Генетический полиморфизм, его биологические, медицинские и социальные аспекты. Генетический полиморфизм: что это

Генетическая вариабельность, ограниченная одним видом (Homo sapiens в нашем случае), получила название генетического полиморфизма (ГП).

Геномы всех людей, за исключением однояйцевых близнецов, различны.

Выраженные популяционные, этнические и, главное, индивидуальные различия геномов как в их смысловой части (экзоны), так и в их некодирующих последовательностях (межгенные промежутки, интроны и прочее) обусловлены различными мутациями, приводящими к ГП. Последний обычно определяют как менделевский признак, встречающийся в популяции по крайней мере в 2 вариантах с частотой не менее 1 % для каждого . Изучение ГП является основной задачей быстро набирающей силы программы «Генетическое разнообразие человека» (см. табл. 1.1).

ГП может быть качественным, когда происходят замены нуклеотидов, либо количественным, когда в ДНК варьирует число нуклеотидных повторов различной протяженности. Тот и другой виды ГП встречаются как в смысловых (белок-кодирующих), так и во внегенных последовательностях молекулы ДНК.

Качественный ГП - представлен преимущественно однонуклеотидными заменами, так называемыми single nucleotide polymorphism (SNP) . Это самый частый ГП. Уже первое сравнительное изучение геномов у представителей разных рас и этнических групп показало не только глубокое генетическое родство всех людей (сходство геномов - 99,9 %), но и позволило получить ценную информацию о происхождении человека, маршрутах его расселения по планете, о путях этногенеза. Решение многих проблем геногеографии, происхождения человека, эволюции генома в филогенезе и этногенезе - вот круг фундаментальных проблем, стоящих перед этим быстро развивающимся направлением .

Количественный ГП - представлен вариациями числа тандемных повторов (STR - Short Tandem Repeats) в виде 1-2 нуклеотидов (микросателлитная ДНК) либо 3-4 и более нуклеотидов на коровую (повторяющуюся) единицу. Это так называемая минисателлитная ДНК. Наконец, повторы ДНК могут иметь большую протяженность и вариабельную по нуклеотидному составу внутреннюю структуру - так называемые VNTR (Variable Number Tandem Repeats).

Как правило, количественный ГП касается внесмысловых некодирующих (кодовых) участков генома. Исключение составляют только тринуклеотидные повторы. Чаще это CAG (citosine-adenine- guanine) - триплет, кодирующий глютаминовую кислоту. Они могут встречаться и в кодирующих последовательностях ряда структурных генов. В частности, такие ГП характерны для генов «болезней экспансии» (см. главу 3). В этих случаях по достижении определенной копий- ности тринуклеотидного (полинуклеотидного) повтора ГП перестают быть функционально нейтральными и проявляют себя как особый тип так называемых «динамических мутаций» . Последние особенно характерны для большой группы нейродегенеративных заболеваний (хорея Гентингтона, болезнь Кеннеди, спиноцеребеллярная атаксия и др.). Характерными клиническими особенностями таких заболеваний являются: поздняя манифестация, эффект антиципации (усиления тяжести заболевания в последующих поколениях), отсутствие эффективных методов лечения (см. главу 3).

Все люди, населяющие сегодня нашу планету, действительно являются генетически братьями и сестрами. Более того, межиндивидуальная вариабельность даже при секвенировании генов представителей белой, желтой и черной рас не превысила 0,1 % и обусловлена, главным образом, однонуклеотидными заменами, ОНЗ - SNP (Single Nucleotide Polymorphisms). Такие замены весьма многочисленны и встречаются через каждые 250-400 п. о. Их общее число в геноме оценивается в 10-13 миллионов (табл. 1.2). Предполагается, что около половины всех SNP (5 млн) приходится на смысловую (экспрессирующуюся) часть генома. Именно эти замены, как оказалось, особенно важны для молекулярной диагностики наследственных болезней. Им принадлежит основная роль в ГП человека .

На сегодняшний день хорошо известно, что полиморфизм характерен практически для всех генов человека. Более того, установлено, что он имеет выраженную этническую и популяционную специфику. Эта особенность позволяет широко использовать полиморфные генные маркеры в этнических и популяционных исследованиях . Полиморфизм, затрагивающий смысловые части генов, нередко приводит к замене аминокислот и к появлению белков с новыми функциональными свойствами. Существенное влияние на экспрессионную активность генов могут оказывать замены или повторы нуклеотидов в регуляторных (промоторных) областях генов. Наследуемые полиморфные изменения генов играют решающую роль в определении уникального биохимического профиля каждого человека, в оценке его наследственной предрасположенности к различным частым мультифакторным (мультифакториальным) заболеваниям. Изучение медицинских аспектов ГП составляет концептуальную и методическую основу предиктивной (предсказательной) медицины (см. 1.2.5).

Как показали исследования последних лет, однонуклеотидные замены (SNP) и короткие тандемные моно-, ди- и тринуклеотидные повторы являются доминирующими, но отнюдь не единственными вариантами полиморфизма в геноме человека. Недавно появилось сообщение о том, что около 12 % всех генов человека присутствуют более, чем в двух копиях. Следовательно, реальные различия между геномами разных людей, скорее всего, существенно превышают ранее постулируемые 0,1 % . Исходя из этого, в настоящее время считается, что близость неродственных геномов составляет не 99,9 %, как считалось ранее, а примерно равна около 99 0%. Особенно удивительным оказался факт, что варьировать в геноме могут не только число копий отдельных генов, но даже целые фрагменты хромосом размерами 0,65-1,3 Мегабаз (1 Мгб = 10 6 п. о.). В последние годы при помощи метода сравнительной геномной гибридизации на чипах, содержащих ДНК-зонды, соответствующие всему геному человека, получены удивительные данные, доказывающие полиморфизм индивидуальных геномов по большим (5-20 Мгб) фрагментам ДНК. Данный полиморфизм получил название Copy Number Variation «варьирование числа копий», его вклад в патологию человека в настоящее время активно исследуется .

Согласно современным данным, количественный полиморфизм в геноме человека представлен значительно шире, чем считалось ранее; основным качественным вариантом полиморфизма являются однонуклеотидные замены - ОНЗ (SNP).

1.2.З.1. Международный проект «Гаплоидный геном»(НарМар)

Решающая роль в изучении геномного полиморфизма принадлежит международному проекту по изучению гаплоидного генома человека - «Г аплоидная карта» - HapMap.

Проект начат по инициативе Института по изучению генома человека (США) в 2002 г. Исполнителями проекта стали 200 исследователей из 6 стран (США, Великобритания, Канада, Япония, Китай, Нигерия), образовавших Научный Консорциум. Цель проекта - получить генетическую карту следующего поколения, основу которой должно составлять распределение однонуклеотидных замен (SNP) в гаплоидном наборе всех 23 хромосом человека .

Суть проекта сводится к тому, что при анализе распределения уже известных SNP (ОНЗ) у индивидов нескольких поколений соседние или близко расположенные в ДНК одной хромосомы SNP наследуются блоками. Такой блок SNP представляет собой гаплотип - аллельный набор нескольких локусов, расположенных на одной хромосоме (отсюда и название проекта НарМар). При этом каждый из картированных SNP выступает как самостоятельный молекулярный маркер. Для создания общегеномной карты SNPs важно, однако, чтобы между двумя соседними SNP генетическое сцепление было высокодостоверным. По сцеплению таких SNP-маркеров с исследованным признаком (болезнью, симптомом) определяются наиболее вероятные места локализации генов-кандидатов, мутации (полиморфизм) которых ассоциированы с тем или иным мультифакторным заболеванием. Обычно для картирования выбирают несколько SNP, тесно сцепленных с уже известным менделирующим признаком. Такие хорошо охарактеризованные ОНЗ с частотой редких аллелей не менее 5 % получили название маркерных SNP (tagSNP). Предполагается, что в конечном счете из примерно 10 миллионов ОНЗ, присутствующих в геноме каждого человека, в процессе выполнения проекта будут отобраны только около 500 000 tagSNP.

Но и этого числа вполне достаточно, чтобы перекрыть картой ОНЗ весь геном человека. Естественно, что постепенное насыщение генома такими точечными молекулярными маркерами, удобными для общегеномного анализа, открывает большие перспективы для картирования многих еще не известных генов, аллельные варианты которых ассоциированы (сцеплены) с различными тяжелыми болезнями .

Первый этап НарМар проекта стоимостью 138 млн долларов завершился в октябре 2005 года. Проведено генотипирование свыше миллиона ОНЗ (1 007 329) у 270 представителей 4 популяций (90 американцев европейского происхождения, 90 нигерийцев, 45 китайцев и 45 японцев). Итогом работы явилась гаплоидная карта SNP, содержащая информацию о распределении и частотах маркерных SNP в изученных популяциях .

В результате выполнения второго этапа проекта HapMap, который завершился в декабре 2006 года, та же выборка индивидов (269 человек) была прогенотипирована еще по 4 600 000 SNP. На сегодняшний день генетическая карта следующего поколения (НарМар) уже содержит информацию более чем о 5,5 млн ОНЗ. В своем окончательном варианте, который, учитывая все возрастающую скорость картирования SNP, станет доступен уже в ближайшем будущем, будет информация о 9 000 000 SNP гаплоидного набора. Благодаря НарМар, которая включает не только SNP уже картированных генов с известными фенотипами, но и SNP еще не идентифицированных генов, ученые получают в руки мощный универсальный навигатор, необходимый для углубленного анализа генома каждого индивида, для быстрого и эффективного картирования генов, аллельные варианты которых предрасполагают к различным мультифакториальным заболеваниям, для проведения широкомасштабных исследований по популяционной генетике человека, фармакогенетике и индивидуальной медицине.

По словам Фрэнсиса Коллинза, директора Национального института по изучению генома человека (США): «Уже при обсуждении программы «Геном человека» 20 лет назад я мечтал о времени, когда геномный подход станет инструментом для диагностики, лечения и предупреждения тяжелых распространенных болезней, страдающие которыми больные переполняют наши больницы, клиники и кабинеты врачей. Успехи

НарМар проекта позволяют сделать серьезный шаг навстречу этой мечте уже сегодня» (http://www.the-scientist.com/2006/2/1/46/1/).

Действительно, с помощью техники НарМар удалось достаточно быстро картировать ген, ответственный за дистрофию сетчатки (macular degeneration), идентифицировать главный ген и несколько генных маркеров болезни сердца, определить участки хромосом и найти гены, ассоциированные с остеопорозом, бронхиальной астмой, диабетом первого и второго типов, а также с раком простаты . С помощью технологии НарМар можно не только вести полногеномный скрининг, но изучать отдельные части генома (фрагменты хромосом) и даже кандидатные гены. Совмещение технологии Нар- Мар с возможностями высокоразрешающих гибридизационных ДНК- чипов и специальной компьютерной программы сделало доступным общегеномный скрининг ассоциаций и совершило реальный переворот в предиктивной медицине в плане эффективной идентификации генов предрасположенности к различным МФЗ (см. гл. 8 и 9).

Учитывая, что генетический полиморфизм отнюдь не исчерпывается ОНЗ, а молекулярные вариации генома значительно более многообразны, ученые и издатели научного журнала Human Mutation Ричард Коттон (Австралия) и Хейг Казазьян (США) выступили с инициативой проекта Human Variom Project, цель которого - создание универсального банка данных, включающего в себя информацию не только по мутациям, приводящим к различным моногенным заболеваниям, но и к полиморфизму, предрасполагающему к мультифакторным болезням - http://www.humanvariomeproject.org/index.php?p = News . Учитывая достаточную условность границ между «полиморфизмом» и «мутациями», создание такой универсальной библиотеки вариаций генома можно только приветствовать.

К сожалению, приходится констатировать, что, если в случае проекта «Геном человека» в России еще предпринимались некоторые попытки участия в совместных исследованиях, то при выполнении международного проекта НарМар отечественные ученые практически не были задействованы. Соответственно, воспользоваться технологией общегеномного скрининга SNP в России при отсутствии необходимого аппаратурного и программного обеспечения, весьма проблематично Между тем, учитывая популяционные особенности генетического полиморфизма, внедрение в России технологии GWAS швершенно необходимо (см. гл. 9).

С глубоким сожалением приходится констатировать, что уже существующий колоссальный разрыв между отечественной и передовой мировой наукой в области изучения генома человека после завершения программы НарМар будет только стремительно увеличиваться.

1.2.З.2. Новые проекты по изучению генома человека

Проект НарМар далеко не единственный, хотя и наиболее продвинутый в исследованиях структурно-функциональной организации генома человека в наше время. Другой международный проект - ENCODE «Энциклопедия ДНК элементов», инициированный Национальным институтом исследования генома человека, США (НИИГЧ) (National Institute of Human Genome Research - NIHGR). Его цель - точная идентификация и картирование всех белок-синтезирующих генов и функционально значимых элементов генома человека. В качестве пилотных исследований проект предполагает многократно просеквенировать и детально изучить фрагмент генома размером до 1 % общей длины ДНК. Наиболее вероятным кандидатом является участок генома размером около 30 Мегабаз (млн п. о.) в коротком плече хромосомы 6. Именно там расположен очень сложный в структурно-функциональном отношении локус HLA, ответственный за синтез антигенов гистосовместимости. Планируется просеквенировать область HLA у 100 пациентов с аутоиммунными заболеваниями (системная красная волчанка, диабет 1 типа, рассеянный склероз, бронхиальная астма и др.) и у 100 соматически здоровых доноров, чтобы понять молекулярную природу генных особенностей при этих патологиях. Аналогичным образом предполагается провести идентификацию генов-кандидатов в локусах, обнаруживающих неслучайную ассоциацию с частыми тяжелыми заболеваниями мультифакторной природы. Результаты проекта ENCODE частично уже опубликованы, однако, HLA локус в него не включен .

Еще один проект - NIHGR «Химическая геномика» - ставит своей целью создание общедоступной библиотеки химических веществ, преимущественно органических соединений, удобных для изучения главных метаболических путей организма, непосредственно взаимодействующих с геномом и перспективных для создания новых лекарственных препаратов.

Проект Genome to Life «Геном для жизни» обращает основное внимание на особенности метаболизма и организацию геномов одноклеточных организмов, патогенных для человека. Предполагается, что итогом его выполнения будут компьютеризированные модели реакции микробов на внешние воздействия. Исследования будут сосредоточены на четырех основных направлениях: белки бактерий, регуляторные механизмы работы генов, микробные ассоциации (симбиоз), взаимодействие с организмом человека (www.genomestolife.org).

Наконец, главной организацией по финансированию научных проектов Великобритании Wellcome Trust создан Консорциум по геномике трехмерной структуры белков (Structural Genomic Consortium). Его цель - на основе данных по изучению генома человека повысить эффективность поиска и синтеза новых лекарств направленного действия.

Непосредственное отношение к предиктивной медицине и фармакогенетике имеет и разрабатываемый в США и в странах Западной Европы проект «Геном и окружающая среда» (Environmental Genome Project). Некоторые подробности данного проекта будут рассмотрены в следующей главе.

Под генетическим полиморфизмом понимается состояние дли­тельного разнообразия генотипов, когда частота даже наиболее редко встречающихся генотипов в популяциях превышают 1%. Генетиче­ский полиморфизм поддерживается за счет мутаций и рекомбинаций генетического материала. Как показывают многочисленные исследо­вания, генетический полиморфизм широко распространен. Так, по теоретическим расчетам в потомстве от скрещивания двух особей, различающихся лишь по десяти локусам, каждый из которых пред­ставлен 4 возможными аллелями, окажется около 10 млрд. особей с различными генотипами.

Чем больше запас генетического полиморфизма в данной популя­ции, тем легче ей адаптироваться к новой среде и тем быстрее протекает эволюция. Однако, оценить количество полиморфных аллелей посредством традиционных генетических методов практически невозможно, поскольку сам факт присутствия какого-либо гена в генотипе устанавливается путем скрещивания особей, обладающих различными формами фенотипа, определяемого этим геном. Зная, какую долю в популяции составляют особи с различными фенотипами, можно выяснить, сколько аллелей участвуют в формировании данного признака.

Начиная с 60-х годов XX столетия для определения генетического полиморфизма стал широко применяться метод электрофореза белков (в том числе и ферментов) в геле. С помощью этого метода можно вызвать перемещение белков в электрическом поле в зависимости от их размера, конфигурации и суммарного заряда в разные участки ге­ля, а затем по расположению и числу проявляющихся при этом пятен проводить идентификацию исследуемого вещества. Для оценки сте­пени полиморфизма тех или иных белков в популяциях обычно ис­следуют около 20 и более локусов, а потом математическим путем определяют количество аллельных генов, соотношение гомо - и гетерозигот. Как показывают исследования, одни гены, как правило, бы­вают мономорфными, а другие - чрезвычайно полиморфными.

Различают переходный и сбалансированный полиморфизм, что зависит от селективной ценности генов и давления естественного отбора.

Переходный полиморфизм возникает в популяции, когда проис­ходит замещение аллеля, бывшего некогда обычным, другими алле­лями, придающими своим носителям более высокую приспособлен­ность (множественный аллелизм). При переходном полиморфизме наблюдается направленный сдвиг в процентном соотношении форм генотипов. Переходный полиморфизм - это главный путь эволюции, ее динамика. Примером переходного полиморфизма может быть явление индустриального механизма. Так, в результате загрязнения атмосферы в промышленных городах Англии за последние сто лет у более чем 80 видов бабочек, появились темные формы. Например, если до 1848 г. березовые пяденицы имели бледно-кремовую окраску с черными точками и отдельными темными, пятнами, то в 1848 г. в Манчестере появились первые темнотелые формы, а к 1895 г. уже 98% пядениц стало темнотелыми. Это произошло вследствие закопчения стволов деревьев и избирательного выедания светлотелых пя­дениц дроздами и малиновками. Позже было установлено, что темная окраска тела у пядениц осуществляется мутантным меланистическим аллелем.

Сбалансированный полиморфизм характеризуется отсутствием сдвига числовых соотношений различных форм, генотипов в популя­циях, находящихся в стабильных условиях среды. При этом процент­ное соотношение форм либо из поколения в поколение остается од­ним и тем же, либо колеблется вокруг какой-то постоянной величины. В противоположность переходному, сбалансированный полиморфизм - это статика эволюции. И.И. Шмальгаузен (1940) назвал его равновесным гетероморфизмом.

Примером сбалансированного полиморфизма служит наличие двух полов у моногамных животных, поскольку они обладают равно­ценными селективными преимуществами. Их соотношение в популя­циях составляет 1:1. При полигамии селективное значение у предста­вителей разных полов может отличаться и тогда представители одно­го пола либо уничтожаются, либо в большей степени, чем особи дру­гого пола, отстраняются от размножения. Другой пример - группы крови человека по АВО-системе. Здесь частота разных генотипов в различных популяциях может варьировать, однако, в каждой конкретной популяции она остается постоянной из поколения в поколение. Это объясняется тем, что ни один генотип не обладает селективным преимуществом перед другими. Так, хотя у мужчин с первой группы крови, как показывает статистка, ожидаемая продолжительность жизни, выше, чем у мужчин с другими группами крови, у них чаше, чем у других, развивается язва двенадцатиперстной кишки, которая в случае прободения может привести к смерти.

Генетическое равновесие в популяциях может нарушаться давлением спонтанных мутаций, возникающих с определенной частотой в каждом поколении. Сохранение или же элиминация этих мутаций зависит от того, благоприятствует ли им естественный отбор или про­тиводействует. Прослеживая судьбу мутаций в той или иной популя­ции, можно говорить о ее адаптивной ценности. Последняя равна 1, если отбор не исключает ее и не противодействует распространению. В большинстве случаев показатель адаптивной ценности мутантных генов оказывается меньше 1, а если мутанты совершенно не способны размножаться, то он равен нулю. Такого рода мутации отметаются естественным отбором. Однако, один и тот же ген может неоднократ­но мутировать, что компенсирует его элиминацию, производимую отбором. В таких случаях может быть достигнуто равновесие, когда появление и исчезновение мутировавших генов становится сбаланси­рованным. Примером может служить серповидноклеточная анемия, когда доминантный мутантный ген в гомозиготе приводит к ранней гибели организма, однако, гетерозиготы по этому гену оказываются устойчивыми к заболеванию малярией. В районах, где распростране­на малярия, имеет место сбалансированный полиморфизм по гену серповидноклеточной анемии, поскольку наряду с элиминацией гомо­зигот, действует контротбор в пользу гетерозигот. В результате разновекторного отбора в генофонде популяций поддерживаются в каждом поколении генотипы, обеспечивающие приспособленность организмов с учетом местных условий. Помимо гена в серповидноклеточности, в популяциях человека есть ряд других полиморфных генов, которые как предполагают, вызывают явление гетерозиса

Рецессивные мутации (в том числе и вредные), не проявляющиеся фенотипически у гетерозигот, могут накапливаться в популяциях до более высокого уровня, чем вредные доминантные мутации.

Генетический полиморфизм является обязательным условием для непрерывной эволюции. Благодаря ему в изменяющейся среде всегда могут быть генетические варианты предаптированные к этим усло­виям. В популяции диплоидных раздельнополых организмов может храниться в гетерозиготном состоянии, не проявляясь фенотипически, огромный запас генетической изменчивости. Уровень последней, оче­видно, может быть еще более высоким у полиплоидных организмов, у которых за фенотипически проявляющимся нормальным аллелем может скрываться не один, а несколько мутантных аллелей.

Каждый человек уникален, и эта уникальность возможна благодаря индивидуальному сочетанию генов (генотипу). Общий набор генов у всех людей одинаков, он определяет характерные признаки с точки зрения всего вида. Неповторимые отличия каждого организма возникают благодаря различным комбинациям элементов ДНК.

Клетки ДНК, расположенные на одинаковых участках хромосомы (локусах) и предусматривающие разные состояния одного и того же признака, являются полиморфными (polys - многий и morphe - вид, форма, образ). Их двойственная природа обусловлена разными аллелями, или, по-другому, формами.

Разные аллели возникают вследствие мутации, то есть спонтанного или направленного под воздействием провоцирующих факторов изменения структуры ДНК. Полиморфизм генов определяет индивидуальные различия в развитии физических или психических признаков человека, но кроме этого, он обуславливает предрасположенность к тем или иным заболеваниям.

В тех случаях, когда мутации определяют не наличие самой патологии, а только предрасположенность к ней, она может развиться только под воздействием определенных внешних или внутренних факторов. В частности, генетическая тромбофилия может начать развиваться из-за беременности или воздействия заболеваний сердечно-сосудистой системы – мерцательной аритмии, артериальной гипертензии, варикозного расширения вен и т. д.

Даже под воздействием провоцирующих факторов тромбофилия развивается не у всех склонных к этому людей, все зависит от индивидуальных особенностей организма.

У большинства пациентов с предрасположенностью к образованию тромбов эта особенность является именно врожденной, то есть приобретенной еще во время внутриутробного развития. В этом случае есть два варианта возникновения полиморфизма. Во-первых, он может возникнуть в результате объединения разных аллелей отца и матери в одном гене, во-вторых, полиморфный ген может быть полностью унаследован от одного из родителей.

У каждого человека может быть множество полиморфных генов, но не все из них могут привести к возникновению тромбофилии. Некоторые из них обуславливают вполне безобидные отличия конкретного человека от других, другие дают начало генетическим заболеваниям. На возникновение тромбофилии может повлиять всего несколько генов, которые относятся к системе свертывания крови.

Полиморфизм протромбина

Протромбин (коагуляционный фактор II или F2) – это одна из главных составляющих свертывающей системы. Это сложная белковая структура, которая предшествует тромбину – главному ферменту гемостаза (свертывания), который непосредственно участвует в формировании тромбов. При проведении анализа на полиморфизм протромбина можно получить следующие результаты:

  1. Протромбиновое время. Это значение, выраженное в секундах, которое соответствует показателю времени свертываемости крови. В норме протроибированное время должно находиться в диапазоне 9-12,6 секунд.
  2. Протромбиновый индекс. Это показатель, вычисляемый, как отношение протромбинового времени пациента к нормативному значению для конкретного возраста и пола в процентах. Нормальным считается протромбиновый индекс в пределах от 77 до 120%.
  3. Протромбин по Квику. Это наиболее современный и точный анализ на полиморфизм протромбина. Результат исследования рассчитывается в виде соотношения активности плазмы пациента и нормативного значения контрольной плазмы в процентах. Нормальным показателем считается 78-142%.

На возникновение предрасположенности к тромбозам влияет повышенный протромбиновый индекс, который может превышать норму в 1,5-2 раза. Возникающая мутация наследуется по аутосомно-доминантному типу, то есть даже если ген второго родителя будет нормальным, ребенок унаследует полиморфизм, который может привести или не привести к тромбофилии.

Мутация Лейден

Полиморфизм лейденского фактора (фактора V) коагуляционной системы является одним из наиболее опасных в плане риска развития тромбоза. Этот компонент процесса свертывания, или, по-другому, проакцелерин, является белком, синтезирующимся в печени. Он представляет собой кофактор, то есть вспомогательный элемент, который участвует в преобразовании протромбина в тромбин.

Мутация Лейден встречается у 5% всего населения планеты, а конкретно у пациентов, страдающих от тромбоза, эта особенность встречается в 20-40%. При этом если оба родители обладали полиморфным геном проакцелерина, то риск развития тромбофилии у ребенка составляет 80%, если же явление встречалось только у отца или у матери, вероятность 7%.

Риск развития тромбофилии при мутации лейденского фактора повышается при наличии следующих провоцирующих факторов:

  • хирургические вмешательства, особенно на органах малого таза;
  • период после операции или травмы, предполагающий длительное статическое положение;
  • злокачественные опухоли;
  • избыточный вес;
  • хронические заболевания сердечно-сосудистой системы;
  • прием лекарств из некоторых фармакологических групп;
  • прием оральных контрацептивов (противозачаточных таблеток) и других гормональных средств;
  • беременность, роды и послеродовой период;
  • частые длительные переезды и перелеты;
  • частая катетеризация вен;
  • обезвоживание.

У большинства людей с наличием лишь одного мутировавшего гена проакцелерина при нормальной второй аллели за всю жизнь не возникает ни одного случая тромбоза. Если же полиморфный ген представлен сразу двумя измененными аллелями, то без регулярных профилактических мир предотвратить влияние тромбофилии практически невозможно.

Полиморфизм фактора VII

Фактор VII или F7 (проконвертин) – это элемент свертывающей системы крови, который участвует в раннем этапе формирования тромба. Совместно с некоторыми другими факторами гемостаза он способствует активации фактора X, который, в свою очередь, переводит протромбин из пассивного состояния в активное и способствует образованию тромбина.

Проконвертин синтезируется в печени под воздействием витамина K.

В отличие от полиморфизма других генов, мутация фактора VII при тромбофилии оказывает положительное влияние. Изменение в первичной структуре проконвертина способствует снижению его ферментной активности, то есть он будет в меньше степени влиять на активацию преобразования протромбина в тромбин.

Полиморфизм гена фактора VII гемостаза влияет не только на снижение риска развития тромбоза, но также на уменьшение вероятности возникновения невынашивания беременности, то есть выкидыша. Также под воздействием мутации снижается риск инфаркта миокарда, а если он все же случается, то вероятность летального исхода так же уменьшается. Однако вместе с тем повышается риск кровотечений.

Полиморфизм фибриногена

Фибриноген (фактор I, F1) – это специфический белок, который находится в крови в растворенном виде и при кровотечении является основой для формирования кровяного сгустка. Под влиянием тромбина этот компонент преобразуется в фибрин, который под воздействием ферментов преобразуется непосредственно в тромб.

Фибриноген называют F1, поскольку он был обнаружен учеными самым первым.

Полиморфизм фибриногена значительно повышает вероятность образования тромба, однако в большинстве случаев это происходит под влиянием внешних негативных факторов. К ним относятся воспалительные, инфекционные и аутоиммунные патологии. Также могут повлиять следующие провокаторы:

  • сахарный диабет;
  • избыточный вес;
  • злокачественные новообразования;
  • острый инфаркт миокарда;
  • травмы кожи;
  • курение;
  • гепатиты;
  • туберкулез.

Следует также учитывать, что при сдаче анализов на повышение уровня фибриногена может повлиять стресс, предшествующая интенсивная физическая нагрузка, повышенный уровень холестерина, прием оральных контрацептивов и т. д. Не рекомендуется проводить исследование при простудных заболеваниях.

Анализы на полиморфизм генов

Полиморфизм генов диагностируется с помощью специфического анализа крови, сдаваемой из вены утром натощак. Проходить такое обследование можно в клинических диагностических центрах или частных больница, поскольку в государственных поликлиниках такую услугу не предоставляют. Стоит подготовиться к тому, что каждый анализ может стоить от 1,5 до 4 тысяч рублей, а их может понадобиться несколько.

Назначение на каждый анализ дает лечащий врач по результатам общего исследования крови. Направить на обследование может любой специалист – терапевт, хирург, флеболог и т. д., но расшифровывать результаты должен только гематолог. Не стоит пытаться сделать заключение самостоятельно.

Нередко анализ на полиморфизм генов назначается во время беременности, поскольку тромбофилия в период вынашивания ребенка может привести к непоправимым последствиям. К ним относится задержка внутриутробного развития плода, замирание беременности, выкидыш и преждевременные роды. Несмотря на это, каждая женщина с таким диагнозом может родить здорового ребенка без применения кесарева сечения, если будет полностью придерживаться рекомендаций врача.




Полиморфизм человеческих популяций. Генетический груз .

    Классификация полиморфизма.

    Генетический полиморфизм популяций человека.

    Генетический груз.

    Генетические аспекты предрасположенности к заболеваниям.

Естественный отбор может:

Стабилизировать вид;

Приводить к новообразованию видов;

Способствовать разнообразию.

Полиморфизм – существование в единой панмиксной популяции двух и более резко различающихся фенотипов. Они могут быть нормальными или аномальными. Полиморфизм – явление внутрипопуляционное.

Полиморфизм бывает:

Хромосомный;

Переходный;

Сбалансированный.

Генетический полиморфизм наблюдается, когда ген представлен более чем одним аллелем. Пример – системы групп крови.

Хромосомный полиморфизм – между особями имеются различия по отдельным хромосомам. Это результат хромосомных аббераций. Есть различия в гетерохроматиновых участках. Если изменения не имеют патологических последствий – хромосомный полиморфизм, характер мутаций – нейтрален.

Переходный полиморфизм – замещение в популяции одного старого аллеля новым, который более полезен в данных условиях. У человека есть ген гаптоглобина - Нр1f, Hp 2fs. Старый аллель - Нр1f, новый - Нр2fs. Нр образует комплекс с гемоглобином и обусловливает слипание эритроцитов в острую фазу заболеваний.

Сбалансированный полиморфизм – возникает, когда ни один из генотипов преимущества не получает, а естественный отбор благоприятствует разнообразию.

Все формы полиморфизма очень широко распространены в природе в популяциях всех организмов. В популяциях организмов, размножающихся половым путем, всегда есть полиморфизм.

Корень «морфизм» предполагает рассмотрение строения.

Сейчас под термином «полиморфизм» понимают любой признак, который детерминирован генетически и не являющийся следствием фенокопии. Очень часто имеются 2 альтернативных признака, тогда говорят о диморфизме. Например, половой диморфизм.

До середины 60-х годов ХХ века (точнее 1966) для изучения полиморфизма использовали мутации с морфологическим признаком. Они случаются с небольшой частотой, приводят к серьезным изменениям, а потому, очень заметны.

Тимофеев – Рисовский « о цветочных морфах берлинской популяции божьей коровки…». 8 типов окраски. 3 более часто встречаются (черные пятна на красном фоне) – красные морфы, если наоборот – черные морфы. Определил, что красные – доминантные, а черные – рецессивные. Красных больше зимой, черных – летом. Наличие полиморфизма в популяции носит приспособительный характер.

Изучают окраску садовой улитки в Европе.

В 1960г Хабби и Левонтин предложили использовать метод электрофореза для определения морф белков человека и животных. Происходит распределение белков по слоям благодаря заряду. Метод очень точен. Пример – изоферменты. У организмов одного и того же вида есть несколько форм ферментов, катализирующих одну химическую реакцию, но различающихся по строению. Активность их также варьирует. Отличны и их физико-химические свойства.16% локусов структурных генов – полиморфны. У глюкозы-6-фосфатазы 30 форм. Часто есть сцепление с полом. В клинике давно различают лактатдегидрогеназы (ЛДГ), которых существует 5 форм. Этот фермент осуществляет превращение глюкозы в пируват, концентрация того или иного изофермента в разных органах различает, на чем основана лабораторная диагностика заболеваний.

Беспозвоночные животные полиморфнее, чем позвоночные. Чем полиморфнее популяция, тем более она эволюционно пластична. В популяции большие запасы аллелей не обладают максимальной приспособленностью в данном месте в данное время. Эти запасы встречаются в небольшом количестве и гетерозиготном состоянии. После изменений условий существования они могут стать полезными и начать накапливаться – переходный полиморфизм. Большие генетические запасы помогают популяции реагировать на окружающую среду. Одним из механизмов, поддерживающих разнообразие – превосходство гетерозигот. При полном доминировании – нет проявления, при неполном доминировании наблюдается гетерозис. В популяции отбор поддерживает генетически неустойчивую гетерозиготную структуру, и такая популяция содержит 3 типа особей (АА, Аа, аа). В результате действия естественного отбора происходит генетическая гибель, снижающая репродуктивный потенциал популяции. Численность популяции падает. Поэтому генетическая гибель – бремя для популяции. Ее также называют генетическим грузом.

Генетический груз – часть наследственной изменчивости популяции, определяющая появление менее приспособленных особей, подвергающихся избирательной гибели в результате естественного отбора.

Существует 3 типа генетического груза.

    Мутационный.

    Сегрегационный.

    Субституционный.

Каждый тип генетического груза коррелирует с определенным типом естественного отбора.

Мутационный генетический груз - побочное действие мутационного процесса. Стабилизирующий естественный отбор удаляет вредные мутации из популяции.

Сегрегационный генетический груз – характерен для популяций, использующих преимущество гетерозигот. Удаляются хуже приспособленные гомозиготные особи. Если обе гомозиготы летальны – половина потомков погибает.

Субституционный генетический груз – происходит замена старого аллеля новым. Соответствует движущей форме естественного отбора и переходному полиморфизму.

Генетический полиморфизм создает все условия для протекающей эволюции. При появлении нового фактора в среде популяция способна адаптироваться к новым условиям. Например, устойчивость насекомых к различным видам инсектицидов.

Впервые генетический груз в популяции человека был определен в 1956г в Северном полушарии и составил 4%. Т.е. 4% детей рождались с наследственной патологией. За последующие годы было введено более миллиона соединений в биосферу (более 6000 ежегодно). Ежедневно – 63000 химических соединений. Растет влияние источников радиоактивного излучения. Структура ДНК нарушается.

3% детей в США страдают от врожденной умственной отсталости (даже не обучаются в средней школе).

В настоящее время число врожденных отклонений увеличилось в 1,5 – 2 раза (10%), а медицинские генетики говорят о цифре – 12-15%.

Вывод: беречь окружающую среду.

Полиморфизм по группам крови.

Антигены групп крови приобретают все большее значение в медицине. В некоторых случаях при переливании крови возникает агглютинация – результат взаимодействия антигена донора и антител реципиента.

В системе АВО 4 группы крови. Каждый человек относится только к одной группе.

3 аллеля -А, В, О.

JªJª, JªJ° - А

JªJв, Jв J° - В

Все популяции людей полиморфны по группам крови, но у каждой популяции частоты встречаемости будут разными. В Швеции часта О группа. Среди индейцев полностью отсутствует В группа. Параллельный полиморфизм по группам крови по системе АВО обнаружен и человекообразных обезьян. Вывод: полиморфизм возник раньше возникновения человеческого вида, а значит, уже предок человека имел разные группы крови.

Есть связь между группами крови заболеваниями.

О группа. Ревматизм редок, но язва желудка и 12-перстной кишки, встречается в популяциях чаще, если они находились долгое время в изоляции. Например – аборигены, индейцы, коренное население Австралии. У них имел место естественный отбор, причина его – инфекционные заболевания – холера, туберкулез, сифилис.

Алкоголизм – важный фенотипический признак. Бывает острый и хронический. Чаще проявляется у мужчин. Долгое время считалось, что алкоголизм развивается в условиях среды, вклад наследственности не учитывался. Однако оказалось, генотип важен.

Например, в случае взятия ребенка из детского дома в семью, получены следующие результаты:

Истинный и приемный родители алкоголики – 46% детей алкоголики, а не алкоголики – 8%.

Истинный родитель алкоголик, приемный нет – 50% алкоголики.

Истинный – не алкоголик, приемный алкоголик – 14%.

У человека существуют 2 изофермента, расщепляющие этиловый спирт – алкогольдегидрогеназы. Есть АДН1 и АДН2. Чем быстрее идет расщепление спирта, тем хуже человек переносит алкоголь, т.к. в результате реакции образуется альдегид, обладающий токсическими свойствами. АДГ1 менее активна по сравнению с АДГ2, поэтому люди с АДГ2 не переносят алкоголь.

Однако есть другой фермент, который осуществляет расщепление альдегида и от его активности также зависит переносимость человеком алкоголя.

Генетический полиморфизм широко распространен и лежит в основе наследственной предрасположенности к заболеваниям. Однако болезни наследственных предрасположений проявляются лишь при взаимодействии генов и среды. Условия среды – недостаток или избыток питательных веществ, наличие психогенных факторов, токсических веществ и др. Клиническое течение болезней может быть разнообразно. Чем больше воздействие факторов среды, тем больше лиц больных с предрасположенностью к данному заболеванию. Болезни протекают тяжелее (гипертония, ревматизм, сахарный диабет и другие),

Есть моногенные и полигенные болезни.

Моногенные болезни наследственного предрасположения – наследственные заболевания, проявляющиеся из-за мутации одного гена или проявляющиеся при действии определенного фактора среды (аутосомно-рецессивные или сцепленные с Х-хромосомой).

Проявляются при воздействии факторов:

Физических;

Химических;

Пищевых;

Загрязнения среды.

Парамиотомия – в сырую погоду происходят тонические спазмы мышц при холоде, под влиянием тепла – проходят. Болезнь связана с термочувствительным белком. Реакция проявляется в младенчестве и не изменяется на протяжении жизни человека.

Пигментная ксеродерма - веснушчатая кожа особого типа. Проявляется в 4-6 лет. Дети не переносят УФ-свет возникают злокачественные опухоли, такие дети умирают от метастаз еще до 15 лет. Не переносят также и гамма-лучей.

Синдром Блюма. Пигментная «бабочка» на лице, маленький рост, удлиненная голова. Евреи, поляки, беларусы, австрийцы. Погибают до 18 лет. Не переносят УФ-облучения, гамма-лучей.

Альфа-1 антитрипсин при загрязнении воздуха, табачном дыме проявляется острой закупоркой бронхов или циррозом печени.

У европеоидов люди, не переносящие молоко, составляют 10-20%, в Африке – 70-80%.

Влияние лекарственных средств: сульфаниламидные препараты провоцируют заболевания крови.

Есть полигенные болезни наследственного происхождения – такие болезни, которые возникают при действии многих факторов (мультифакториальные) и в результате взаимодействия многих генов. Установить диагноз в таком случае очень сложно, т.к. действует много факторов, и появляется новое качество при взаимодействии факторов.

Широкий полиморфизм помогает популяции приспосабливаться к условиям среды. У здоровых людей нет противоречия между средой и генотипом, если возникает это противоречие - проявляются болезни наследственного предрасположения. Любые классификации болезней включают группу подобных заболеваний.

Мутации -- основной источник генетического полиморфизма, т.е. наличия в популяции нескольких аллелей одного локуса. Полиморфная природа ДНК позволила разработать системы методов генетического и психогенетического анализа, которые позволяют определить и картировать целый ряд генов, вовлеченных в формирование индивидуальных различий по исследуемым поведенческим признакам. Так например, использование полиморфных маркёров ДНК позволило картировать ген на коротком плече хромосомы 4, ответственный за развитие хореи Гентингтона.

В качестве примера рассмотрим два типа ДНК маркёров: полиморфизм длины рестрикционных фрагментов (Л/Х/"-полиморфизм) и полиморфизм повторяющихся комбинаций нуклеотидов (STR-no-лиморфизм). Для изучения полиморфности (этот процесс также называется тайпингом ДНК) ДНК выделяется из клеток крови или любых других клеток организма, содержащих ДНК (например, берется соскоб с внутренней стороны щеки). При использовании технологии RFLP, ДНК, под воздействием ферментов, распознающих специфические последовательности нуклеотидов в ДНК и избирательно разрушающих ее цепь в определенных местах, разрезается на куски-фрагменты. Такие ферменты впервые были найдены в бактериях, которые производят их с целью защиты от вирусной инфекции.

Существуют сотни таких «рестрицирующих» ферментов, каждый из которых разрезает ДНК в определенном месте, распознавая определенную последовательность оснований; этот процесс называется рестрикцией. Например, один из часто используемых ферментов, EcoRI, распознает последовательность GAA ТТС и разрезает молекулу ДНК между основаниями Си А. Последовательность GAATTC может быть представлена в геноме несколько тысяч раз. Если в определенном локусе эта последовательность различна у разных людей, то у тех из них, которые являются носителями измененной последовательности, фермент в данном локусе ее не разрежет. В результате ДНК геномов, несущих нестандартные последовательности, разрезана в данном локусе не будет и, следовательно, образует более длинный фрагмент. Таким способом распознается разница в структуре ДНК. В результате разреза «рестрицирующими» ферментами могут получиться два типа фрагментов, соответствующих данному локусу, -- длинный и короткий. Их также называют аллелями. По аналогии с «обычными» генами полиморфизмы могут быть гомозиготными по короткому фрагменту, гомозиготными по длинному фрагменту или гетерозиготными по длинному и короткому фрагментам.

Несмотря на то что существуют сотни «рестрицирующих» ферентов, распознающих различные последовательности ДНК, они, как выяснилось, способны отыскать только примерно 20% полиморфны участков ДНК. Были разработаны несколько других типов ДНК-маркёров, распознающих полиморфизмы других типов. Широко используется, например, полиморфизм повторяющихся комбинаций нуклеотидов (/5ТД-полиморфизм). Как уже упоминалось, по неизвестной пока причине в ДНК присутствуют повторяющиеся последовательности, состоящие из 2, 3 или более нуклеотидов. Количество таких повторов варьирует от генотипа к генотипу, и в этом смысле они также обнаруживают полиморфизм. Например, один генотип может быть носителем двух аллелей, содержащих по 5 повторов, другой -- носителем двух аллелей, содержащих по 7 повторов. Предполагается, что геном человека содержит примерно 50 000 локусов, включающих подобные повторяющиеся последовательности. Хромосомные координаты многих локусов, обнаруживающих ^ГЛ-полиморфизм, установлены и теперь используются для картирования структурных генов, служа координатами на хромосомных картах.

Таким образом, генетический полиморфизм, связанный с присутствием так называемых нейтральных (не изменяющих синтезируемый белок) мутаций, плодотворно используется в молекулярно-генетических, в том числе психогенетических, исследованиях, поскольку генетическую изменчивость, выявленную молекулярными методами, можно сопоставлять с изменчивостью фенотипов. Пока этот перспективный путь используется в подавляющем большинстве случаев для исследования разных форм патологии, дающих четко очерченные фенотипы. Однако есть все основания надеяться, что он будет включен и в изучение изменчивости нормальных психических функций. ...

Одним из наиболее замечательных биологических открытий XX столетия стало определение структуры ДНК. Расшифровка генетического кода, открытие механизмов транскрипции, трансляции и некоторых Других процессов на уровне ДНК являются фундаментом в строящемся здании психогенетики -- науки, одна из задач которой состоит в раскрытии секретов соотношения генов и психики. Современные представления о структуре и функциях ДНК коренным образом изменили наши представления о структуре и функционировании генов. Сегодня гены определяются не как абстрактные «факторы наследственности», а как функциональные отрезки ДНК, контролирующие синтез белка и Регулирующие активность других генов. Одним из основных источников изменчивости являются генные мутации. Своими успехами современная молекулярная генетика обязана открытию и использованию закономерностей мутирования ДНК Целью обнаружения и картирования генетических маркёров. Именно они позволят психогенетике перейти от популяционных характеристик к индивидуальным.