, к капиллярные явления относят также равновесные состояния очень малых объемов жидкости, в частности тонких слоев и пленок. Эти капиллярные явления часто называют капиллярные явления II рода. Для них характерны, например, зависимость поверхностного натяжения жидкости от радиуса капель и линейное натяжение. Капиллярные явления впервые исследованы Леонардо да Винчи (1561), Б. Паскалем (17 в.) и Дж. Жюреном (18 в.) в опытах с капиллярными трубками. Теория капиллярных явлений развита в работах П. Лапласа (1806), Т. Юнга (1804), А. Ю. Давыдова (1851), Дж. У. Гиббса (1876), И. С. Громеки (1879, 1886). Начало развития теории капиллярных явлений II рода положено трудами Б. В. Дерягина и Л. М. Щербакова.

КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ - совокупность явлений, обусловленных действием межфазного поверхностного натяжения на границе раздела несмешивающихся сред; к К. я. обычно относят явления в жидкостях, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собств. паром. К. я.- частный случай поверхностных явлений. В отсутствие поверхность жидкости искривлена всегда. Под воздействием ограниченный объём жидкости стремится принять форму шара, т. е. занять объём с мин. поверхностью. Силы тяжести существенно меняют картину. Жидкость с относительно малой вязкостью быстро принимает форму сосуда, в к-рый налита, причём её свободная поверхность (не граничащая со стенками сосуда) в случае достаточно больших масс жидкости и большой площади свободной поверхности практически плоская. Однако по мере уменьшения массы жидкости роль поверхностного натяжения становится более существенной, чем сила тяжести. Так, напр., при дроблении жидкости в газе (или газа в жидкости) образуются капли (пузырьки) сферич. формы. Свойства систем, содержащих большое кол-во капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их формирования во многом определяются кривизной поверхности этих образований, то есть К. я. Большую роль К. я. играют и в зародышеобразовании при конденсации пара, кипении жидкостей, кристаллизации. Искривление поверхности жидкости может происходить также в результате её взаимодействия с поверхностью др. жидкости или твёрдого тела. В этом случае существенно наличие или отсутствие смачивания жидкостью этой поверхности. Если имеет место , т. е. молекулы жидкости 1 (рис. 1) сильнее взаимодействуют с поверхностью твёрдого тела 3, чем с молекулами др. жидкости (или газа) 2, то под воздействием разности сил межмолекулярного взаимодействия жидкость поднимается по стенке сосуда и примыкающий к твёрдому телу участок поверхности жидкости будет искривлён. Гидростатич. давление, вызванное подъёмом уровня жидкости, уравновешивается капиллярным давлением - разностью давлений над и под искривлённой поверхностью, величина к-рого связана с локальной кривизной поверхности жидкости. Если сближать плоские стенки сосуда с жидкостью, то зоны искривления перекроются и образуется мениск - полностью искривлённая поверхность. В таком капилляре в условиях смачивания под вогнутым мениском давление понижено, жидкость поднимается; вес столба жидкости вые. h 0 уравновешивает капиллярное давление Dр. В условиях равновесия

Поверхностное натяжение сравнительно легко определяется экспериментально. Существуют различные методы определения поверхностного натяжении, которые делятся на статические, полустатичсскис и динамические. Статические методы основаны на капиллярных явлениях, связанных с искривлением поверхности раздела фаз.

С появлением кривизны поверхности между фазами меняется внутреннее давление тела и возникает дополнительное (капиллярное) давление Лапласа Р, которое может увеличивать или уменьшать внутреннее давление, характерное для ровной поверхности. Это дополнительное давление можно представить как равнодействующую сил поверхностного натяжения, направленную в центр кривизны перпендикулярно поверхности. Кривизна может быть положительной и отрицательной (рис. 2.2).

Рис. 2.2. Схема образования дополнительного давления для поверхности с положительной (а) и отрицательной (б) кривизной

Изменение объема жидкости происходит в результате самопроизвольного уменьшения поверхностной энергии и превращения ее в механическую энергию изменения объема тела. При этом в уравнении (2.2) для энергии Гельмгольца при постоянных Т, n,q следует рассматривать только два слагаемых dF = -pdV + ods . При равновесии dF = 0, поэтому pdV = ods . В этом выражении р = Р - дополнительное давление (давление Лапласа), равное разности давлений между давлением тела с плоской и изогнутой поверхностями (АР):

Отношение называется кривизной поверхности.

Для сферической поверхности . Подставляя это выражение

в уравнение для дополнительного давления, получаем уравнение Лапласа:

в котором г - радиус кривизны; - кривизна или дисперсность (рис. 2.3).

Если поверхность имеет неправильную форму, используют представление о средней кривизне и уравнение Лапласа имеет вид

где Гр /*2 - главные радиусы кривизны.

Рис. 2.3. Капиллярное поднятие жидкости при смачивании (а) и несмачивании (о) стенок капилляра

Для поверхностного натяжение уравнение Лапласа можно переписать в виде , показывающем пропорциональность поверхностного

натяжения радиусу капилляра г и давлению Р, при котором происходит проскок газового пузырька из капилляра, опущенного в жидкость. Именно на этой пропорциональности основан метод экспериментального определения поверхностного натяжения Ребиндера.

В методе Ребиндера измеряется давление, при котором происходит проскок газового пузырька из капилляра, опущенного жидкость. В момент проскакивания пузырька измеряемое давление будет равно капиллярному, в радиус кривизны поверхности - радиусу капилляра. В опыте радиус капилляра измерить практически невозможно, поэтому проводят относительные измерения: определяют давление в газовом пузырьке, проскакивающем через жидкость с известным поверхностным натяжением (эту жидкость называют стандартной), а затем - давление Р в газовом пузырьке, проскакивающем через жидкость с определяемым поверхностным натяжением. В качестве стандартной жидкости обычно используется дистиллированная вода, а для точных измерений - бидистиллят.

Отношение поверхностного натяжения стандартной жидкости к давлению в пузырьке, который через нее проскакивает, называют константой

капилляра . При известной величине поверхностного натяжения

(т 0 и измеренных давлениях и Р для стандартной и исследуемой жидкости поверхностное натяжение последней определяется основной расчетной формулой данного метода:

Если значение известно с высокой точностью, то величина поверхностного натяжения определяемой жидкости тоже будет точной. Метод Ребиндера дает точность определения поверхностного натяжения до 0,01 мДж/м 2 .

При использовании метода поднятия измеряют высоту поднятия (или опускания) жидкости в капилляре и сравнивают сс с высотой поднятия стандартной жидкости, у которой поверхностное натяжение известно (рис. 2.4).

Рис. 2.4.

Причина капиллярного поднятия заключается в том, что жидкость, смачивая стенки капилляра, образует определенную кривизну поверхности, а возникающее при этом капиллярное давление Лапласа поднимает жидкость в капилляре до тех пор, пока вес столба жидкости не уравновесит действующую силу. Поднятие жидкости в капилляре наблюдается тогда, когда кривизна поверхности жидкости отрицательна. При вогнутом мениске давление Лапласа стремится растянуть жидкость и поднимает ее, такое капиллярное поднятие называется положительным, оно характерно для жидкостей, которые смачивают стенки капилляра (например, в системе стекло - вода). Наоборот, если кривизна поверхности положительна (выпуклый мениск), то дополнительное давление стремится сжать жидкость и наблюдается ее опускание в капилляре, которое называют отрицательным капиллярным подъемом. Подобное явление характерно для случаев несмачивания жидкостью стенок капилляра (например, в системе стекло - ртуть).

Судя но рис. 2.4. смачивание влияет на геометрию поверхности и если г - радиус кривизны, то радиус самого капилляра R связан с ним соотношением

где в - краевой угол смачивания (острый при условии смачивания жидкостью стенок капилляра). Из последнего соотношения следует, что

Подставляя это соотношение в уравнение (2.4), получаем

Если учесть, что давление столба жидкости в уравнении pdV = ods связано с его высотой как mgh = V(p-p^)gh, можно получить соотношение и далее формулу Жюрена:

где h - высота поднятия жидкости в капилляре; р - плотность жидкости; p s - плотность ее насыщенного пара; g - ускорение свободного падения.

При условии, что плотность жидкости р и плотность ее насыщенного пара p s несопоставимы »p s) для поверхностного натяжения можно записать

В более упрощенной формуле предполагается еще и полное смачивание стенок сосуда жидкостью (cos в = 1):

^ _ 2(7

gR(p-Ps)"

При практическом использовании метода вычисление поверхностного натяжения производят по формуле

где и h - высота поднятия в капилляре стандартной и исследуемой жидкостей; р^и р - их плотности.

Использовать этот метод как точный можно при условии cos в - const , лучше в = 0°, что для многих жидкостей приемлемо без дополнительных условий. В эксперименте необходимо использовать тонкие капилляры, хорошо смачиваемые жидкостью. Метод капиллярного поднятия также может дать высокую точность определения поверхностного натяжения, до 0,01-0,1 мДж/м