Электромагнитное загрязнение. Источники электромагнитного излучения вокруг нас

В современной жизни человека практически любое электрическое устройство имеет своё излучение. Источником (ЭМП) служит высоковольтная линия, телевизор и даже личный смартфон. Всё человечество живёт в одном большом месте, это Земля, которая изначально пронизана природными волнами различного спектра.

Общее пространство

Ученые установили уровень природного волнового фона, в котором организм привык существовать. У земного шара имеется два отличающихся полюса, и каждый день мы на себе испытываем влияние спектра излучения. Изменяясь под действием внешних факторов, электромагнитное поле человека нарушается, что приводит к проблемам со здоровьем.

Исследователи давно заметили, что самые крупные войны в мире происходили после вспышек на Солнце, когда нарушался естественный магнитный фон Земли. В последнее время этот показатель приводится в прогнозах погоды по телевидению. В природе существуют особые места с горными породами. Здесь человек не может находиться по следующей причине: электромагнитное излучение и электромагнитное поле собственное не совпадают.

Влияние на здоровье

Электромагнитное излучение и электромагнитное поле влияют на здоровье человека, поэтому были установлены допустимые показатели. Отмечено негативное действие волн на нервную систему, работу головного мозга и сердца. У животных и насекомых, обитающих в районах повышенного ЭМП, наблюдают патологии в строении тела.

Согласно исследованиям, влияние волн негативно сказывается на самочувствии человека. Провоцируется головная боль и усталость, нарушается работа внутренних органов. Более старшее поколение может даже потерять сознание в опасной зоне: возле высоковольтных линий или работающего электромагнита.

Источником электромагнитного поля служит:

  • Сотовая связь, смартфоны, излучатели Wi-Fi, бытовая техника. Сильное ЭМП появляется при работе микроволновой плиты.
  • Электротранспорт, проводящие магистрали, промышленные объекты.
  • Радары, рации, излучающие установки.
  • Сканеры медицинские, в аэропортах.
  • Телерадиосвязь, УВЧ-установки.

Нормы

Рядом с мощными излучателями по нормативным актам должна быть организована санитарная зона. Она рассчитывается согласно техническим данным объекта специальной комиссией. Стандартные значения указаны в документации. Так, при формировании показателей учитывают напряжение сети и силу тока, протекающую по проводам.

Таким источником электромагнитного поля является высоковольтная линия электропередач, питающая целый город. Санитарная зона учитывает, что нагрузка на подходящие провода меняется со временем суток и года. Область этого участка опасна для людей, животных и растений. Максимально допустимая граница, не опасная для организма, - это плотность потока равная 0,3 мкТл. Выше этой величины у здорового человека могут проявиться онкологические и сердечные заболевания.

Домашние приборы

Поэтому в инструкции микроволновой печи указано: не рекомендуется находиться непосредственно перед лицевой панелью во время разогревания пищи. Длительное пребывание беременных женщин в зоне повышенного электромагнитного поля может приводить к выкидышам. Учёными доказан тот факт, что сотовый телефон влияет на самочувствие человека. Лучше его не оставлять на ночь рядом с головой и не носить в карманах около сердца.

На улице

Источником электромагнитного поля служит ЛЭП, электротранспорт: трамваи, троллейбусы. Поэтому при выборе загородного участка опытные люди стараются держаться подальше от линий с питающими станций вещания, ретрансляторов сотовой связи, электрических подстанций. При подозрении о превышении допустимых норм излучение можно проверить прибором. Виновник будет обязан устранить негативный фактор.

Ещё один мощный излучатель - это железная дорога. Возле неё обязательно будут завышенные показатели. Однако от них никуда не деться, это плата за удобство передвижения горожан.

Методы борьбы

Одним из основных способов исключения влияния ЭМП на человека является пространственное отдаление излучающих объектов. Высоковольтные линии прокладываются высоко над природными ландшафтами, чтобы не навредить растениям и животным. Рядом с такими сооружениями запрещено возводить жилые дома, выращивать сельскохозяйственные культуры, пасти домашнюю скотину.

В городе распространено экранирование излучающих объектов. Энергия электромагнитного поля не проникает через заземленные металлические оболочки. Если человека надолго изолировать от поля Земли, у него появится сильная слабость или, наоборот, агрессия. Аналогичное самочувствие проявляется у моряков или подводников после длительного плавания.

Волновое лечение

При правильном излучении может наблюдаться обратный эффект. Его используют в медицине для восстановления функций организма. Источником электромагнитного поля служит который пациент прикладывает к больному месту. Длительная терапия снимает хронические недомогания суставов, сосудов, сердца.

ЭМП используется для снятия боли, улучшения кровообращения, благодаря ему быстро проходит усталость. Лечебный эффект образуется из-за ионизации металлических составляющих крови. Человек чувствует согревающее действие излучения. Периодическое применение медицинских аппаратов сводит на нет рецидивы хронических заболеваний.

Электромагнитное поле положительно влияет на иммунитет, убирает отеки. Наблюдается быстрая регенерация клеток после травм. Однако магнитотерапия может оказывать негативное влияние при наличии кардиостимуляторов или тогда, когда человек имеет заболевания крови. Назначать такое лечение должен врач по результатам обследования.

Что ещё запрещено размещать в негативных зонах?

Санитарная зона возле сильных источников электромагнитного поля устанавливается надзорными органами. В этом месте все объекты размещаются только после согласования с ними. Запрет касается помещений и площадок, отведенных под хранение горюче-смазочных материалов. Нельзя строить нефтебазы, заправки, стоянки под любой вид транспорта, кроме электрического.

Также в зоне не должны находиться люди. Запрещается размещать остановки, рынки, устраивать собрания. При необходимости организации подобных мест используется экранирование источника. На крышах, где имеются передающие станции, часто можно увидеть металлическую сетку вокруг антенны. Так добиваются сужения санитарной зоны.

Подобные меры принимаются для защиты жилых и производственных построек от обычных и шаровых молний. На крыше устанавливается металлическая антенна, заземленная глубоко в грунт. Вокруг здания образуется скопление положительного потенциала, а электроны уходят по искусственной цепи. При размещении нового прибора в своём доме лучше позаботиться заранее о месте его установки подальше от спального помещения.

Источниками электромагнитных полей являются:

1) линии электропередач;

2) радиостанции и радиоаппаратура;

3) радиолокационные станции;

4) средства электронно-вычислительной техники и отображения информации;

5) электропроводка (внутри зданий и сооружений), электроприборы;

6) электротранспорт;

7) мобильная связь (приборы, ретрансляторы).

Линии электропередач (ЛЭП)

Провода работающей линии электропередач создают в пространстве (на расстояниях порядка десятков метров от провода) электромагнитное поле промышленной частоты (50 Гц). При этом электрические поля и магнитные поля, создаваемые ЛЭП, оказывают неблагоприятное воздействие на население, проживающее в зоне, прилегающей к ЛЭП, и на персонал, обслуживающий ЛЭП.

Интенсивность электрических полей ЛЭП зависит от электрического напряжения. Например, под ЛЭП с напряжением 1 500 кВ напряженность у поверхности земли в хорошую погоду составляет от 12 до 25 кВ/м. При дожде и изморози напряженность ЭП может возрастать до 50 кВ/м.

Несмотря на то, что негативное влияние ЭП на человека проявляется при напряженностях выше 30…50 кВ/м, длительное систематическое пребывание человека в переменных электрических полях 50 Гц с напряженностями, превышающими 15 кВ/м, приводят к появлению ряда функциональных расстройств. Они субъективно выражаются жалобами на головную боль в височной и затылочной области, вялость, расстройство сна, снижение памяти, повышенную раздражительность, апатию, боли в области сердца. Для хронического воздействия ЭМП промышленной частоты характерны нарушение ритма и замедление частоты сердечных сокращений. У персонала, работающего в ЭМП промышленной частоты, могут наблюдаться функциональные нарушения в ЦНС и сердечно-сосудистой системе, в составе крови.

Токи проводов ЛЭП создают также магнитные поля. Наибольших значений индукция магнитных полей достигает в середине пролета между опорами. В поперечном сечении ЛЭП индукции уменьшаются по мере удаления от проводов. Например, ЛЭП с напряжением 500 кВ при токе в фазе 1 кА создает на уровне земли индукции от 10 до
15 мкТл.

Радиостанции и радиоаппаратура

Различные радиоэлектронные средства создают ЭМП в широком диапазоне частот и с различной модуляцией. Наиболее распространенными источниками ЭМП, вносящими существенный вклад в формирование электромагнитного фона как производственной, так и окружающей среды, являются центры радиовещания и телевидения.

Различные частотные диапазоны теле- и радиовещания имеют свои особенности, для которых определены различные нормируемые показатели поля (таблица 4).

Таблица 4 – Нормируемые показатели поля для различных диапазонов теле- и радиовещания

Тип радиотрансляционного центра Нормируемая напряженность электрического поля, В/м Нормируемая напряженность магнитного поля, А/м Особенности
ДВ-радиостанции (частота от 30 до 300 кГц, мощность передатчиков 300–500 кВт) 1,2 Наибольшая напряженность поля достигается на расстояниях менее одной длины волны от излучающей антенны
СВ-радиостанции (частота от 300 кГц до 3 МГц, мощность передатчиков 50–200 кВт) - Вблизи антенны (на расстоянии 5–30 м) наблюдается понижение напряженности электрического поля
КВ-радиостанции (частота от 3 до 30 МГц, мощность передатчиков 10–100 кВт) 0,12 Передатчики могут быть расположены на густозастроенных территориях, а также на крышах жилых зданий
УКВ-радиостанции и телевизионные радиотрансляционные центры (частоты от 60 до 500 МГц, мощности передатчиков 100 кВт – 1 МВт и более) - Передатчики расположены на высотах более 110 м над средним уровнем застройки

Радиолокационные станции

Радиолокационные станции находят широкое применение в различных отраслях народного хозяйства, при космических и научных исследованиях, в гидрометеорологии, в военном деле. Они позволяют обеспечить управление воздушным, морским и наземным транспортом, а также противовоздушную безопасность страны.

Радиолокационные и радарные установки имеют обычно антенны рефлекторного типа и излучают узконаправленный радиолуч. Периодическое перемещение антенны в пространстве приводит к пространственной прерывистости излучения. Наблюдается также временная прерывистость излучения, обусловленная цикличностью работы радиолокатора на излучение. Они работают на частотах от 500 МГц до 15 ГГц, однако отдельные специальные установки могут работать на частотах до 100 ГГц и более.

Основными источниками ЭМП в радиолокаторах являются передающие устройства и антенно-фидерный тракт. При этом воздействию ЭМП могут подвергаться как специалисты, занятые в производстве станций, и обслуживающий их персонал, так и контингент людей, находящийся в зоне действия электромагнитного импульса.

Наибольшую опасность для человека представляют антенны, работающие с отрицательными углами наклона зеркала или решетки, так как именно они создают наибольшие уровни плотности потока энергии. На антенных площадках значения плотности потока энергии составляют от 500 до 1500 мкВт/см 2 , в других местах технической территории – соответственно от 30 до 600 мкВт/см 2 . Причем радиус санитарно-защитной зоны для обзорного радиолокатора может достигать 4 км при отрицательном угле наклона зеркала.

Рассматривая вопросы экологической безопасности, следует обратить внимание на широкое распространение радаров для измерения скорости движения автотранспорта. В США, например, запрещено применение ручных скоростемеров для радиолокационного визирования цели, так как у многих людей, использовавших такие приборы, были диагностированы злокачественные кожные заболевания вокруг глаз.


Похожая информация.


Все источники ЭМП в зависимости от происхождения подразделя­ются на естественные и антропогенные .

В спектре естественных электромагнитных полей условно можно выделить три составляющие:

· геомагнитное поле (ГМП) Земли;

· электростатическое поле Земли;

· переменные ЭМП в диапазоне частот от 10 до 10 Гц.

Естественное электрическое поле Земли создается избыточным от­рицательным зарядом на поверхности, его напряженность на открытой местности обычно находится в диапазоне от 100 до 500 В/м. Грозо­вые облака могут увеличивать напряженность этого поля до десятков-сотен кВ/м.

Геомагнитное поле Земли состоит из основного постоянного поля (его вклад 99%) и переменного поля (1%). Существование постоянно­го магнитного поля объясняется процессами, протекающими в жидком металлическом ядре Земли. В средних широтах его напряженность со­ставляет примерно 40 А/м, у полюсов 55,7 А/м.

Переменное геомагнитное поле порождается токами в магнитосфе­ре и ионосфере. Например, сильные возмущения магнитосферы могут быть вызваны магнитными бурями, многократно увеличивающими ам­плитуду переменной составляющей геомагнитного поля. Магнитные бури являются результатом проникновения в атмосферу летящих от Солнца со скоростью 1000... 3000 км/с заряженных частиц, так называе­мого солнечного ветра, интенсивность которого обусловлена солнечной активностью (солнечными вспышками и др.).

Свой вклад в формирование естественного электромагнитного фо­на Земли вносит грозовая активность (0,1... 15 кГц). Электромагнитные колебания на частотах 4... 30 Гц существуют практически всегда. Мож­но предположить, что они могут служить синхронизаторами некоторых биологических процессов, поскольку являются резонансными частота­ми для ряда из них.

В спектр солнечного и галактического излучения, достигающего Земли, входят ЭМИ всего радиочастотного диапазона, инфракрасное и ультрафиолетовое излучения, видимый свет, ионизирующие излучения.

Человеческий организм излучает ЭМП с частотой выше 300 ГГц с плотностью потока энергии 0,003 Вт/м². Если общая площадь поверх­ности среднего человеческого тела 1,8 м², то общая излучаемая энергия приблизительно 0,0054 Вт.

В настоящее время впервые в мире российскими учеными выпол­нена разработка гигиенических рекомендаций, регламентирующих воз­действие на человека ослабленных геомагнитных полей. Поводом для подобных исследований послужили жалобы на ухудшение самочув­ствия и состояния здоровья лиц, работающих в специализированных экранированных сооружениях, в силу своих конструктивных особенно­стей препятствующих проникновению внутрь них ЭМИ естественного происхождения.



Ослабленные естественные геомагнитные поля (ГМП) могут создаваться также в подзем­ных сооружениях метрополитена (уровни естественных ГМП снижены в 2...5 раз), в жилых зданиях, выполненных из железобетонных кон­струкций (в 1,5 раза), в салонах легковых автомобилей (в 1,5... 3 раза), а также в самолетах, банковских хранилищах и т.д.

При нахождении человека в условиях дефицита естественных ЭМП возникает ряд функциональных изменений в ведущих системах орга­низма: возникает дисбаланс основных нервных процессов в виде пре­обладания торможения, дистонии мозговых сосудов, развиваются изме­нения со стороны сердечно-сосудистой и иммунной систем и др.

Антропогенные источники ЭМП в соответствии с международной классификацией делятся на две группы:

· источники, генерирующие крайне низкие и сверхнизкие частоты от 0 до 3 кГц;

· источники, генерирующие излучение в радиочастотном диапазоне от 3 кГц до 300 ГГц, включая СВЧ-излучение.

К первой группе относятся, в первую очередь, все системы про­изводства, передачи и распределения электроэнергии (линии электро­передач - трансформаторные подстанции, электростанции, системы электропроводки, различные кабельные системы); офисная электро- и электронная техника, транспорт на электроприводе: железнодорожный транспорт и его инфраструктура, городской - метро, троллейбусный, трамвайный.

Протяженность ЛЭП в нашей стране составляет более 4,5 млн км. Источником излучения энергии в окружающее пространство являются провода ЛЭП. Несмотря на то, что электромагнитная энергия поля про­мышленной частоты (50 Гц) в значительной мере поглощается почвой, напряженность поля под проводами и вблизи них может быть значитель­ной и зависит от класса напряжения ЛЭП, нагрузки, высоты подвески, расстояния между проводами, растительного покрова, рельефа под ли­нией.

Источниками ЭМП в диапазоне 3 кГц... 300 ГГц являются переда­ющие радиоцентры, радиостанции НЧ, СЧ, КВЧ диапазонов, радио­станции FM (87,5... 10 МГц), мобильные телефоны, радиолокацион­ные станции (метеорологические, аэропортов), установки СВЧ-нагрева, ВДТ и персональные компьютеры и др.

Воздействию высоких уровней ЭМИ, создаваемых, например, пе­редающими радиоцентрами (ПРЦ) во многих случаях подвергаются не только служащие ПРЦ, но и люди, находящиеся в прилегающих домах. ПРЦ включают в себя одно или несколько технических зданий, в кото­рых находятся радиопередатчики и антенные поля, на которых распола­гаются до нескольких десятков антенно-фидерных систем. Размещение ПРЦ может быть различным, например, в Москве характерно размеще­ние в непосредственной близости или среди жилой застройки (напри­мер, Октябрьский ПРЦ).

Радиолокационные станции имеют высокую мощность и оснаще­ны, как правило, остронаправленными антеннами кругового обзора, что приводит к значительному увеличению интенсивности ЭМИ СВЧ-диапазона и создает на местности зоны большой протяженности с вы­сокой плотностью потока энергии. Наиболее неблагоприятные условия отмечаются в жилых районах городов, в черте которых размещаются аэропорты - Иркутск, Сочи, Ростов-на-Дону и др.

В настоящее время в России несколько миллионов человек пользу­ются сотовой связью. Сотовая связь состоит из сети базовых станций и ручных персональных радиотелефонов. Базовые станции расположены на расстоянии от 1 до 15 км друг от друга, образуя между собой так на­зываемые «соты» посредством радиорелейной связи. Они обеспечива­ют связь с персональными радиотелефонами на частотах 450, 800, 900 и 1800 МГц. Мощность передатчиков находится в диапазоне от 2,5 до 320 Вт (как правило, 40 Вт).

Антенны базовых станций располагаются на высоте 15-50 м от по­верхности Земли, в основном, на крышах зданий. При их расположе­нии на крышах общественных, административных или жилых зданий осуществляется контроль электромагнитной обстановки, однако они не рассматриваются как потенциальные источники опасности, поскольку излучение боковых лепестков базовых антенн имеет небольшое значе­ние.

Ручные радиотелефоны сотовой связи имеют мощность 0,2... 7 Вт. Выходная мощность коррелируется с частотой: чем выше частота, тем меньше выходная мощность.

Для уменьшения последствий рекомендуется не прижимать телефон к уху, или прикладывать его во время разговора то к одному, то к друго­му уху и непрерывно говорить не более 2... 3 минут. Некоторые ученые предлагают изменить конструкцию радиотелефона так, чтобы антенна была направлена вниз относительно уха, а еще лучше в сторону от го­ворящего.

Источниками ЭМП в широком диапазоне частот являются ВДТ и персональные компьютеры . На рабочих местах пользователей компью­теров с мониторами на базе электронно-лучевых трубок фиксируются достаточно высокие уровни ЭМП, что говорит об опасности их биоло­гического действия, а распределение полей сложно и неодинаково на различных рабочих местах. Спектральная характеристика поля на ра­бочем месте пользователя компьютера и типичная карта электромагнит­ной обстановки приведены на рис. 7.2 - 7.4.

В промышленности высокочастотные ЭМИ используются для ин­дукционного и диэлектрического нагрева материалов (закалка, плавка, напыление металлов, нагрев пластмасс, склейка пластиков, термообра­ботка пищевых продуктов и др.).

Например, вблизи промышленных генераторов для высокочастот­ной закалки металлов, сушки древесины и т.п. напряженность электри­ческого поля на рабочих местах может достигать нескольких сот вплоть до тысячи В/м, а напряженность магнитного поля - десятков А/м.

Рис. 7.2. Спектральная характеристика переменно­го электрического поля на рабочем месте пользова­теля. Монитор СМ-102, Тайвань

Рис. 7.3. Пример распределения переменного электрического поля на рабочем месте пользователя

Рис. 7.4. Силовые линии магнитного поля вокруг дисплея

Источниками постоянных магнитных полей на рабочих местах являются: электромагниты и соленоиды постоянного тока, импульс­ные установки полупериодного и конденсаторного типа, магнитопроводы в электрических машинах и аппаратах, литые и металлокерамические магниты, используемые в радиотехнике. Постоянные магниты и электромагниты широко используются в приборостроении, в магнит­ных шайбах подъемных кранов и других фиксирующих устройствах, в устройствах для магнитной обработки воды, установках ядерного магнитного резонанса и др. Мощными источниками постоянного маг­нитного поля являются магнитогидродинамические генераторы, уров­ни магнитных полей которых в местах нахождения обслуживающего персонала достигают 50 мТл. Средние уровни постоянных магнитных полей в рабочей зоне операторов при электролитических процессах составляют 5...10мТл. Высокие уровни (10... 100мТл) создаются в салонах транспортных средств на магнитной подушке.

Электростатические поля возникают при работе с легко электризую­щимися материалами и изделиями, при эксплуатации высоковольтных установок постоянного тока. Статические электрические поля широко используются в промышленности для электрогазоочистки, электроста­тической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов и др.

*11111*В технологических процессах широко используют искусственные источники ЭМП, работающие в следующих частотных диапазонах: f = 3-300 Гц – токи промышленной частоты; f = 60 кГц-300 ГГц – токи радиочастот. На металлургических заводах применяют установки для индукционной обработки металлов, которые позволяют: плавить, закаливать, отжигать, сваривать металл. Кроме того, источниками ЭМП являются средства автоматики, трансформаторы, конденсаторы, электронно-лучевые трубки.

Эффективным средством защиты от ЭМП является экранирование . Выбор конструкции экрана зависит от диапазона волн, характера выполняемых работ, источника излучения.

Источники электромагнитных полей (ЭМП) чрезвычайно разнообразны - это системы передачи и распределения электроэнергии (линии электропередачи - ЛЭП, трансформаторные и распределительные подстанции) и приборы, потребляющие электроэнергию (электродвигатели, электроплиты, электронагреватели, холодильники, телевизоры, видеодисплейные терминалы и др.).

К источникам, генерирующим и транслирующим электромагнитную энергию, относятся радио- и телевизионные вещательные станции, радиолокационные установки и системы радиосвязи, самые разнообразные технологические установки в промышленности, медицинские приборы и аппаратура (аппараты для диатермии и индуктотермии, УВЧ-терапии, приборы для микроволновой терапии и др.).

Работающий контингент и население может подвергаться воздействию изолированной электрической или магнитной составляющих поля или их сочетанию. В зависимости от отношения облучаемого лица к источнику облучения, принято различать несколько видов облучения - профессиональное, непрофессиональное, облучение в быту и облучение, осуществляемое в лечебных целях. Профессиональное облучение характеризуется многообразием режимов генерации и вариантов воздействия электромагнитных полей (облучение в ближней зоне, в зоне индукции, общее и местное, сочетающееся с действием других неблагоприятных факторов производственной среды). В условиях непрофессионального облучения наиболее типичным является общее облучение, в большинстве случаев в волновой зоне.

Электромагнитные поля, генерируемые теми или иными источниками, могут воздействовать на все тело работающего человека (общее облучение) или отдельной части тела (местное облучение). При этом, облучение может носить характер изолированного (от одного источника ЭМП), сочетанного (от двух и более источников ЭМП одного частотного диапазона), смешанного (от двух и более источников ЭМП различных частотных диапазонов), а также комбинированного (в условиях одновременного воздействия ЭМП и других неблагоприятных физических факторов производственной среды) воздействия.

Электромагнитная волна - это колебательный процесс, связанный с изменяющимися в пространстве и во времени взаимосвязанными электрическими и магнитными полями.

Электромагнитное поле - это область распространения электромагнитных

Характеристика электромагнитных волн. Электромагнитное поле характеризуется частотой излучения f, измеряемой в герцах, или длиной волны X, измеряемой в метрах. Электромагнитная волна распространяется в вакууме со скоростью света (3 108 м/с), и связь между длиной и частотой электромагнитной волны определяется зависимостью

где с - скорость света.

Скорость распространения волн в воздухе близка к скорости их распространения в вакууме.

Электромагнитное поле обладает энергией, а электромагнитная волна, распространяясь в пространстве, переносит эту энергию. Электромагнитное поле имеет электрическую и магнитную составляющие (Таблица № 35).

Напряженность электрического поля Е - это характеристика электрической составляющей ЭМП, единицей измерения которой является В/м.

Напряженность магнитного поля Н (А/м) - это характеристика магнитной составляющей ЭМП.

Плотность потока энергии (ППЭ) - это энергия электромагнитной волны, переносимой электромагнитной волной в единицу времени через единичную площадь. Единицей измерения ППЭ является Вт/м.

Таблица № 35. Единицы измерения интенсивности ЭМП в Международной системе единиц (СИ)
Диапазон Название величины Обозначение единиц
Постоянное магнитное поле Магнитная индукция Напряженность поля Ампер на метр, А/м Тесла, Тл
Постоянное электрическое (электростатическое) поле Напряженность поля Потенциал Электрический заряд Вольт на метр, В/м Кулон, Кл Ампер на метр, А/м
Электромагнитное поле до 300 МГц Напряженность магнитного поля Напряженность электрического поля Ампер на метр, А/м Вольт на метр, В/м
Электромагнитное поле до 0,3-300 ГГц Плотность потока энергии Ватт на квадратный метр, Вт/м2


Для отдельных диапазонов электромагнитных излучений - ЭМИ (световой диапазон, лазерное излучение) введены другие характеристики.

Классификация электромагнитных полей. Частотный диапазон и длина электромагнитной волны позволяют классифицировать электромагнитное поле на видимый свет (световые волны), инфракрасное (тепловое) и ультрафиолетовое излучение, физическую основу которых составляют электромагнитные волны. Эти виды коротковолнового излучения оказывают на человека специфическое воздействие.

Физическую основу ионизирующего излучения также составляют электромагнитные волны очень высоких частот, обладающие высокой энергией, достаточной для того, чтобы ионизировать молекулы вещества в котором распространяется волна (Таблица № 36).

Радиочастотный диапазон электромагнитного спектра делится на четыре частотных диапазона: низкие частоты (НЧ) - менее 30 кГц, высокие частоты (ВЧ) - 30 кГц...30 МГц, ультравысокие частоты (УВЧ) - 30...300 МГц, сверхвысокие частоты (СВЧ) - 300 МГц.750 ГГц.

Особой разновидностью электромагнитных излучений (ЭМИ) является лазерное излучение (ЛИ), генерируемое в диапазоне длин волн 0,1...1000 мкм. Особенностью ЛИ является его монохроматичность (строго одна длина волны), когерентность (все источники излучения испускают волны в одной фазе), острая направленность луча (малое расхождение луча).

Условно к неионизирующим излучениям (полям) можно отнести электростатические поля (ЭСП) и магнитные поля (МП).

Электростатическое поле - это поле неподвижных электрических зарядов, осуществляющее взаимодействие между ними.

Статическое электричество - совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков или на изолированных проводниках.

Магнитное поле может быть постоянным, импульсным, переменным.

В зависимости от источников образования электростатические поля могут существовать в виде собственно электростатического поля, образующегося в разного рода энергетических установках и при электротехнических процессах. В промышленности ЭСП широко используются для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов. Изготовление, испытание,

транспортировка и хранение полупроводниковых приборов и интегральных схем, шлифовка и полировка футляров радиотелевизионных приемников,

технологические процессы, связанные с использование диэлектрических

материалов, а также помещения вычислительных центров, где сосредоточена множительная вычислительная техника характеризуются образованием

электростатических полей. Электростатические заряды и создаваемые ими электростатические поля могут возникать при движении диэлектрических жидкостей и некоторых сыпучих материалов по трубопроводам, переливании жидкостей-диэлектриков, скатывании пленки или бумаги в рулон.

Таблица № 36. Международная классификация электромагнитных волн

диапазона

Название диапазона по частот Метрическое подразделение длин волн Длина Сокращенное буквенное обозначение
1 3-30 Гц Декамегаметровые 100-10 мм Крайне низкие, КНЧ
2 30-300 Гц Мегаметровые 10-1 мм Сверхнизкие, СНЧ
3 0,3-3 кГц Г ектокилометровые 1000-100 км Инфранизкие, ИНЧ
4 от 3 до 30 кГц Мириаметровые 100-10 км Очень низкие, ОНЧ
5 от 30 до 300 кГц Километровые 10-1 км Низкие частоты, НЧ
6 от 300 до 3000 кГц Г ектометровые 1-0,1 км Средние, СЧ
7 от 3 до 30 МГц Декаметровые 100-10 м Высокие, ВЧ
8 от 30 до 300 МГц Метровые 10-1 м Очень высокие, ОВЧ
9 от 300 до 3000 МГц Дециметровые 1-0,1 м Ультравысокие, УВЧ
10 от 3 до 30 ГГц Сантиметровые 10-1 см Сверхвысокие, СВЧ
11 от 30 до 300 ГГц Миллиметровые 10-1 мм Крайне высокие, КВЧ
12 от 300 до 3000 ГГц Децимиллиметровые 1-0,1 мм Г ипервысокие, ГВЧ


Электромагниты, соленоиды, установки конденсаторного типа, литые и металлокерамические магниты сопровождаются возникновением магнитных полей.

В электромагнитных полях выделяют три зоны, которые формируются на различных расстояниях от источника электромагнитных излучений.

Зона индукции (ближняя зона) - охватывает промежуток от источника излучения до расстояния, равного примерно У2п ~ У6. В этой зоне электромагнитная волна еще не сформирована и поэтому электрическое и магнитное поля не взаимосвязаны и действуют независимо (первая зона).

Зона интерференции (промежуточная зона) - располагается на расстояниях примерно от У2п до 2лХ. В этой зоне происходит формирование ЭМВ и на человека действует электрическое и магнитное поля, а также оказывается энергетическое воздействие (вторая зона).

Волновая зона (дальня зона) - располагается на расстояниях свыше 2лХ. В этой зоне электромагнитная волна сформирована, электрическое и магнитное поля взаимосвязаны. На человека в этой зоне воздействует энергия волны (третья зона).

Действие электромагнитного поля на организм. Биологический и патофизиологический эффект воздействия электромагнитных полей на организм зависит от диапазона частот, интенсивности воздействующего фактора, продолжительности облучения, характера излучения и режима облучения. Действие ЭМП на организм зависит от закономерности распространения радиоволн в материальных средах, где поглощение энергии электромагнитной волны определяется частотой электромагнитных колебаний, электрических и магнитных свойств среды.

Как известно, ведущим показателем, характеризующим электрические свойства тканей организма, являются их диэлектрическая и магнитная проницаемость. В свою очередь, различия электрических свойств тканей (диэлектрической и магнитной проницаемости, удельного сопротивления) связаны с содержанием в них свободной и связанной воды. Все биологические ткани, по диэлектрической проницаемости, подразделяются на две группы: ткани с высоким содержанием воды - свыше 80% (кровь, мышцы, кожа, ткань мозга, ткань печени и селезенки) и ткани с относительно низким содержанием воды (жировая, костная). Коэффициент поглощения в тканях с высоким содержанием воды, при одинаковых значениях напряженности поля, в 60 раз выше, чем в тканях с низким содержанием воды. Поэтому глубина проникновения электромагнитных волн в ткани с низким содержанием воды в 10 раз больше, чем в ткани с ее высоким содержанием.

Тепловой и атермический эффект лежат в основе механизмов биологического действия электромагнитных волн. Тепловое действие ЭМП характеризуется избирательным нагревом отдельных органов и тканей, повышением общей температуры тела. Интенсивное облучение ЭМП может вызывать деструктивные изменения в тканях и органах, однако острые формы поражения встречаются крайне редко и их возникновение чаще всего связано с аварийными ситуациями при нарушении техники безопасности.

Хронические формы радиоволновых поражений, их симптомы и течение не имеют строго специфических проявлений. Тем не менее, для них характерно развитие астенических состояний и вегетативных расстройств, главным образом со

стороны сердечно-сосудистой системы. Наряду с общей астенизацией, сопровождающейся слабостью, повышенной утомляемостью, беспокойным сном, у больных появляются головная боль, головокружение, психоэмоциональная лабильность, боли в области сердца, повышенная потливость, снижение аппетита. Развиваются признаки акроцианоза, регионарный гипергидроз, похолодание кистей и стоп, тремор пальцев рук, лабильность пульса и артериального давления с наклонностью к брадикардии и гипотонии; дисфункция в системе гипофиз - кора надпочечников приводит к изменениям секреции гормонов щитовидной и половых желез.

Одним из немногих специфических поражений, вызываемых воздействием электромагнитных излучений радиочастотного диапазона, является развитие катаракты. Помимо катаракты, при воздействии электромагнитных волн высоких частот, могут развиваться кератиты и повреждения стромы роговицы.

Инфракрасное (тепловое) излучение, световое излучение при высоких энергиях, а также ультрафиолетовое излучение большого уровня, при остром воздействии, могут приводить к расширению капилляров, ожогам кожи и органов зрения. Хроническое облучение сопровождается изменением пигментации кожи, развитием хронического конъюнктивита и помутнением хрусталика глаза. Ультрафиолетовое излучение небольших уровней полезно и необходимо для человека, так как способствует усилению обменных процессов в организме и синтезу биологически активной формы витамина D.

Эффект воздействия лазерного излучение на человека зависит от интенсивности излучения, длины волны, характера излучения и времени воздействия. При этом выделяют локальное и общее повреждение тех или иных тканей организма человека. Органом-мишенью при этом служит глаз, который легко повреждается, нарушается прозрачность роговицы и хрусталика, возможно повреждение сетчатки глаза. Лазерное изучение, особенно инфракрасного диапазона, способно проникать через ткани на значительную глубину, поражая внутренние органы. Длительное воздействие лазерного излучения даже небольшой интенсивности может привести к различным функциональным нарушениям нервной, сердечно-сосудистой систем, желез внутренней секреции, артериального давления, повышению утомляемости, снижению работоспособности.

Гигиеническое нормирование электромагнитных полей. Согласно нормативным документам: СанПиН «Санитарно-эпидемиологические требования к эксплуатации радиоэлектронных средств с условиями работы с источниками электромагнитного излучения» № 225 от 10.04.2007 г. МЗ РК; СанПиН «Санитарные правила и нормы защиты населения от воздействия электромагнитных полей, создаваемых радиотехническими объектами» № 3.01.002-96 МЗ РК; МУ

«Методические указания по осуществлению государственного санитарного надзора за объектами с источниками электромагнитных полей (ЭМП) неионизирующей части спектра» № 1.02.018/у-94 МЗ РК; МУ «Методические рекомендации по проведению лабораторного контроля за источниками электромагнитных полей неионизирующей части спектра (ЭМП) при осуществлении государственного санитарного надзора» № 1.02.019/р-94 МЗ РК регламентируется интенсивность электромагнитных полей радиочастот на рабочих местах персонала,
осуществляющего работы с источниками ЭМП и требования к проведению контроля, а также регламентируется облучение электрическим полем, как по величине напряженности, так и продолжительности действия.

Частотный диапазон радиочастот электромагнитных полей (60 кГц - 300 МГц) оценивается напряженностью электрической и магнитной составляющих поля; в диапазоне частот 300 МГц - 300 ГГц - поверхностной плотностью потока энергии излучения и создаваемой им энергетической нагрузкой (ЭН). Суммарный поток энергии, проходящий через единицу облучаемой поверхности за время действия (Т), и выражающийся произведением ППЭ Т представляет собой энергетическую нагрузку.


На рабочих местах персонала напряженность ЭМП в диапазоне частот 60 кГц - 300 МГц в течение рабочего дня не должна превышать установленных предельно допустимых уровней (ПДУ):

В случаях, когда время воздействия ЭМП на персонал не превышает 50% продолжительности рабочего времени, допускаются уровни выше указанных, но не более чем в 2 раза.

Нормирование и гигиеническая оценка постоянных магнитных полей (ПМП) в производственных помещениях и на рабочих местах (Таблица №37) осуществляется дифференцировано, в зависимости от времени воздействия на работника в течение рабочей смены и учетом условий общего или локального облучения.

Таблица № 37. ПДУ воздействия ПМП на работающих.


Достаточно широко используются также гигиенические нормативы ПМП (Таблица № 38), разработанные Международным комитетом по неионизирующим излучениям, которое функционирует при Международной ассоциации радиационной защиты.

Электромагнитными полями пронизано все окружающее пространство.

Существуют естественные и техногенные источники электромагнитных полей.

Естественные источники электромагнитного поля:

  • атмосферное электричество;
  • радиоизлучение Солнца и галактик (реликтовое излучение, равномерно распространенное во Вселенной);
  • электрическое и магнитное поля Земли.

Источниками техногенных электромагнитных полей являются различная передающая аппаратура, коммутаторы, разделительные высокочастотные фильтры, антенные системы, промышленные установки, снабженные высокочастотными (ВЧ), ультравысокочастотными (УВЧ) и сверхвысокочастотными (СВЧ) генераторами.

Источники электромагнитных полей на производстве

К источникам ЭМП на производстве относятся две большие группы источников:

Опасное воздействие на работающих могут оказывать:

  • ЭМП радиочастот (60 кГц — 300 ГГц),
  • электрические и магнитные поля промышленной частоты (50 Гц);
  • электростатические поля.

Источниками волн радиочастотного диапазона являются прежде всего станции радио- и телевещания. Классификация радиочастот дана в табл. 1. Эффект радиоволн во многом зависит от особенностей их распространения. На него влияют характер рельефа и покрова поверхности Земли, крупные предметы и строения, расположенные на пути, и т.п. Лесные массивы и неровности рельефа поглощают и рассеивают радиоволны.

Таблица 1. Радиочастотный диапазон

Электростатические поля создаются в энергетических установках и при электротехнических процессах. В зависимости от источников образования они могут существовать в виде собственно электростатического поля (поля неподвижных зарядов). В промышленности электростатические поля широко используются для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов. Статическое электричество образуется при изготовлении, испытаниях, транспортировке и хранении полупроводниковых приборов и интегральных схем, шлифовке и полировке футляров радиотелевизионных приемников, в помещениях вычислительных центров, на участках множительной техники, а также в ряде других процессов, где используются диэлектрические материалы. Электростатические заряды и создаваемые ими электростатические поля могут возникать при движении диэлектрических жидкостей и некоторых сыпучих материалов по трубопроводам, переливании жидкостей-диэлектриков, скатывании пленки или бумаги в рулон.

Магнитные поля создаются электромагнитами, соленоидами, установками конденсаторного типа, литыми и металлокерамическими магнитами и др. устройствами.

Источники электрических полей

Любое электромагнитное явление, рассматриваемое в целом, характеризуется двумя сторонами — электрической и магнитной, между которыми существует тесная связь. Электромагнитное поле также имеет всегда две взаимосвязанные стороны — электрическое поле и магнитное поле.

Источником электрических полей промышленной частоты являются токоведущие части действующих электроустановок (линии электропередачи, индукторы, конденсаторы термических установок, фидерные линии, генераторы, трансформаторы, электромагниты, соленоиды, импульсные установки полупериодного или конденсаторного типа, литые и металлокерамические магниты и др.). Длительное воздействие электрического поля на организм человека может вызвать нарушение функционального состояния нервной и сердечно-сосудистой систем, что выражается в повышенной утомляемости, снижении качества выполнения рабочих операций, болях в области сердца, изменении артериального давления и пульса.

Для электрического поля промышленной частоты в соответствии с ГОСТ 12.1.002-84 предельно допустимый уровень напряженности электрического поля, пребывание в котором не допускается без применения специальных средств защиты в течение всего рабочего дня, равен 5 кВ/м. В интервале свыше 5 кВ/м до 20 кВ/м включительно допустимое время пребывания Т (ч) определяется по формуле Т = 50/Е — 2, где Е — напряженность воздействующего поля в контролируемой зоне, кВ/м. При напряженности поля свыше 20 кВ/м до 25 кВ/м время пребывания персонала в поле не должно превышать 10 мин. Предельно допустимое значение напряженности электрического поля устанавливается равным 25 кВ/м.

При необходимости определения предельно допустимой напряженности электрического поля при заданном времени пребывания в нем уровень напряженности в кВ/м вычисляется по формуле Е — 50/(Т + 2), где Т — время пребывания в электрическом поле, ч.

Основными видами средств коллективной защиты от воздействия электрического поля токов промышленной частоты являются экранирующие устройства — составная часть электрической установки, предназначенная для защиты персонала в открытых распределительных устройствах и на воздушных линиях электропередачи (рис. 1).

Экранирующее устройство необходимо при осмотре оборудования и при оперативном переключении, наблюдении за производством работ. Конструктивно экранирующие устройства оформляются в виде козырьков, навесов или перегородок из металлических канатов. прутков, сеток. Экранирующие устройства должны иметь антикоррозионное покрытие и заземлены.

Рис. 1. Экранирующий навес над проходом в здание

Для защиты от воздействия электрического поля токов промышленной частоты используются также экранирующие костюмы, которые изготавливаются из специальной ткани с металлизированными нитями.

Источники электростатических полей

На предприятиях широко используют и получают вещества и материалы, обладающие диэлектрическими свойствами, что способствует возникновению зарядов статического электричества.

Статическое электричество образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. При этом на трущихся веществах могут накапливаться электрические заряды, которые легко стекают в землю, если тело является проводником электричества и оно заземлено. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они получили название статического электричества.

Процесс возникновения и накопления электрических зарядов в веществах называют электризацией.

Явление статической электризации наблюдается в следующих основных случаях:

  • в потоке и при разбрызгивании жидкостей;
  • в струе газа или пара;
  • при соприкосновении и последующем удалении двух твердых
  • разнородных тел (контактная электризация).

Разряд статического электричества возникает в том случае, когда напряженность электростатического поля над поверхностью диэлектрика или проводника, обусловленная накоплением на них зарядов, достигает критической (пробивной) величины. Для воздуха пробивное напряжение составляет 30 кВ/см.

У людей, работающих в зоне воздействия электростатического поля, отмечаются разнообразные расстройства: раздражительность, головная боль, нарушение сна, снижение аппетита и др.

Допустимые уровни напряженности электростатических полей установлены ГОСТ 12.1.045-84 «Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» и Санитарно-гигиеническими нормами допустимой напряженности электростатического поля (ГН 1757-77).

Эти нормативные правовые акты распространяются на электростатические поля, создаваемые при эксплуатации электроустановок высокого напряжения постоянного тока и электризации диэлектрических материалов, и устанавливают допустимые уровни напряженности электростатических полей на рабочих местах персонала, а также общие требования к проведению контроля и средствам защиты.

Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей — 60 кВ/м в течение 1 ч.

При напряженности электростатических полей менее 20 кВ/м время пребывания в электростатических полях не регламентируется.

В диапазоне напряженности от 20 до 60 кВ/м допустимое время пребывания персонала в электростатическом поле без средств защиты зависит от конкретного уровня напряженности на рабочем месте.

Меры защиты от статического электричества направлены на предупреждение возникновения и накопления зарядов статического электричества, создание условий рассеивания зарядов и устранение опасности их вредного воздействия. Основные меры защиты:

  • предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций, на которых могут появиться заряды (аппараты, резервуары, трубопроводы, транспортеры, сливоналивные устройства, эстакады и т.п.);
  • уменьшение электрического сопротивления перерабатываемых веществ;
  • применение нейтрализаторов статического электричества, создающих вблизи наэлектризованных поверхностей положительные и отрицательные ионы. Ионы, несущие заряд, противоположный заряду поверхности, притягиваются к ней, и нейтрализуют заряд. По принципу действия нейтрализаторы разделяют на следующие типы: коронного разряда (индукционные и высоковольтные), радиоизотопные , действие которых основано на ионизации воздуха альфа-излучением плутония-239 и бета-излучением прометия-147, аэродинамические , представляющие собой камеру-расширитель, в которой с помощью ионизирующего излучения или коронного разряда генерируются ионы, которые затем воздушным потоком подаются к месту образования зарядов статического электричества;
  • снижение интенсивности зарядов статического электричества. Достигается соответствующим подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения, очисткой горючих газов и жидкостей от примесей;
  • отвод зарядов статического электричества, накапливающихся на людях. Достигается обеспечением работающих токопроводящей обувью и антистатическими халатами, устройством электропроводящих полов или заземленных зон, помостов и рабочих площадок. заземлением ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов.

Источники магнитного поля

Магнитные поля (МП) промышленной частоты возникают вокруг любых электроустановок и токопроводов промышленной частоты. Чем больше сила тока, тем выше интенсивность магнитного поля.

Магнитные поля могут быть постоянными, импульсными, инфранизкочастотными (с частотой до 50 Гц), переменными. Действие МП может быть непрерывным и прерывистым.

Степень воздействия МП зависит от максимальной напряженности его в рабочем пространстве магнитного устройства или в зоне влияния искусственного магнита. Доза, полученная человеком, зависит от расположения рабочего места по отношению к МП и режима труда. Каких-либо субъективных воздействий постоянные МП не вызывают. При действии переменных МП наблюдаются характерные зрительные ощущения, так называемые фосфены, которые исчезают в момент прекращения воздействия.

При постоянной работе в условиях воздействия МП, превышающих предельно допустимые уровни, развиваются нарушения функций нервной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения состава крови. При преимущественно локапьном воздействии могут возникать вегетативные и трофические нарушения, как правило, в области тела, находящегося под непосредственным воздействием МП (чаще всего рук). Они проявляются ощущением зуда, бледностью или синюшностыо кожных покровов, отечностью и уплотнением кожи, в некоторых случаях развивается гиперкератоз (ороговелость).

Напряженность МП на рабочем месте не должна превышать 8 кА/м. Напряженность МП линии электропередачи напряжением до 750 кВ обычно не превышает 20-25 А/м, что не представляет опасности для человека.

Источники электромагнитного излучения

Источниками электромагнитных излучений в широком диапазоне частот (сверх- и ифранизкочастотном, радиочастотном, инфракрасном, видимом, ультрафиолетовом, рентгеновском — табл. 2) являются мощные радиостанции, антенны, генераторы сверхвысоких частот, установки индукционного и диэлектрического нагрева, радары, лазеры, измерительные и контролирующие устройства, исследовательские установки, медицинские высокочастотные приборы и устройства, персональные электронно-вычислительные машины (ПЭВМ), видеодисплейные терминалы на электронно-лучевых трубках, используемые как в промышленности, научных исследованиях, так и в быту.

Источниками повышенной опасности с точки зрения электромагнитных излучений являются также микроволновые печи, телевизоры, мобильные и радиотелефоны.

Таблица 2. Спектр электромагнитных излучений

Низкочастотные излучения

Источниками низкочастотных излучений являются системы производства. передачи и распределения электроэнергии (электростанции, трансформаторные подстанции, системы и линии электропередачи), электросети жилых и административных зданий, транспорт, работающий на электроприводе, и его инфраструктура.

При длительном воздействии низкочастотного излучения могут появиться головные боли, изменение артериального давления, развиваться утомление, наблюдаться выпадение волос, ломкость ногтей, снижение массы тела, стойкое снижение работоспособности.

Для защиты от низкочастотного излучения экранируют либо источники излучения (рис. 2), либо зоны, где может находиться человек.

Рис. 2. Экранирование: а — индуктора; б — конденсатора

Источники радиочастотного излучения

Источником ЭМП радиочастот являются:

  • в диапазоне 60 кГц — 3 МГц — неэкранированные элементы оборудования для индукционной обработки металла (закачка, отжиг, плавка, пайка, сварка и т.д.) и других материалов, а также оборудования и приборов, применяемых в радиосвязи и радиовещании;
  • в диапазоне 3 МГц — 300 МГц — неэкранированные элементы оборудования и приборов, применяемых в радиосвязи, радиовещании, телевидении, медицине, а также оборудования для нагрева диэлектриков;
  • в диапазоне 300 МГц — 300 ГГц — неэкранированные элементы оборудования и приборов, применяемых в радиолокации, радиоастрономии, радиоспектроскопии, физиотерапии и т.п. Длительное воздействие радиоволн на различные системы организма человека вызывают разные последствия.

Наиболее характерными при воздействии радиоволн всех диапазонов являются отклонения в ЦНС и сердечно-сосудистой системе человека. Субъективные жалобы — частая головная боль, сонливость или бессонница, утомляемость, слабость, повышенная потливость, снижение памяти, рассеянность, головокружение, потемнение в глазах, беспричинное чувство тревоги, страха и др.

Влияние электромагнитного поля средневолнового диапазона при длительном воздействии на проявляется в возбудительных процессах, нарушении положительных рефлексов. Отмечают изменения в крови, вплоть до лейкоцитоза. Установлены нарушение функции печени, дистрофические изменения в головном мозге, внутренних органах и половой системе.

Электромагнитное поле коротковолнового диапазона провоцирует изменения в коре надпочечников, сердечно-сосудистой системе, биоэлектрических процессах коры головного мозга.

ЭМП УКВ диапазона вызывает функциональные изменения в нервной, сердечно-сосудистой, эндокринной и других системах организма.

Степень опасности влияния на человека СВЧ-излучения зависит от мощности источника электромагнитных излучений, режима работы излучателей, конструктивных особенностей излучающего устройства, параметров ЭМП, плотности потока энергии, напряженности поля, времени воздействия, размера облучаемой поверхности, индивидуальных свойств человека, расположения рабочих мест и эффективности защитных мероприятий.

Различают тепловое и биологическое воздействие СВЧ-излучения.

Тепловое воздействие является следствием поглощения энергии ЭМП СВЧ-излучения. Чем выше напряженность поля и больше время воздействия, тем сильнее проявляется тепловое воздействие. При плотности потока энергии W- 10 Вт/м 2 организм не справляется с отводом теплоты, температура тела повышается и начинаются необратимые процессы.

Биологическое (специфическое) воздействие проявляется в ослаблении биологической активности белковых структур, нарушении сердечно-сосудистой системы и обмена веществ. Это воздействие проявляется при интенсивности ЭМП менее теплового порога, который равен 10 Вт/м 2 .

Воздействие ЭМП СВЧ-излучения особенно вредно для тканей со слаборазвитой сосудистой системой или недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузырь). Облучение глаз может привести к помутнению хрусталика (катаракте) и ожогам роговицы.

Для обеспечения безопасности работе источниками электромагнитных волн производится систематический контроль фактических нормируемых параметров на рабочих местах и в местах возможного нахождения персонала. Контроль осуществляется измерением напряженности электрического и магнитного поля, а также измерением плотности потока энергии.

Защита персонала от воздействия радиоволн применяется при всех видах работ, если условия работы не удовлетворяют требованиям норм. Эта защита осуществляется следующими способами:

  • согласованные нагрузки и поглотители мощности, снижающие напряженность и плотность поля потока энергии электромагнитных волн;
  • экранирование рабочего места и источника излучения;
  • рациональное размещение оборудования в рабочем помещении;
  • подбор рациональных режимов работы оборудования и режима труда персонала.

Наиболее эффективно использование согласованных нагрузок и поглотителей мощности (эквивалентов антенн) при изготовлении, настройке и проверке отдельных блоков и комплексов аппаратуры.

Эффективным средством защиты от воздействия электромагнитных излучений является экранирование источников излучения и рабочего места с помощью экранов, поглощающих или отражающих электромагнитную энергию. Выбор конструкции экранов зависит от характера технологического процесса, мощности источника, диапазона волн.

Для изготовления отражающих экранов используются материалы с высокой электропроводностью, например металлы (в виде сплошных стенок) или хлопчатобумажные ткани с металлической основой. Сплошные металлические экраны наиболее эффективны и уже при толщине 0,01 мм обеспечивают ослабление электромагнитного поля примерно на 50 дБ (в 100 000 раз).

Для изготовления поглощающих экранов применяются материалы с плохой электропроводностью. Поглощающие экраны изготавливаются в виде прессованных листов резины специального состава с коническими сплошными или полыми шипами, а также в виде пластин из пористой резины, наполненной карбонильным железом, с впрессованной металлической сеткой. Эти материалы приклеиваются на каркас или на поверхность излучающего оборудования.

Важное профилактическое мероприятие по защите от электромагнитного облучения — выполнение требований для размещения оборудования и для создания помещений, в которых находятся источники электромагнитного излучения.

Защита персонала от переоблучения может быть достигнута за счет размещения генераторов ВЧ, УВЧ и СВЧ, а также радиопередатчиков в специально предназначенных помещениях.

Экраны источников излучения и рабочих мест блокируются с отключающими устройствами, что позволяет исключить работу излучающего оборудования при открытом экране.

Допустимые уровни воздействия на работников и требования к проведению контроля на рабочих местах для электромагнитных полей радиочастот изложены в ГОСТ 12.1.006-84.