Графические уравнения. IV

На уроке учащиеся продемонстрировали знания и умения программы:

– распознавать виды функции, строить их графики;
– отрабатывали навыки построения квадратичной функции;
– отрабатывали графические способы решения квадратных уравнений, используя метод выделения полного квадрата.

Мне захотелось уделить особое внимание решению задач с параметром, так как ЕГЭ по математике предлагает очень много заданий такого типа.

Возможность применить на уроке такой вид работы дали мне сами ученики, так как они имеют достаточную базу знаний, которые можно углубить и расширить.

Заранее подготовленные учащимися шаблоны позволили экономить время урока. В ходе урока мне удалось реализовать поставленные задачи в начале урока и получить ожидаемый результат.

Использование физкультминутки помогло избежать переутомления учащихся, сохранить продуктивную мотивацию получения знаний.

В целом результатом урока я довольна, но думаю, что есть еще резервные возможности: современные инновационные технологические средства, которыми мы, к сожалению, не имеем возможности пользоваться.

Тип урока: закрепление изученного материала.

Цели урока:

  • Общеобразовательные и дидактические :
    • развивать разнообразные способы мыслительной деятельности учащихся;
    • формировать способности самостоятельного решения задач;
    • воспитывать математическую культуру учащихся;
    • развивать интуицию учащихся и умение пользоваться полученными знаниями.
  • Учебные цели :
    • обобщить ранее изученные сведения по теме «Графическое решение квадратных уравнений»;
    • повторить построение графиков квадратичной функции;
    • сформировать навыки использования алгоритмов решения квадратичных уравнений графическим методом.
  • Воспитательные :
    • привитие интереса к учебной деятельности, к предмету математики;
    • формирование толерантности (терпимости), умения работать в коллективе.

ХОД УРОКА

I. Организационный момент

– Сегодня на уроке мы обобщим и закрепим графическое решение квадратных уравнений различными способами.
В дальнейшем эти навыки нам будут нужны в старших классах на уроках математики при решении тригонометрических и логарифмических уравнений, нахождения площади криволинейной трапеции, а также на уроках физики.

II. Проверка домашней работы

Разберем на доске № 23.5(г).

Решить это уравнение с помощью параболы и прямой.

Решение :

х 2 + х – 6 = 0
Преобразуем уравнение: х 2 = 6 – х
Введем функции:

у = х 2 ; квадратичная функция у = 6 – х линейная,
графиком явл. парабола, графиком явл. прямая,

Строем в одной системе координат графики функций (по шаблону)

Получили две точки пересечения.

Решением квадратного уравнения являются абсциссы этих точек х 1 = – 3, х 2 = 2.

Ответ: – 3; 2.

III. Фронтальный опрос

  • Что является графиком квадратичной функции?
  • Скажите алгоритм построения графика квадратичной функции?
  • Что называется квадратичным уравнением?
  • Приведите примеры квадратичных уравнений?
  • Запишите на доске свой пример квадратичного уравнения, Назовите, чему равны коэффициенты?
  • Что значит решить уравнение?
  • Сколько способов вы знаете графического решения квадратных уравнений?
  • В чем заключается графические способы решение квадратных уравнений:

IV. Закрепление материала

На доске решают учащиеся первым, вторым, третьим способами.

Класс решает четвертым

– х 2 + 6х – 5 = 0

Преобразую квадратное уравнение, выделяя полный квадрат двучлена:

– х 2 + 6х – 5 = – (х 2 – 6х + 5) = – (х 2 – 6х + 32 – 9 + 5) = – ((х – 3) 2 – 4) = – (х – 3) 2 + 4

Получили квадратное уравнение:

– (х – 3) 2 + 4 = 0

Введем функцию:

у = – (х 2 – 3) 2 + 4

Квадратичная функция вида у = а (х + L) 2 + m

Графиком явл. парабола, ветви направлены вниз, сдвиг основной параболы по оси Ох в право на 3 ед., по оси Оу вверх на 4 ед., вершина (3; 4).

Строим по шаблону.

Нашли точки пересечения параболы с осью Ох. Абсциссы этих точек явл. решением данного уравнения. х = 1, х = 5.

Давайте посмотрим другие графические решение у доски. Прокомментируйте свой способ решения квадратных уравнений.

1 ученик

Решение :

– х 2 + 6х – 5 = 0

Введем функцию у = – х + 6х – 5, квадратичная функция, графиком является парабола, ветви направлены вниз, вершина

х 0 = – в/2а
х 0 = – 6/– 2 = 3
у 0 = – 3 2 + 18 = 9; точка (3; 9)
ось симметрии х = 3

Строим по шаблону

Получили точки пересечения с осью Ох, абсциссы этих точек являются решением квадратного уравнения. Два корня х 1 = 1, х 2 = 5

2 ученик

Решение :

– х 2 + 6х – 5 = 0

Преобразуем: – х 2 + 6х = 5

Введем функции: у1 = – х 2 + 6х, у2 = 5, линейная функция, квадратичная функция, графиком графиком явл. прямая у || Ох явл. парабола, ветви направлены вниз, вершина х 0 = – в/2а
х 0 = – 6/– 2 = 3
у 0 = – 3 2 + 18 = 9;
(3; 9).
ось симметрии х = 3
Строим по шаблону
Получили точки пересечения
параболы и прямой, их абсциссы являются решением квадратного уравнения. Два корня х 1 = 1, х 2 = 5
Итак, одно и тоже уравнение можно решать различными способами, а ответ получаться должен один и тот же.

V. Физкультминутка

VI. Решение задачи с параметром

При каких значениях р уравнение х 2 + 6х + 8 = р:
– Не имеет корней?
– Имеет один корень?
– Имеет два корня?
Чем отличается это уравнение от предыдущего?
Правильно, буквой!
Эту букву в дальнейшем мы будем называть параметром, Р .
Пока она вам ни о чем не говорит. Но мы будем в дальнейшем решать различные задачи с параметром.
Сегодня решим квадратное уравнение с параметром графическим методом, используя третий способ с помощью параболы и прямой параллельной оси абсцисс.
Ученик помогает учителю решать у доски.
С чего начнем решать?

Зададим функции:

у 1 = х 2 + 6х + 8 у 2 = р линейная функция,
квадратичная функция, графиком является прямая
графиком явл. парабола,
ветви направлены вниз, вершина

х 0 = – в/2а,
х 0 = – 6/2 = – 3
у 0 = (– 3) 2 + 6(– 3) + 8 = – 1
(– 3; – 1)

Ось симметрии х = 3, таблицу строить не буду, а возьму шаблон у = х 2 и приложу к вершине параболы.
Парабола построена! Теперь надо провести прямую у = р .
– Где надо начертить прямую р , чтобы получить два корня?
– Где надо начертить прямую р , чтобы получить один корень?
– Где надо начертить прямую р , чтобы не было корней?
– Итак, сколько наше уравнение может иметь корней?
– Понравилась задача? Спасибо за помощь! Оценка 5.

VII. Самостоятельная работа по вариантам (5 мин.)

у = х 2 – 5х + 6 у = – х 2 + х – 6

Решить квадратное уравнение графическим способом, выбирая для вас удобный способ. Если кто-то справится с заданием раньше, проверьте свое решение другим способом. За это будет выставляться дополнительная оценка.

VIII. Итог урока

– Чему научились вы на сегодняшнем уроке?
– Сегодня на уроке мы с вами квадратные уравнения решали графическим методом, используя различные способы решения, и рассмотрели графический способ решения квадратного уравнения с параметром!
– Переходим к домашнему заданию.

IХ. Домашнее задание

1. Домашняя контрольная работа на стр. 147, из задачника Мордковича по вариантам I и II.
2. На кружке, в среду, будем решать V-м способом, (гипербола и прямая).

Х. Литература:

1. А.Г. Мордкович . Алгебра-8. Часть 1. Учебник для учащихся образовательных учреждений. М.: Мнемозина, 2008 г.
2. А.Г. Мордкович, Л.А.Александрова, Т.Н. Мишустина, Е.Е. Тульчинская . Алгебра – 8. Часть 2. Задачник для учащихся образовательных учреждений. М.: Мнемозина, 2008 г.
3. А.Г. Мордкович . Алгебра 7-9. Методическое пособие для учителя.М.: Мнемозина, 2004 г.
4. Л.А. Александрова . Алгебра-8. Самостоятельные работы для учащихся образовательных учреждений./Под ред. А.Г. Мордковича. М.: Мнемозина, 2009 г.

Если Вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи – решайте их.

Д. Пойа

Уравнение – это равенство, содержащее одно или несколько неизвестных, при условии, что ставится задача нахождения тех значений неизвестных, для которых оно истинно.

Решить уравнение – это значит найти все значения неизвестных, при которых оно обращается в верное числовое равенство, или установить, что таких значений нет.

Область допустимы значений уравнения (О.Д.З.) – это множество всех тех значений переменной (переменных), при которых определены все выражения, входящие в уравнение.

Многие уравнения, представленные в ЕГЭ, решаются стандартными методами. Но никто не запрещает использовать что-то необычное, даже в самых простых случаях.

Так, например, рассмотрим уравнение 3 x 2 = 6 / (2 – x) .

Решим его графически , а затем найдем увеличенное в шесть раз среднее арифметическое его корней.

Для этого рассмотрим функции y = 3 x 2 и y = 6 / (2 – x) и построим их графики.

Функция y = 3 – x 2 – квадратичная.

Перепишем данную функцию в виде y = -x 2 + 3. Ее графиком является парабола, ветви которой направлены вниз (т.к. a = -1 < 0).

Вершина параболы будет смещена по оси ординат на 3 единицы вверх. Таким образом, координата вершины (0; 3).

Чтобы найти координаты точек пересечения параболы с осью абсцисс, приравняем данную функцию к нулю и решим полученное уравнение:

Таким образом, в точках с координатами (√3; 0) и (-√3; 0) парабола пересекает ось абсцисс (рис. 1).

Графиком функции y = 6 / (2 – x) является гипербола.

График этой функции можно построить с помощью следующих преобразований:

1) y = 6 / x – обратная пропорциональность. График функции – гипербола. Ее можно построить по точкам, для этого составим таблицу значений для x и y:

x | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |

y | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |

2) y = 6 / (-x) – график функции, полученной в пункте 1, симметрично отображаем относительно оси ординат (рис. 3).

3) y = 6 / (-x + 2) – сдвигаем график, полученный в пункте 2, по оси абсцисс на две единицы вправо (рис. 4).

Теперь изобразим графики функций y = 3 x 2 и y = 6 / (2 – x) в одной системе координат (рис. 5).

По рисунку видно, что графики пересекаются в трех точках.

Важно понимать, что графический способ решения не позволяет найти точное значение корня. Итак, числа -1; 0; 3 (абсциссы точек пересечения графиков функций) являются пока только предполагаемыми корнями уравнения.

С помощью проверки убедимся, что числа -1; 0; 3 – действительно корни исходного уравнения:

Корень -1:

3 – 1 = 6 / (2 (-1));

3 – 0 = 6 / (2 0);

3 – 9 = 6 / (2 3);

Их среднее арифметическое:

(-1 + 0 + 3) / 3 = 2/3.

Увеличим его в шесть раз: 6 · 2/3 = 4.

Данное уравнение, конечно же, можно решить и более привычным способом – алгебраическим .

Итак, найти увеличенное в шесть раз среднее арифметическое корней уравнения 3 x 2 = 6 / (2 – x).

Начнем решение уравнения с поиска О.Д.З. В знаменателе дроби не должен получаться нуль, поэтому:

Чтобы решить уравнение, воспользуемся основным свойством пропорции, это позволит избавиться от дроби.

(3 x 2)(2 – x) = 6.

Раскроем скобки и приведем подобные слагаемые:

6 – 3x 2x 2 + x 3 = 6;

x 3 2x 2 – 3x = 0.

Вынесем общий множитель за скобки:

x(x 2 2x – 3) = 0.

Воспользуемся тем, что произведение равно нулю только тогда, когда хотя бы один из множителей равен нулю, поэтому имеем:

x = 0 или x 2 2x – 3 = 0.

Решим второе уравнение.

x 2 2x – 3 = 0. Оно квадратное, поэтому воспользуемся дискриминантом.

D = 4 4 · (-3) = 16;

x 1 = (2 + 4) / 2 = 3;

x 2 = (2 4) / 2 = -1.

Все три полученных корня удовлетворяют О.Д.З.

Поэтому найдем их среднее арифметическое и увеличим его в шесть раз:

6 · (-1 + 3 + 0) / 3 = 4.

На самом деле, графический способ решения уравнений применяется довольно редко. Это связано с тем, что графическое представление функций позволяет решать уравнения только приближенно. В основном этот метод используют в тех задачах, где важен поиск не самих корней уравнения – их численных значений, а только их количества.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Одним из способов решения уравнений является графический способ. Он основан на построении графиков функции и определения точек их пересечения. Рассмотрим графический способ решения квадратного уравнения a*x^2+b*x+c=0.

Первый способ решения

Преобразуем уравнение a*x^2+b*x+c=0 к виду a*x^2 =-b*x-c. Строим графики двух функций y= a*x^2 (парабола) и y=-b*x-c (прямая). Ищем точки пересечения. Абсциссы точек пересечения и будут являться решением уравнения.

Покажем на примере: решить уравнение x^2-2*x-3=0.

Преобразуем его в x^2 =2*x+3. Строим в одной системе координат графики функции y= x^2 и y=2*x+3.

Графики пересекаются в двух точках. Их абсциссы будут являться корнями нашего уравнения.

Решение по формуле

Для убедительности проверим это решение аналитическим путем. Решим квадратное уравнение по формуле:

D = 4-4*1*(-3) = 16.

X1= (2+4)/2*1 = 3.

X2 = (2-4)/2*1 = -1.

Значит, решения совпадают.

Графический способ решения уравнений имеет и свой недостаток, с помощью него не всегда можно получить точное решение уравнения. Попробуем решить уравнение x^2=3+x.

Построим в одной системе координат параболу y=x^2 и прямую y=3+x.

Опять получили похожий рисунок. Прямая и парабола пересекаются в двух точках. Но точные значения абсцисс этих точек мы сказать не можем, только лишь приближенные: x≈-1,3 x≈2,3.

Если нас устраивают ответы такой точности, то можно воспользоваться этим методом, но такое бывает редко. Обычно нужны точные решения. Поэтому графический способ используют редко, и в основном для проверки уже имеющихся решений.

Нужна помощь в учебе?



Предыдущая тема:

На этом видеоуроке к изучению предлагается тема «Функция y=x 2 . Графическое решение уравнений». В ходе этого занятия учащиеся смогут познакомиться с новым способом решения уравнений - графическим, который основан на знании свойств графиков функций. Учитель покажет, как можно решить графическим способом функцию y=x 2 .

Тема: Функция

Урок: Функция . Графическое решение уравнений

Графическое решение уравнений основано на знании графиков функций и их свойств. Перечислим функции, графики которых мы знаем:

1) , графиком является прямая линия, параллельная оси абсцисс, проходящая через точку на оси ординат. Рассмотрим пример: у=1:

При различных значениях мы получаем семейство прямых параллельных оси абсцисс.

2) Функция прямой пропорциональности график данной функции - это прямая, проходящая через начало координат. Рассмотрим пример:

Данные графики мы уже строили в предыдущих уроках, напомним, что для построения каждой прямой нужно выбрать точку, удовлетворяющую ей, а второй точкой взять начало координат.

Напомним роль коэффициента k: при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. Кроме того, между двумя параметрами k одного знака существует следующее соотношение: при положительных k чем он больше, тем быстрее функция возрастает, а при отрицательных - функция быстрее убывает при больших значениях k по модулю.

3) Линейная функция . При - получаем точку пересечения с осью ординат и все прямые такого вида проходят через точку (0; m). Кроме того, при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. И конечно величина k влияет на скорость изменения значения функции.

4). Графиком данной функции является парабола.

Рассмотрим примеры.

Пример 1 - графически решить уравнение:

Функции подобного вида мы не знаем, поэтому нужно преобразить заданное уравнение, чтобы работать с известными функциями:

Мы получили в обоих частях уравнения знакомые функции:

Построим графики функций:

Графики имеют две точки пересечения: (-1; 1); (2; 4)

Проверим, правильно ли найдено решение, подставим координаты в уравнение:

Первая точка найдена правильно.

, , , , , ,

Вторая точка также найдена верно.

Итак, решениями уравнения являются и

Поступаем аналогично предыдущему примеру: преобразуем заданное уравнение до известных нам функций, построим их графики, найдем токи пересечения и отсюда укажем решения.

Получаем две функции:

Построим графики:

Данные графики не имеют точек пересечения, значит заданное уравнение не имеет решений

Вывод: в данном уроке мы провели обзор известных нам функций и их графиков, вспомнили их свойства и рассмотрели графический способ решения уравнений.

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

Задание 1: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 494, ст.110;

Задание 2: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 495, ст.110;

Задание 3: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 496, ст.110;

В линейном программировании используется графический метод, с помощью которого определяют выпуклые множества (многогранник решений). Если основная задача линейного программирования имеет оптимальный план, то целевая функция принимает значение в одной из вершин многогранника решений (см. рисунок).

Назначение сервиса . С помощью данного сервиса можно в онлайн режиме решить задачу линейного программирования геометрическим методом, а также получить решение двойственной задачи (оценить оптимальность использования ресурсов). Дополнительно создается шаблон решения в Excel .

Инструкция . Выберите количество строк (количество ограничений).

Количество ограничений 1 2 3 4 5 6 7 8 9 10
Если количество переменных больше двух, необходимо систему привести к СЗЛП (см. пример и пример №2). Если ограничение двойное, например, 1 ≤ x 1 ≤ 4 , то оно разбивается на два: x 1 ≥ 1 , x 1 ≤ 4 (т.е. количество строк увеличивается на 1).
Построить область допустимого решения (ОДР) можно также с помощью этого сервиса .

Вместе с этим калькулятором также используют следующие:
Симплексный метод решения ЗЛП

Решение транспортной задачи
Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
Экстремум функции двух переменных
Вычисление пределов

Решение задачи линейного программирования графическим методом включает следующие этапы :

  1. На плоскости X 1 0X 2 строят прямые.
  2. Определяются полуплоскости.
  3. Определяют многоугольник решений;
  4. Строят вектор N(c 1 ,c 2), который указывает направление целевой функции;
  5. Передвигают прямую целевую функцию c 1 x 2 + c 2 x 2 = 0 в направлении вектора N до крайней точки многоугольника решений.
  6. Вычисляют координаты точки и значение целевой функции в этой точке.
При этом могут возникать следующие ситуации:

Пример . Компания изготавливает два вида продукции - П1 и П2. Для производства продукции используются два вида сырья - С1 и С2. Оптовые цены единицы продукции равна: 5 д.е. для П1 и 4 д.е. для П2. Расход сырья на единицу продукции вида П1 и вида П2 дан в таблице.
Таблица - Расход сырья на производство продукции

Установлены ограничения на спрос продукции: ежедневный объем производства продукции П2 не должен превышать ежедневный объем производства продукции П1 не более чем на 1 тонну; максимальный ежедневный объем производства П2 не должен превышать 2 т.
Требуется определить:
Какое количество продукции каждого вида должно производить предприятие, чтобы доход от реализации продукции был максимальным?
  1. Сформулировать математическую модель задачи линейного программирования.
  2. Решить задачу линейного программирования графическим способом (для двух переменных).
Решение.
Сформулируем математическую модель задачи линейного программирования.
x 1 - производство продукции П1, ед.
x 2 - производство продукции П2, ед.
x 1 , x 2 ≥ 0

Ограничения по ресурсам
6x 1 + 4x 2 ≤ 24
x 1 + 2x 2 ≤ 6

Ограничения по спросу
x 1 +1 ≥ x 2
x 2 ≤ 2

Целевая функция
5x 1 + 4x 2 → max

Тогда получаем следующую ЗЛП:
6x 1 + 4x 2 ≤ 24
x 1 + 2x 2 ≤ 6
x 2 - x 1 ≤ 1
x 2 ≤ 2
x 1 , x 2 ≥ 0
5x 1 + 4x 2 → max