Кто доказал теорему. Кому поля не жмут

Много лет назад я получил письмо из Ташкента от Валерия Муратова, судя по почерку, человека юношеского возраста, проживавшего тогда на улице Коммунистической в доме № 31. Парень был настроен решительно: "Сразу к делу. Сколько вы мне заплатите за доказательство теоремы Ферма? Меня устраивает не менее 500 рублей. В другое время я бы доказал вам бесплатно, но сейчас мне нужны деньги..."

Удивительный парадокс: мало кто знает, кто такой Ферма, когда он жил и что сделал. Еще меньше людей могут даже в самых общих словах описать его великую теорему. Но всем известно, что есть какая-то теорема Ферма, над доказательством которой математики всего мира бьются уже более 300 лет, а доказать не могут!

Людей честолюбивых много, и само сознание того, что есть нечто, чего другие сделать не могут, еще больше подстегивает их честолюбие. Поэтому в академии, научные институты и даже редакции газет всего мира приходили и приходят тысячи (!) доказательств Великой теоремы, — невиданный и никем никогда не побитый рекорд псевдонаучной самодеятельности. Существует даже термин: "ферматисты", т. е. люди, одержимые желанием доказать Великую теорему, которые совершенно измучили математиков-профессионалов требованиями оценить их труды. Известный немецкий математик Эдмунд Ландау даже заготовил стандартку, по которой и отвечал: "В вашем доказательстве теоремы Ферма ошибка на странице... ", а номер страницы проставляли его аспиранты. И вот летом 1994 года газеты всего мира сообщают нечто совершенно сенсационное: Великая теорема доказана!

Итак, кто такой Ферма, в чем суть проблемы и решена ли она действительно? Пьер Ферма родился в 1601 году в семье кожевника, человека состоятельного и уважаемого, — он занимал должность второго консула в родном городке Бомоне, — это что-то вроде помощника мэра. Пьер учился сначала у монахов-францисканцев, потом на юридическом факультете в Тулузе, где затем занимался адвокатурой. Однако круг интересов Ферма выходил далеко за рамки юриспруденции. Особенно занимала его классическая филология, известны его комментарии к текстам древних авторов. И вторая страсть — математика.

В XVII веке, как, впрочем, и долгие годы спустя, не существовало такой профессии: математик. Поэтому все великие математики того времени были математиками "по совместительству": Рене Декарт служил в армии, Франсуа Виет был юристом, Франческо Кавальери — монахом. Научных журналов тогда не было, и классик науки Пьер Ферма при жизни не опубликовал ни одной научной работы. Существовал достаточно узкий круг "любителей", которые решали разные для них интересные задачи и писали по этому поводу письма друг другу, иногда спорили (как Ферма с Декартом), но, в основном, оставались единомышленниками. Они и стали основателями новой математики, сеятелями гениальных зерен, из которых пошло в рост, набирая силу и ветвясь, могучее древо современных математических знаний.

Так вот, таким же "любителем" был и Ферма. В Тулузе, где он прожил 34 года, все знали его, прежде всего, как советника следственной палаты и опытнейшего юриста. В 30 лет он женился, имел трех сыновей и двух дочерей, иногда отлучался в служебные командировки и во время одной из них скоропостижно скончался в возрасте 63 лет. Все! Жизнь этого человека, современника "Трех мушкетеров", удивительна бедна событиями и лишена приключений. Приключения достались на долю его Великой теоремы. Не будем говорить обо всем математическом наследии Ферма, да и трудно рассказать о нем популярно. Поверьте на слово: наследие это велико и разнообразно. Утверждение, что Великая теорема — вершина его творчества, весьма спорно. Просто судьба Великой теоремы удивительно интересна, и огромный мир людей, непосвященных в таинства математики, всегда интересовала не сама теорема, а все, что вокруг нее...

Корни всей этой истории надо искать в античности, столь любимой Ферма. Примерно в III веке жил в Александрии греческий математик Диофант, — ученый своеобразно, нестандартно мыслящий и нестандартно мысли свои излагающий. Из 13 томов его "Арифметики" до нас дошло только 6. Как раз, когда Ферма исполнилось 20 лет, вышел новый перевод его сочинений. Ферма очень увлекался Диофантом, и эти сочинения были его настольной книгой. На ее полях Ферма и записал свою Великую теорему, которая в самом простом современном виде выглядит так: уравнение Xn + Yn = Zn не имеет решения в целых числах при п — больше 2. (При п = 2 решение очевидно: З2 + 42 = 52). Там же, на полях Диофантова тома, Ферма добавляет: "Я открыл это поистине чудесное доказательство, но эти поля для него слишком узки".

На первый взгляд, вещица простенькая, но когда другие математики начали доказывать эту "простенькую" теорему, ни у кого ничего не получалось лет сто. Наконец, великий Леонард Эйлер доказал ее для п = 4, потом через 20 (!) лет — для п = 3. И снова работа застопорилась на многие годы. Следующая победа принадлежит немцу Петеру Дирихле (1805—1859) и французу Андриену Лежандру (1752—1833), — они признали, что Ферма прав при п = 5. Потом француз Габриель Ламе (1795—1870) сделал то же для п = 7. Наконец, в середине прошлого века немец Эрнст Куммер (1810—1893) доказал Великую теорему для всех значений п меньше или равных 100. Причем доказал методами, которые не могли быть известны Ферма, чем еще более усилил флер таинственности вокруг Великой теоремы.

Таким образом, получалось, что доказывали теорему Ферма "по кусочкам", а "целиком" ни у кого не получалось. Новые попытки доказательств приводили лишь к количественному увеличению значений п. Все понимали, что, затратив бездну труда, можно доказать Великую теорему для сколь угодно большого числа п, но Ферма-то говорил о любом его значении больше 2! Вот в этой-то разнице между "сколько угодно большим" и "любым" и сосредотачивался весь смысл проблемы.

Однако надо отметить, что попытки доказать теорему Фермга не были просто некоей математической игрой, рсшсением сложного ребуса. В процессе этих доказательств открывались новые математичес кие горизонты, возникали и решались задачи, становившиеся новыми ветгвями математического древа. Великий немецкий математик Давид Гильберт (1862—1943) приводил Великую теорему, как пример того, "какое побуждающее влияние на науку может оказать специальная и на первыш взгляд малозначительная проблема". Тот же Куммер, работая над теоремой Ферма, сам доказал теоремы, которые легли в фундамент теории чисел, алгебры и теории функций. Так что доказательство Великой теорсемы — не спорт, а настоящая наука.

Время шло, и на помощь профеессиональным "фсрматнтстам" пришла электроника. Электронные мозги но)вых методов выдумать не могли, но зато брали скоростыю. Примерно к началу 80-х годов теорема Ферма с помощью ЭВМ была доказана для n меньше или равной 5500. Постепенно эта цифра выросла до 100 000, но все понимали, что подобное "накопление" — дело чисстой техники, ничего не дающее ни уму ни сердцу. Крепость Великой теоремы "в лоб" взять не смогли щ начали искать обходные маневрья.

В середине 80-х годов молодой немеадкий математик Г. Филытингс доказал так называемую "гипотезу Морделла", которая, кстати, тоже "не давалась в руки" никому из математиков 61 год. Возникла надежда, что теперь, так сказать, "атакой с фланга", может быть решена и теорема Ферма. Однако тогда ничего не получилось. В 1986 году немецкий математик Герхард Фрей в Эссеще предложил новый метод доказательства. Не берусь объяснить его строго, но не на маатематическом, а на общечеловеческом языке он звучит примерно так: если мы убедимся, что доказательство некой другой теоремы есть косвенное, неким образом трансформированное доказательство теоремы Ферма, то, следовательно, мы докажем Великую теорему. Через год американец Кеннет Рибет из Беркли показал, что Фрей прав и, действительно, можно одно доказательство свести к другому. По этому пути пошли многие математики в разных странах мира. У нас очень много для доказательства Великой теоремы сделал Виктор Александрович Колыванов. Трехсотлетние стены неприступной крепости зашатались. Математики поняли, что долго она не устоит.

Летом 1993 года в старинном Кембридже, в Институте математических наук имени Исаака Ньютона собрались 75 виднейших математиков мира, чтобы обсудить свои проблемы. Среди них был и американский профессор Эндрю Уайлс из Принстонскош университета, — крупный специалист в теории чисел. Все знали, что он уже много лет занимается Великой теоремой. Уайлс сделал три доклада и на последнем — 23 июня 1993 года — в самом конце, отвернувшись от доски, сказал с улыбкой:

— Пожалуй, я продолжать не буду...

Вначале наступила мертвая тишина, затем — обвал аплодисментов. Сидящие в зале были достаточно квалифицированы, чтобы понять: Великая теорема Ферма доказана! Во всяком случае, никто из присутствующих не обнаружил в приведенном доказательстве каких-либо погрешностей. Заместитель директора Ньютоновского института Питер Годдард заявил журналистам:

— Большинство экспертов не думали, что узнают разгадку до конца своей жизни. Это одно из крупнейших достижений математики нашего столетия...

Прошло несколько месяцев, никаких замечаний и опровержений не последовало. Правда, Уайлс доказательства своего не опубликовал, а лишь разослал, так называемые, припринты своей работы очень узкому кругу своих коллег, что, естественно, мешает математикам комментировать эту научную сенсацию, и я понимаю академика Людвига Дмитриевича Фаддеева, который сказал:

— Смогу утверждать, что сенсация произошла, когда увижу доказательство своими глазами.

Фаддеев считает, что вероятность победы Уайлса весьма велика.

— Мой отец, известный специалист в теории чисел, был, например, уверен, что теорема будет доказана, но не элементарными средствами, — добавил он.

Скептически отнесся к новости другой наш академик, — Виктор Павлович Маслов, который считает, что доказательство Великой теоремы вообще не является актуальной математической проблемой. По своим научным интересам Маслов — председатель совета по прикладной математике — далек от "ферматистов", и, когда он говорит о том, что полное решение Великой теоремы представляет лишь спортивный интерес, его понять можно. Однако смею заметить, что понятие актуальности в любой науке есть величина переменная. 90 лет назад Резерфорду, наверное, тоже говорили: "Ну, хорошо, ну теория радиоактивного распада... И что? Какой от нее прок?.."

Работа над доказательством Великой теоремы уже дала очень много математике, и можно надеется, что даст еще.

— То, что сделал Уайлс, продвинет математиков в другие области, — сказал Питер Годдард. — Скорее, это не закрывает одно из направлений мысли, а ставит новые вопросы, которые потребуют ответа...

Профессор МГУ Михаил Ильич Зеликин так объяснил мне сегодняшнюю ситуацию:

Никто не видит в работе Уайлса каких-то ошибок. Но чтобы работа эта стала научным фактом, необходимо, чтобы несколько авторитетных математиков независимо друг от друга повторили это доказательство и подтвердили его правильность. Это непременное условие осознания работы Уайлса математической общественностью...

Как много времени потребуется для этого?

Этот вопрос я задал одному из ведущих наших специалистов в области теории чисел, доктору физико-математических наук Алексею Николаевичу Паршину.

— У Эндрю Уайлса еще много времени впереди...

Дело в том, что 13 сентября 1907 года немецкий математик П. Вольфскель, который, в отличие от подавляющего большинства математиков, был человек богатый, завещал тому, кто в ближайшие 100 лет докажет Великую теорему, 100 тысяч марок. В начале века проценты с завещанной суммы шли в казну знаменитого Гетгангентского университета. На эти деньги приглашали ведущих математиков для чтения лекций, вели научную работу. В то время председателем комиссии по присуждению премии был уже упоминавшийся мною Давид Гильберт. Выплачивать премию ему очень не хотелось.

— К счастью, — говорил великий математик, — кажется, у нас нет математика, кроме меня, которому была бы под силу эта задача, я же никогда не решусь зарезать курицу, которая несет нам золотые яйца-

До срока — 2007 года, обозначенного Вольфскелем, осталось немного лет, и, мне кажется, над "курицей Гильберта" нависла серьезная опасность. Но не в премии, собственно, дело. Дело в пытливости мысли и человеческом упорстве. Триста с лишним лет бились, а все же доказали!

И еще. Для меня самое интересное во всей этой истории: как доказал свою Великую теорему сам Ферма? Ведь все сегодняшние математические ухищрения были ему неведомы. И доказал ли он ее вообще? Ведь есть версия, что доказал вроде бы, но сам нашел ошибку, а потому и доказательства другим математикам рассылать не стал, а зачеркнуть запись на полях Диофантова тома забыл. Поэтому, мне кажется, что доказательство Великой теоремы, очевидно, состоялось, но тайна теоремы Ферма осталась, и вряд ли мы когда-нибудь раскроем ее...

Может быть, Ферма и ошибся тогда, но он не ошибался, когда писал: "Быть может, потомство будет признательно мне за то, что я показал ему, что древние не все знали, и это может проникнуть в сознание тех, которые придут после меня для передачи факела сыновьям..."

Что премию Абеля в 2016 году получит Эндрю Уайлз за доказательство гипотезы Таниямы-Шимуры для полустабильных эллиптических кривых и следующее из этой гипотезы доказательство великой теоремы Ферма. В настоящее время премия составляет 6 миллионов норвежских крон, то есть примерно 50 миллионов рублей. По словам Уайлса, присуждение премии стало для него «полной неожиданностью».

Теорема Ферма, доказанная более 20 лет назад, до сих пор привлекает внимание математиков. Отчасти, это связано с ее формулировкой, которая понятна даже школьнику: доказать, что для натуральных n>2 не существует таких троек целых ненулевых чисел, что a n + b n = c n . Это выражение Пьер Ферма записал на полях «Арифметики» Диофанта, снабдив замечательной подписью «Я нашёл этому поистине чудесное доказательство [этого утверждения], но поля книги слишком узки для него». В отличие от большинства математических баек, эта - настоящая.

Вручение премии - прекрасный повод вспомнить десять занимательных историй, связанных с теоремой Ферма.

1.

До того, как Эндрю Уайлз доказал теорему Ферма, ее правильнее было называть гипотезой, то есть гипотезой Ферма. Дело в том, что теорема - это по определению уже доказанное утверждение. Однако, почему-то к этому утверждению приклеилось именно такое название.

2.

Если в теореме Ферма положить n = 2, то у такого уравнения существует бесконечно много решений. Эти решения называются «пифагоровы тройки». Такое название они получили потому, что им соответствуют прямоугольные треугольники, стороны которых выражаются именно такими наборами чисел. Генерировать пифагоровы тройки можно с помощью таких вот трех формул (m 2 - n 2 , 2mn, m 2 + n 2). В эти формулы надо подставлять разные значения m и n, и в результате будут получаться нужные нам тройки. Главное тут, впрочем, убедиться, что полученные числа будут больше нуля - длины не могут выражаться отрицательными числами.

Кстати, легко заметить, что если все числа в пифагоровой тройке умножить на некоторое ненулевое, получится новая пифагорова тройка. Поэтому разумно изучать тройки, в которых у трех чисел в совокупности нет общего делителя. Схема, которую мы описали, позволяет получить все такие тройки - это уже совсем не простой результат.

3.

1 марта на 1847 года заседании Парижской академии наук сразу два математика - Габриэль Ламе и Огюстен Коши - объявили, что находятся на пороге доказательства замечательной теоремы. Они устроили гонку, публикуя кусочки доказательства. Большинство академиков болело за Ламе, поскольку Коши был самодовольным, нетерпимым к чужому мнению религиозным фанатиком (и, разумеется, совершенно блестящим математиком по совместительству). Однако, матчу не суждено было завершиться - через своего друга Жозефа Лиувилля немецкий математик Эрнст Куммер сообщил академикам, что в доказательствах Коши и Ламе есть одна и та же ошибка.

В школе доказывается, что разложение числа на простые множители единственно. Оба математика полагали, что если смотреть на разложение целых чисел уже в комплексном случае, то это свойство - единственность - сохранится. Однако это не так.

Примечательно, что если рассматривать только m + i n, то разложение единственно. Такие числа называются гауссовыми. Но для работы Ламе и Коши потребовалось разложение на множители в циклотомических полях . Это, например, числа, в которых m и n - рациональные, а i удовлетворяет свойству i^k = 1.

4.

Теорема Ферма для n = 3 имеет понятный геометрический смысл. Представим себе, что у нас есть много маленьких кубиков. Пусть мы собрали из них два больших куба. В этом случае, понятное дело, стороны будут целыми числами. Можно ли найти два таких больших куба, что, разобрав их на составляющие мелкие кубы, мы бы могли собрать из них один большой куб? Теорема Ферма говорит, что так сделать никогда нельзя. Забавно, что если задать тот же вопрос для трех кубов, то ответ утвердительный. Например, есть вот такая четверка чисел, открытая замечательным математиком Шринивасом Рамануджаном:

3 3 + 4 3 + 5 3 = 6 3

5.

В истории с теоремой Ферма отметился Леонард Эйлер. Доказать утверждение (или даже подступиться к доказательству) у него толком не получилось, однако он сформулировал гипотезу о том, что уравнение

x 4 + y 4 + z 4 = u 4

не имеет решения в целых числах. Все попытки найти решение такого уравнения в лоб оказались безрезультатны. Только в 1988 году Науму Элкиесу из Гарварда удалось найти контрпример. Он выглядит вот так:

2 682 440 4 + 15 365 639 4 + 18 796 760 4 = 20 615 673 4 .

Обычно эту формулу вспоминают в контексте численного эксперимента. Как правило, в математике это выглядит так: есть некоторая формула. Математик проверяет эту формулу в простых случаях, убеждается в истинности и формулирует некоторую гипотезу. Затем он (хотя чаще какой-нибудь его аспирант или студент) пишет программу для того, чтобы проверить, что формула верна для достаточно больших чисел, которые руками не посчитать (про один такой эксперимент с простыми числами мы ). Это не доказательство, конечно, но отличный повод заявить о гипотезе. Все эти построения базируются на разумном предположении, что, если к некоторой разумной формуле есть контрпример, то мы найдем его достаточно быстро.

Гипотеза Эйлера напоминает, что жизнь гораздо разнообразнее наших фантазий: первый контрпример может быть сколь угодно большим.

6.

На самом деле, конечно, Эндрю Уайлз не пытался доказать теорему Ферма - он решал более сложную задачу под названием гипотеза Таниямы-Шимуры. В математике есть два замечательных класса объектов. Первый называется модулярными формами и представляет собой по сути функции на пространстве Лобачевского. Эти функции не меняются при движениях этой самой плоскости. Второй называется «эллиптическими кривыми и представляет собой кривые, задаваемые уравнением третьей степени на комплексной плоскости. Оба объекта очень популярны в теории чисел.

В 50-х годах прошлого века два талантливых математика Ютака Танияма и Горо Шимура познакомились в библиотеке Токийского университета. В то время особой математики в университете не было: она просто не успела восстановиться после войны. В результате ученые занимались по старым учебникам и разбирали на семинарах задачи, которые в Европе и США считались решенными и не особенно актуальными. Именно Танияма и Шимура обнаружили, что между модулярными формами и эллиптическими функциями есть некое соответствие.

Свою гипотезу они проверили на некоторых простых классах кривых. Оказалось, что она работает. Вот они и предположили, что эта связь есть всегда. Так появилась гипотеза Таниямы-Шимуры, а спустя три года Танияма покончил с собой. В 1984 году немецкий математик Герхард Фрей показал, что если теорема Ферма неверна, то, следовательно, неверна гипотеза Таниямы-Шимуры. Из этого вытекало, что доказавший эту гипотезу, докажет и теорему. Именно это и сделал - правда не совсем в общем виде - Уайлз.

7.

На доказательство гипотезы Уайлз потратил восемь лет. И во время проверки рецензенты нашли в ней ошибку, которая «убивала» большую часть доказательства, сводя на нет все годы работы. Один из рецензентов по имени Ричард Тейлор взялся заделать вместе с Уайлзом эту дырку. Пока они работали, появилось сообщение, что Элкиес, тот самый, который нашел контрпример к гипотезе Эйлера, нашел и контрпример и к теореме Ферма (позже оказалось, что это была первоапрельская шутка). Уайлз впал в депрессию и не хотел продолжать - дырка в доказательстве никак не закрывалась. Тейлор уговорил Уайлза побороться еще месяц.

Случилось чудо и к концу лета математикам удалось сделать прорыв - так на свет появились работы «Модулярные эллиптические кривые и великая теорема Ферма» Эндрю Уайлза (pdf) и «Теоретико-кольцевые свойства некоторых алгебр Гекке» Ричарда Тейлора и Эндрю Уайлза. Это было уже правильное доказательство. Опубликовано оно было в 1995 году.

8.

В 1908 году в Дармштадте скончался математик Пауль Вольфскель. После себя он оставил завещание, в котором давал математическому сообществу 99 лет, чтобы найти доказательство великой теоремы Ферма. Автор доказательства должен был получить 100 тысяч марок (автор контрпримера, кстати, не получил бы ничего). Согласно распространенной легенде, сделать такой подарок математикам Вольфскеля побудила любовь. Вот как описывает легенду Саймон Сингх в своей книге «Великая теорема Ферма »:

История начинается с того, что Вольфскель увлекся красивой женщиной, личность которой так никогда и не была установлена. К великому сожалению для Вольфскеля, загадочная женщина отвергла его. Он впал в такое глубокое отчаяние, что решил совершить самоубийство. Вольфскель был человеком страстным, но не импульсивным, и поэтому принялся во всех подробностях разрабатывать свою смерть. Он назначил дату своего самоубийства и решил выстрелить себе в голову с первым ударом часов ровно в полночь. За оставшиеся дни Вольфскель решил привести в порядок свои дела, которые шли великолепно, а в последний день составил завещание и написал письма близким друзьям и родственникам.

Вольфскель трудился с таким усердием, что закончил все свои дела до полуночи и, чтобы как-нибудь заполнить оставшиеся часы, отправился в библиотеку, где стал просматривать математические журналы. Вскоре ему на глаза попалась классическая статья Куммера, в которой тот объяснял, почему потерпели неудачу Коши и Ламе. Работа Куммера принадлежала к числу самых значительных математических публикаций своего века и как нельзя лучше подходила для чтения математику, задумавшему совершить самоубийство. Вольфскель внимательно, строка за строкой, проследил за выкладками Куммера. Неожиданно Вольфскелю показалось, что он обнаружил пробел: автор сделал некое предположение и не обосновал этот шаг в своих рассуждениях. Вольфскель заинтересовался, действительно ли ему удалось обнаружить серьезный пробел, или сделанное Куммером предположение было обоснованным. Если был обнаружен пробел, то имелся шанс, что Великую теорему Ферма удастся доказать гораздо проще, чем полагали многие.

Вольфскель сел за стол, тщательно проанализировал «ущербную» часть рассуждений Куммера и принялся набрасывать минидоказательство, которое должно было либо подкрепить работу Куммера, либо продемонстрировать ошибочность принятого им предположения и, как следствие, опровергнуть все его доводы. К рассвету Вольфскель закончил свои вычисления. Плохие (с точки зрения математики) новости состояли в том, что доказательство Куммера удалось исцелить, и Великая теорема Ферма по-прежнему осталась недоступной. Но были и хорошие новости: время, назначенное для самоубийства, миновало, а Вольфскель был так горд тем, что ему удалось обнаружить и восполнить пробел в работе великого Эрнеста Куммера, что его отчаяние и печаль развеялись сами собой. Математика вернула ему жажду жизни.

Впрочем, есть и альтернативная версия. Согласно ей, Вольфскель занялся математикой (и, собственно, теоремой Ферма) из-за прогрессирующего рассеянного склероза, который помешал заниматься ему любимым делом - быть врачом. А деньги математикам он оставил, чтобы не оставлять своей жене, которую к концу жизни просто ненавидел.

9.

Попытки доказать теорему Ферма элементарными методами привели к появлению целого класса странных людей под названием «ферматисты». Они занимались тем, что производили огромное количество доказательств и совершенно не отчаивались, когда в этих доказательствах находили ошибку.

На мехмате МГУ был легендарный персонаж по фамилии Добрецов. Он собирал справки из разных ведомств и, пользуясь ими, проникал на мехмат. Делалось это исключительно для того, чтобы найти жертву. Как-то ему попался молодой аспирант (будущий академик Новиков). Он, по наивности своей, принялся внимательно изучать стопку бумаг, которую Добрецов подсунул ему со словами, мол, вот доказательство. После очередного «вот ошибка...» Добрецов забрал стопку, запихнул ее в портфель. Из второго портфеля (да, он ходил по мехмату с двумя портфелями) он достал вторую стопку, вздохнул и сказал: «Ну тогда посмотрим вариант 7 Б».

Кстати, большинство таких доказательств начинается с фразы «Перенесем одно из слагаемых в правую часть равенства и разложим на множители».

10.


Рассказ о теореме будет неполон без замечательного фильма «Математик и черт».

Поправка

В разделе 7 этой статьи первоначально говорилось, что Наум Элкиес нашел контрпример к теореме Ферма, который впоследствии оказался ошибочным. Это неверно: сообщение о контрпримере было первоапрельской шуткой. Приносим извинения за неточность.


Андрей Коняев

Вряд ли хоть один год в жизни нашей редакции проходил без того, чтобы она не получала добрый десяток доказательств теоремы Ферма. Теперь, после «победы» над ней, поток поутих, но не иссяк.

Конечно, не для того чтобы его высушить окончательно, публикуем мы эту статью. И не в своё оправдание - что, мол, вот почему мы отмалчивались, сами не доросли ещё до обсуждения столь сложных проблем.

Но если статья действительно покажется сложной, загляните сразу в её конец. Вы должны будете почувствовать, что страсти поутихли временно, наука не окончена, и вскорости новые доказательства новых теорем направятся в редакции.

Кажется, ХХ век прошёл не зря. Сначала люди создали на миг второе Солнце, взорвав водородную бомбу. Потом они прогуливались по Луне и, наконец, доказали пресловутую теорему Ферма. Из этих трёх чудес первые два у всех на слуху, ибо они вызвали огромные социальные последствия. Напротив, третье чудо выглядит очередной учёной игрушкой - в одном ряду с теорией относительности, квантовой механикой и теоремой Гёделя о неполноте арифметики. Впрочем, относительность и кванты привели физиков к водородной бомбе, а изыскания математиков наполнили наш мир компьютерами. Продолжится ли этот ряд чудес в XXI веке? Можно ли проследить связь между очередными учёными игрушками и революциями в нашем быту? Позволяет ли эта связь делать успешные предсказания? Попробуем понять это на примере теоремы Ферма.

Заметим для начала, что она родилась гораздо позже своего естественного срока. Ведь первый частный случай теоремы Ферма - это уравнение Пифагора X 2 + Y 2 = Z 2 , связывающее длины сторон прямоугольного треугольника. Доказав эту формулу двадцать пять веков назад, Пифагор сразу задался вопросом: много ли в природе таких треугольников, у которых оба катета и гипотенуза имеют целую длину? Кажется, египтяне знали лишь один такой треугольник - со сторонами (3, 4, 5) . Но нетрудно найти и другие варианты: например (5, 12, 13) , (7, 24, 25) или (8, 15, 17) . Во всех этих случаях длина гипотенузы имеет вид (А 2 + В 2) , где А и В - взаимно простые числа разной чётности. При этом длины катетов равны (А 2 - В 2) и 2АВ.

Заметив эти соотношения, Пифагор без труда доказал, что любая тройка чисел (X = A 2 - B 2 , Y = 2AB , Z = A 2 + B 2) является решением уравнения X 2 + Y 2 = Z 2 и задаёт прямоугольник со взаимно простыми длинами сторон. Видно также, что число разных троек такого сорта бесконечно. Но все ли решения уравнения Пифагора имеют такой вид? Ни доказать, ни опровергнуть такую гипотезу Пифагор не смог и оставил эту проблему потомкам, не заостряя на ней внимание. Кому охота подчёркивать свои неудачи? Похоже, что после этого проблема целочисленных прямоугольных треугольников лежала в забвении семь столетий - до тех пор, пока в Александрии не появился новый математический гений по имени Диофант.

Мы мало знаем о нём, но ясно: он был совсем не похож на Пифагора. Тот чувствовал себя царём в геометрии и даже за её пределами - будь то в музыке, астрономии или политике. Первая арифметическая связь между длинами сторон благозвучной арфы, первая модель Вселенной из концентрических сфер, несущих планеты и звёзды, с Землёю в центре, наконец, первая республика учёных в италийском городе Кротоне - таковы личные достижения Пифагора. Что мог противопоставить таким успехам Диофант - скромный научный сотрудник великого Музея, давно переставшего быть гордостью городской толпы?

Только одно: лучшее понимание древнего мира чисел, законы которого едва успели ощутить Пифагор, Евклид и Архимед. Заметим, что Диофант ещё не владел позиционной системой записи больших чисел, но он знал, что такое отрицательные числа и, наверное, провёл немало часов, размышляя о том, почему произведение двух отрицательных чисел положительно. Мир целых чисел впервые открылся Диофанту как особая вселенная, отличная от мира звёзд, отрезков или многогранников. Главное занятие учёных в этом мире - решение уравнений, настоящий мастер находит все возможные решения и доказывает, что других решений нет. Так поступил Диофант с квадратным уравнением Пифагора, а потом задумался: имеет ли хоть одно решение сходное кубическое уравнение X 3 + Y 3 = Z 3 ?

Найти такое решение Диофанту не удалось, его попытка доказать, что решений нет, тоже не увенчалась успехом. Поэтому, оформляя итоги своих трудов в книге «Арифметика» (это был первый в мире учебник теории чисел), Диофант подробно разобрал уравнение Пифагора, но ни словом не заикнулся о возможных обобщениях этого уравнения. А мог бы: ведь именно Диофант впервые предложил обозначения для степеней целых чисел! Но увы: понятие «задачник» было чуждо эллинской науке и педагогике, а публиковать перечни нерешённых задач считалось неприличным занятием (только Сократ поступал иначе). Не можешь решить проблему - молчи! Диофант умолк, и это молчание затянулось на четырнадцать веков - вплоть до наступления Нового времени, когда возродился интерес к процессу человеческого мышления.

Кто только и о чём не фантазировал на рубеже XVI - XVII веков! Неутомимый вычислитель Кеплер пытался угадать связь между расстояниями от Солнца до планет. Пифагору это не удалось. Кеплер добился успеха после того, как научился интегрировать многочлены и другие несложные функции. Напротив, фантазёр Декарт не любил длинных расчётов, но именно он первый представил все точки плоскости или пространства, как наборы чисел. Эта дерзкая модель сводит любую геометрическую задачу о фигурах к некой алгебраической задаче об уравнениях - и наоборот. Например, целые решения уравнения Пифагора соответствуют целым точкам на поверхности конуса. Поверхность, соответствующая кубическому уравнению X 3 + Y 3 = Z 3 , выглядит сложнее, её геометрические свойства ничего не подсказали Пьеру Ферма, и тому пришлось прокладывать новые пути сквозь дебри целых чисел.

В 1636 году в руки молодого юриста из Тулузы попала книга Диофанта, только что переведённая на латынь с греческого оригинала, случайно уцелевшего в каком-то византийском архиве и привезённого в Италию кем-то из беглецов-ромеев в пору турецкого разорения. Читая изящное рассуждение об уравнении Пифагора, Ферма задумался: можно ли найти такое его решение, которое состоит из трёх чисел-квадратов? Малых чисел такого сорта нет: это легко проверить перебором. А как насчёт больших решений? Не имея компьютера, Ферма не мог поставить численный эксперимент. Но он заметил, что по каждому «большому» решению уравнения X 4 + Y 4 = Z 4 можно построить меньшее его решение. Значит, сумма четвёртых степеней двух целых чисел никогда не равна той же степени третьего числа! А как насчёт суммы двух кубов?

Вдохновлённый успехом для степени 4, Ферма попытался модифицировать «метод спуска» для степени 3 - и это ему удалось. Оказалось, что невозможно составить два малых куба из тех единичных кубиков, на которые рассыпался большой куб с целой длиной ребра. Торжествующий Ферма сделал краткую запись на полях книги Диофанта и послал в Париж письмо с подробным сообщением о своём открытии. Но ответа он не получил - хотя обычно столичные математики быстро реагировали на очередной успех их одинокого коллеги-соперника в Тулузе. В чём тут дело?

Очень просто: к середине XVII века арифметика вышла из моды. Большие успехи итальянских алгебраистов XVI века (когда были решены уравнения-многочлены степеней 3 и 4) не стали началом общенаучной революции, ибо они не позволили решить новые яркие задачи в сопредельных областях науки. Вот если бы Кеплеру удалось угадать орбиты планет с помощью чистой арифметики… Но увы - для этого потребовался математический анализ. Значит, его и надо развивать - вплоть до полного торжества математических методов в естествознании! Но анализ вырастает из геометрии, арифметика же остаётся полем забав для досужих юристов и прочих любителей вечной науки о числах и фигурах.

Итак, арифметические успехи Ферма оказались несвоевременны и остались неоценёнными. Он не был этим огорчён: для славы математика довольно впервые открывшихся ему фактов дифференциального исчисления, аналитической геометрии и теории вероятностей. Все эти открытия Ферма сразу вошли в золотой фонд новой европейской науки, меж тем как теория чисел отошла на задний план ещё на сто лет - пока её не возродил Эйлер.

Этот «король математиков» XVIII века был чемпионом во всех применениях анализа, но не пренебрегал и арифметикой, поскольку новые методы анализа приводили к неожиданным фактам о числах. Кто бы мог подумать, что бесконечная сумма обратных квадратов (1 + 1/4 + 1/9 + 1/16+…) равна π 2 /6? Кто из эллинов мог предвидеть, что похожие ряды позволят доказать иррациональность числа π?

Такие успехи заставили Эйлера внимательно перечитать сохранившиеся рукописи Ферма (благо, сын великого француза успел их издать). Правда, доказательство «большой теоремы» для степени 3 не сохранилось, но Эйлер легко восстановил его по одному лишь указанию на «метод спуска», и сразу постарался перенести этот метод на следующую простую степень - 5.

Не тут-то было! В рассуждениях Эйлера появились комплексные числа, которые Ферма ухитрился не заметить (таков обычный удел первооткрывателей). Но разложение целых комплексных чисел на множители - дело тонкое. Даже Эйлер не разобрался в нём до конца и отложил «проблему Ферма» в сторону, торопясь завершить свой главный труд - учебник «Основы анализа», который должен был помочь каждому талантливому юноше встать вровень с Лейбницем и Эйлером. Издание учебника завершилось в Петербурге в 1770 году. Но к теореме Ферма Эйлер уже не возвращался, будучи уверен: всё, чего коснулись его руки и разум, не будет забыто новой учёной молодёжью.

Так и вышло: преемником Эйлера в теории чисел стал француз Адриен Лежандр. В конце XVIII века он завершил доказательство теоремы Ферма для степени 5 - и хотя потерпел неудачу для больших простых степеней, но составил очередной учебник теории чисел. Пусть его юные читатели превзойдут автора так же, как читатели «Математических принципов натурфилософии» превзошли великого Ньютона! Лежандр был не чета Ньютону или Эйлеру, но среди его читателей оказались два гения: Карл Гаусс и Эварист Галуа.

Столь высокой кучности гениев способствовала Французская революция, провозгласившая государственный культ Разума. После этого каждый талантливый учёный ощутил себя Колумбом или Александром Македонским, способным открыть или покорить новый мир. Многим это удавалось, оттого в XIX веке научно-технический прогресс сделался главным движителем эволюции человечества, и все разумные правители (начиная с Наполеона) сознавали это.

Гаусс по характеру был близок к Колумбу. Но он (как и Ньютон) не умел пленять воображение правителей или студентов красивыми речами, и потому ограничил свои амбиции сферой научных понятий. Здесь он мог всё, чего хотел. Например, древняя задача о трисекции угла почему-то не решается с помощью циркуля и линейки. С помощью комплексных чисел, изображающих точки плоскости, Гаусс переводит эту задачу на язык алгебры - и получает общую теорию выполнимости тех или иных геометрических построений. Так одновременно появились строгое доказательство невозможности построения циркулем и линейкой правильного 7- или 9-угольника и такой способ построения правильного 17-угольника, о котором не мечтали самые мудрые геометры Эллады.

Конечно, такой успех не даётся даром: приходится изобретать новые понятия, отражающие суть дела. Ньютон ввёл три таких понятия: флюксию (производную), флюенту (интеграл) и степенной ряд. Их хватило для создания математического анализа и первой научной модели физического мира, включающей механику и астрономию. Гаусс тоже ввёл три новых понятия: векторное пространство, поле и кольцо. Из них выросла новая алгебра, подчинившая себе греческую арифметику и созданную Ньютоном теорию числовых функций. Оставалось ещё подчинить алгебре логику, созданную Аристотелем: тогда можно будет с помощью расчётов доказывать выводимость или невыводимость любых научных утверждений из данного набора аксиом! Например, выводится ли теорема Ферма из аксиом арифметики, или постулат Евклида о параллельных прямых - из прочих аксиом планиметрии?

Эту дерзкую мечту Гаусс не успел осуществить - хотя продвинулся он далеко и угадал возможность существования экзотических (некоммутативных) алгебр. Построить первую неевклидову геометрию сумел только дерзкий россиянин Николай Лобачевский, а первую некоммутативную алгебру (Теорию Групп) - француз Эварист Галуа. И лишь много позже смерти Гаусса - в 1872 году - юный немец Феликс Кляйн догадался, что разнообразие возможных геометрий можно привести во взаимно-однозначное соответствие с разнообразием возможных алгебр. Попросту говоря, всякая геометрия определяется своей группой симметрий - тогда как общая алгебра изучает все возможные группы и их свойства.

Но такое понимание геометрии и алгебры пришло гораздо позже, а штурм теоремы Ферма возобновился ещё при жизни Гаусса. Сам он пренебрёг теоремой Ферма из принципа: не царское это дело - решать отдельные задачи, которые не вписываются в яркую научную теорию! Но ученики Гаусса, вооружённые его новой алгеброй и классическим анализом Ньютона и Эйлера, рассуждали иначе. Сначала Петер Дирихле доказал теорему Ферма для степени 7, используя кольцо целых комплексных чисел, порождённых корнями этой степени из единицы. Потом Эрнст Куммер распространил метод Дирихле на ВСЕ простые степени (!) - так ему сгоряча показалось, и он восторжествовал. Но вскоре пришло отрезвление: доказательство проходит безупречно, только если всякий элемент кольца однозначно разлагается на простые множители! Для обычных целых чисел этот факт был известен ещё Евклиду, но только Гаусс дал его строгое доказательство. А как обстоит дело с целыми комплексными числами?

Согласно «принципу наибольшей пакости», там может и ДОЛЖНО встретиться неоднозначное разложение на множители! Как только Куммер научился вычислять степень неоднозначности методами математического анализа, он обнаружил эту пакость в кольце для степени 23. Гаусс не успел узнать о таком варианте экзотической коммутативной алгебры, но ученики Гаусса вырастили на месте очередной пакости новую красивую Теорию Идеалов. Правда, решению проблемы Ферма это не особенно помогло: только стала яснее её природная сложность.

На протяжении XIX века этот древний идол требовал от своих почитателей всё новых жертв в форме новых сложных теорий. Не удивительно, что к началу ХХ века верующие пришли в уныние и взбунтовались, отвергая былой кумир. Слово «ферматист» стало бранным прозвищем среди профессиональных математиков. И хотя за полное доказательство теоремы Ферма была назначена немалая премия, но её соискателями выступали в основном самоуверенные невежды. Сильнейшие математики той поры - Пуанкаре и Гильберт - демонстративно сторонились этой темы.

В 1900 году Гильберт не включил теорему Ферма в перечень двадцати трёх важнейших проблем, стоящих перед математикой ХХ века. Правда, он включил в их ряд общую проблему разрешимости диофантовых уравнений. Намёк был ясен: следуйте примеру Гаусса и Галуа, создавайте общие теории новых математических объектов! Тогда в один прекрасный (но не предсказуемый заранее) день старая заноза выпадет сама собой.

Именно так действовал великий романтик Анри Пуанкаре. Пренебрегая многими «вечными» проблемами, он всю жизнь изучал СИММЕТРИИ тех или иных объектов математики или физики: то функций комплексного переменного, то траекторий движения небесных тел, то алгебраических кривых или гладких многообразий (это многомерные обобщения кривых линий). Мотив его действий был прост: если два разных объекта обладают сходными симметриями - значит, между ними возможно внутреннее родство, которое мы пока не в силах постичь! Например, каждая из двумерных геометрий (Евклида, Лобачевского или Римана) имеет свою группу симметрий, которая действует на плоскости. Но точки плоскости суть комплексные числа: таким путём действие любой геометрической группы переносится в безбрежный мир комплексных функций. Можно и нужно изучать самые симметричные из этих функций: АВТОМОРФНЫЕ (которые подвластны группе Евклида) и МОДУЛЯРНЫЕ (которые подчиняются группе Лобачевского)!

А ещё на плоскости есть эллиптические кривые. Они никак не связаны с эллипсом, но задаются уравнениями вида Y 2 = AX 3 + BX 2 + CX и потому пересекаются с любой прямой в трёх точках. Этот факт позволяет ввести среди точек эллиптической кривой умножение - превратить её в группу. Алгебраическое устройство этой группы отражает геометрические свойства кривой, может быть, она однозначно определена своей группой? Этот вопрос стоит изучить, поскольку для некоторых кривых интересующая нас группа оказывается модулярной, то есть она связана с геометрией Лобачевского…

Так рассуждал Пуанкаре, соблазняя математическую молодёжь Европы, но в начале ХХ века эти соблазны не привели к ярким теоремам или гипотезам. Иначе получилось с призывом Гильберта: изучать общие решения диофантовых уравнений с целыми коэффициентами! В 1922 году молодой американец Льюис Морделл связал множество решений такого уравнения (это - векторное пространство определённой размерности) с геометрическим родом той комплексной кривой, которая задаётся этим уравнением. Морделл пришёл к выводу, что если степень уравнения достаточно велика (больше двух), то размерность пространства решений выражается через род кривой, и потому эта размерность КОНЕЧНА. Напротив - в степени 2 уравнение Пифагора имеет БЕСКОНЕЧНОМЕРНОЕ семейство решений!

Конечно, Морделл видел связь своей гипотезы с теоремой Ферма. Если станет известно, что для каждой степени n > 2 пространство целых решений уравнения Ферма конечномерно, это поможет доказать, что таких решений вовсе нет! Но никаких путей к доказательству своей гипотезы Морделл не видел - и хотя он прожил долгую жизнь, но не дождался превращения этой гипотезы в теорему Фальтингса. Это случилось в 1983 году - в совсем иную эпоху, после великих успехов алгебраической топологии многообразий.

Пуанкаре создал эту науку как бы нечаянно: ему захотелось узнать, какие бывают трёхмерные многообразия. Ведь разобрался же Риман в строении всех замкнутых поверхностей и получил очень простой ответ! Если в трёхмерном или многомерном случае такого ответа нет - нужно придумать систему алгебраических инвариантов многообразия, определяющую его геометрическое строение. Лучше всего, если такие инварианты будут элементами каких-нибудь групп - коммутативных или некоммутативных.

Как ни странно, этот дерзкий план Пуанкаре удался: он был выполнен с 1950 по 1970 год благодаря усилиям очень многих геометров и алгебраистов. До 1950 года шло тихое накопление разных методов классификации многообразий, а после этой даты как будто накопилась критическая масса людей и идей и грянул взрыв, сравнимый с изобретением математического анализа в XVII веке. Но аналитическая революция растянулась на полтора столетия, охватив творческие биографии четырёх поколений математиков - от Ньютона и Лейбница до Фурье и Коши. Напротив, топологическая революция ХХ века уложилась в двадцать лет - благодаря большому числу её участников. При этом сложилось многочисленное поколение самоуверенных молодых математиков, вдруг оставшихся без работы на исторической родине.

В семидесятые годы они устремились в сопредельные области математики и теоретической физики. Многие создали свои научные школы в десятках университетов Европы и Америки. Между этими центрами поныне циркулирует множество учеников разного возраста и национальности, с разными способностями и склонностями, и каждый хочет прославиться каким-нибудь открытием. Именно в этом столпотворении были, наконец, доказаны гипотеза Морделла и теорема Ферма.

Однако первая ласточка, не ведая о своей судьбе, выросла в Японии в голодные и безработные послевоенные годы. Звали ласточку Ютака Танияма. В 1955 году этому герою исполнилось 28 лет, и он решил (вместе с друзьями Горо Шимура и Такаудзи Тамагава) возродить в Японии математические исследования. С чего начать? Конечно, с преодоления изоляции от зарубежных коллег! Так в 1955 году три молодых японца устроили в Токио первую международную конференцию по алгебре и теории чисел. Сделать это в перевоспитанной американцами Японии было, видимо, легче, чем в замороженной Сталиным России…

Среди почётных гостей были два богатыря из Франции: Андре Вейль и Жан-Пьер Серр. Тут японцам крупно повезло: Вейль был признанным главой французских алгебраистов и членом группы Бурбаки, а молодой Серр играл сходную роль среди топологов. В жарких дискуссиях с ними головы японской молодёжи трещали, мозги плавились, но в итоге кристаллизовались такие идеи и планы, которые вряд ли могли родиться в иной обстановке.

Однажды Танияма пристал к Вейлю с неким вопросом насчёт эллиптических кривых и модулярных функций. Сначала француз ничего не понял: Танияма был не мастер изъясняться по-английски. Потом суть дела прояснилась, но придать своим надеждам точную формулировку Танияма так и не сумел. Всё, что Вейль мог ответить молодому японцу, - это что если ему очень повезёт по части вдохновения, то из его невнятных гипотез вырастет что-то дельное. Но пока надежда на это слаба!

Очевидно, Вейль не заметил небесного огня во взоре Танияма. А огонь-то был: похоже, что на миг в японца вселилась неукротимая мысль покойного Пуанкаре! Танияма пришёл к убеждению, что каждая эллиптическая кривая порождается модулярными функциями - точнее, она «униформизуется модулярной формой». Увы, эта точная формулировка родилась много позже - в разговорах Танияма с его другом Шимура. А потом Танияма покончил с собой в приступе депрессии… Его гипотеза осталась без хозяина: непонятно было, как её доказать или где её проверить, и оттого её долгое время никто не принимал всерьёз. Первый отклик пришёл лишь через тридцать лет - почти как в эпоху Ферма!

Лёд тронулся в 1983 году, когда двадцатисемилетний немец Герд Фальтингс объявил всему миру: гипотеза Морделла доказана! Математики насторожились, но Фальтингс был истинный немец: в его длинном и сложном доказательстве не нашлось пробелов. Просто пришло время, накопились факты и понятия - и вот один талантливый алгебраист, опираясь на результаты десяти других алгебраистов, сумел решить проблему, которая шестьдесят лет простояла в ожидании хозяина. В математике ХХ века это не редкость. Стоит вспомнить вековую континуум-проблему в теории множеств, две гипотезы Бернсайда в теории групп или гипотезу Пуанкаре в топологии. Наконец и в теории чисел пришла пора собирать урожай давних посевов… Какая вершина станет следующей в ряду покорённых математиками? Неужели рухнут проблема Эйлера, гипотеза Римана или теорема Ферма? Хорошо бы!

И вот через два года после откровения Фальтингса в Германии объявился ещё один вдохновенный математик. Звали его Герхард Фрей, и утверждал он нечто странное: будто теорема Ферма ВЫВОДИТСЯ из гипотезы Танияма! К сожалению, стилем изложения своих мыслей Фрей больше напоминал невезучего Танияма, чем своего чёткого соотечественника Фальтингса. В Германии Фрея никто не понял, и он поехал за океан - в славный городок Принстон, где после Эйнштейна привыкли и не к таким визитёрам. Недаром там свил своё гнездо Барри Мазур - разносторонний тополог, один из героев недавнего штурма гладких многообразий. И вырос рядом с Мазуром ученик - Кен Рибет, равно искушённый в тонкостях топологии и алгебры, но ещё ничем себя не прославивший.

Впервые услыхав речи Фрея, Рибет решил, что это чушь и околонаучная фантастика (вероятно, так же реагировал Вейль на откровения Танияма). Но забыть эту «фантастику» Рибет не смог и временами возвращался к ней мысленно. Через полгода Рибет поверил, что в фантазиях Фрея есть нечто дельное, а через год он решил, что сам почти умеет доказать странную гипотезу Фрея. Но оставались некоторые «дырки», и Рибет решил исповедаться своему шефу Мазуру. Тот внимательно выслушал ученика и спокойно ответил: «Да у тебя же всё сделано! Вот здесь нужно применить преобразование Ф, тут - воспользоваться леммами В и К, и всё примет безупречный вид!» Так Рибет совершил прыжок из безвестности в бессмертие, использовав катапульту в лице Фрея и Мазура. По справедливости, всем им - вместе с покойным Танияма - следовало бы считаться доказателями великой теоремы Ферма.

Да вот беда: они выводили своё утверждение из гипотезы Танияма, которая сама не доказана! А вдруг она неверна? Математики давно знают, что «из лжи следует всё, что угодно», если догадка Танияма ошибочна, то грош цена безупречным рассуждениям Рибета! Нужно срочно доказывать (или опровергать) гипотезу Танияма - иначе кто-нибудь вроде Фальтингса докажет теорему Ферма иным путём. Он и выйдет в герои!

Вряд ли мы когда-нибудь узнаем, сколько юных или матёрых алгебраистов накинулось на теорему Ферма после успеха Фальтингса или после победы Рибета в 1986 году. Все они старались работать в тайне, чтобы в случае неудачи не быть причисленными к сообществу «чайников»-ферматистов. Известно, что самый удачливый из всех - Эндрю Уайлз из Кембриджа - ощутил вкус победы только в начале 1993 года. Это не столько обрадовало, сколько напугало Уайлза: что если в его доказательстве гипотезы Танияма обнаружится ошибка или пробел? Тогда погибла его научная репутация! Надо же аккуратно записать доказательство (но это будут многие десятки страниц!) и отложить его на полгода-год, чтобы потом перечитать хладнокровно и придирчиво… Но если за это время кто-нибудь опубликует своё доказательство? Ох, беда…

Всё же Уайлз придумал двойной способ быстрой проверки своего доказательства. Во-первых, нужно довериться одному из надёжных друзей-коллег и рассказать ему весь ход рассуждений. Со стороны все ошибки видней! Во-вторых, надо прочитать спецкурс на эту тему смышлёным студентам и аспирантам: уж эти умники не пропустят ни одной ошибки лектора! Только надо не сообщать им конечную цель курса до последнего момента - иначе об этом узнает весь мир! И конечно, искать такую аудиторию надо подальше от Кембриджа - лучше даже не в Англии, а в Америке… Что может быть лучше далёкого Принстона?

Туда и направился Уайлз весной 1993 года. Его терпеливый друг Никлас Кац, выслушав долгий доклад Уайлза, обнаружил в нём ряд пробелов, но все они оказались легко исправимы. Зато принстонские аспиранты вскоре разбежались со спецкурса Уайлза, не желая следовать за прихотливой мыслью лектора, который ведёт их неведомо куда. После такой (не особенно глубокой) проверки своей работы Уайлз решил, что пора явить великое чудо свету.

В июне 1993 года в Кембридже проходила очередная конференция, посвящённая «теории Ивасава» - популярному разделу теории чисел. Уайлз решил рассказать на ней своё доказательство гипотезы Танияма, не объявляя главный результат до самого конца. Доклад шёл долго, но успешно, постепенно начали стекаться журналисты, которые что-то почуяли. Наконец, грянул гром: теорема Ферма доказана! Общее ликование не было омрачено какими-либо сомнениями: кажется, всё чисто… Но через два месяца Кац, прочтя окончательный текст Уайлза, заметил в нём ещё одну брешь. Некий переход в рассуждениях опирался на «систему Эйлера» - но то, что построил Уайлз, такой системой не являлось!

Уайлз проверил узкое место и понял, что тут он ошибся. Хуже того: непонятно, чем заменить ошибочное рассуждение! После этого в жизни Уайлза наступили самые мрачные месяцы. Прежде он вольно синтезировал небывалое доказательство из подручного материала. Теперь он привязан к узкой и чёткой задаче - без уверенности, что она имеет решение и что он сумеет его найти в обозримый срок. Недавно Фрей не устоял в такой же борьбе - и вот его имя заслонилось именем удачливого Рибета, хотя догадка Фрея оказалась верна. А что будет с МОЕЙ догадкой и с МОИМ именем?

Эта каторжная работа тянулась ровно год. В сентябре 1994 года Уайлз был готов признать своё поражение и оставить гипотезу Танияма более удачливым преемникам. Приняв такое решение, он начал медленно перечитывать своё доказательство - с начала до конца, вслушиваясь в ритм рассуждений, вновь переживая удовольствие от удачных находок. Дойдя до «проклятого» места, Уайлз, однако, не услышал мысленно фальшивой ноты. Неужели ход его рассуждений был всё-таки безупречен, а ошибка возникла лишь при СЛОВЕСНОМ описании мысленного образа? Если тут нет «системы Эйлера», то что тут скрыто?

Неожиданно пришла простая мысль: «система Эйлера» не работает там, где применима теория Ивасава. Почему бы не применить эту теорию напрямую - благо, самому Уайлзу она близка и привычна? И почему он не испробовал этот подход с самого начала, а увлёкся чужим видением проблемы? Вспомнить эти детали Уайлз уже не мог - да и ни к чему это стало. Он провёл необходимое рассуждение в рамках теории Ивасава, и всё получилось за полчаса! Так - с опозданием в один год - была закрыта последняя брешь в доказательстве гипотезы Танияма. Итоговый текст был отдан на растерзание группе рецензентов известнейшего математического журнала, годом позже они заявили, что теперь ошибок нет. Таким образом, в 1995 году последняя гипотеза Ферма скончалась на трёхсотшестидесятом году своей жизни, превратившись в доказанную теорему, которая неизбежно войдёт в учебники теории чисел.

Подводя итог трёхвековой возне вокруг теоремы Ферма, приходится сделать странный вывод: этой геройской эпопеи могло и не быть! Действительно, теорема Пифагора выражает простую и важную связь между наглядными природным объектами - длинами отрезков. Но нельзя сказать то же самое о теореме Ферма. Она выглядит скорее как культурная надстройка на научном субстрате - вроде достижения Северного полюса Земли или полёта на Луну. Вспомним, что оба эти подвига были воспеты литераторами задолго до их свершения - ещё в античную эпоху, после появления «Начал» Евклида, но до появления «Арифметики» Диофанта. Значит, тогда возникла общественная потребность в интеллектуальных подвигах этого сорта - хотя бы воображаемых! Прежде эллинам хватало поэм Гомера, как за сто лет до Ферма французам хватало религиозных увлечений. Но вот религиозные страсти схлынули - и рядом с ними встала наука.

В России такие процессы начались полтораста лет назад, когда Тургенев поставил Евгения Базарова в один ряд с Евгением Онегиным. Правда, литератор Тургенев плохо понимал мотивы действий учёного Базарова и не решился их воспеть, но это вскоре сделали учёный Иван Сеченов и просвещённый журналист Жюль Верн. Стихийная научно-техническая революция нуждается в культурной оболочке, чтобы проникнуть в умы большинства людей, и вот появляется сперва научная фантастика, а за нею научно-популярная литература (включая журнал «Знание - сила»).

При этом конкретная научная тема совсем не важна для широкой публики и не очень важна даже для героев-исполнителей. Так, услыхав о достижении Северного полюса Пири и Куком, Амундсен мгновенно изменил цель своей уже подготовленной экспедиции - и вскоре достиг Южного полюса, опередив Скотта на один месяц. Позднее успешный полёт Юрия Гагарина вокруг Земли вынудил президента Кеннеди сменить прежнюю цель американской космической программы на более дорогую, но гораздо более впечатляющую: высадку людей на Луне.

Ещё раньше проницательный Гильберт на наивный вопрос студентов: «Решение какой научной задачи было бы сейчас наиболее полезно»? - ответил шуткой: «Поймать муху на обратной стороне Луны!» На недоумённый вопрос: «А зачем это нужно?» - последовал чёткий ответ: «ЭТО никому не нужно! Но подумайте о тех научных методах и технических средствах, которые нам придётся развить для решения такой проблемы - и какое множество иных красивых задач мы решим попутно!»

Именно так получилось с теоремой Ферма. Эйлер вполне мог её не заметить.

В таком случае кумиром математиков стала бы какая-нибудь другая задача - возможно, также из теории чисел. Например, проблема Эратосфена: конечно или бесконечно множество простых чисел-близнецов (таких, как 11 и 13, 17 и 19 и так далее)? Или проблема Эйлера: всякое ли чётное число является суммой двух простых чисел? Или: есть ли алгебраическое соотношение между числами π и e? Эти три проблемы до сих пор не решены, хотя в ХХ веке математики заметно приблизились к пониманию их сути. Но этот век породил и много новых, не менее интересных задач, особенно на стыках математики с физикой и другими ветвями естествознания.

Ещё в 1900 году Гильберт выделил одну из них: создать полную систему аксиом математической физики! Сто лет спустя эта проблема далека от решения - хотя бы потому, что арсенал математических средств физики неуклонно растёт, и не все они имеют строгое обоснование. Но после 1970 года теоретическая физика разделилась на две ветви. Одна (классическая) со времён Ньютона занимается моделированием и прогнозированием УСТОЙЧИВЫХ процессов, другая (новорождённая) пытается формализовать взаимодействие НЕУСТОЙЧИВЫХ процессов и пути управления ими. Ясно, что эти две ветви физики надо аксиоматизировать порознь.

С первой из них, вероятно, удастся справиться лет за двадцать или пятьдесят…

А чего не хватает второй ветви физики - той, которая ведает всяческой эволюцией (включая диковинные фракталы и странные аттракторы, экологию биоценозов и теорию пассионарности Гумилёва)? Это мы вряд ли скоро поймём. Но поклонение учёных новому кумиру уже стало массовым явлением. Вероятно, здесь развернётся эпопея, сравнимая с трёхвековой биографией теоремы Ферма. Так на стыках разных наук рождаются всё новые кумиры - подобные религиозным, но более сложные и динамичные…

Видимо, не может человек оставаться человеком, не свергая время от времени прежних кумиров и не сотворяя новых - в муках и с радостью! Пьеру Ферма повезло оказаться в роковой момент вблизи от горячей точки рождения нового кумира - и он сумел оставить на новорождённом отпечаток своей личности. Можно позавидовать такой судьбе, и не грех ей подражать.

Сергей Смирнов
«Знание-сила»

Завистники утверждают, что французский математик Пьер Ферма вписал свое имя в историю всего одной фразой. На полях рукописи с формулировкой знаменитой теоремы в 1637 году он сделал пометку: "Я нашел удивительное решение, но здесь маловато места, чтобы его поместить". Тогда и началась удивительная математическая гонка, в которую наряду с выдающимися учеными включилась армия дилетантов.

В чем коварство задачи Ферма? На первый взгляд, она понятна даже школьнику.

В основе - известная каждому теорема Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: х 2 + у 2 = z 2 . Ферма утверждал: уравнение при любых степенях больше двух не имеет решения в целых числах.

Казалось бы, просто. Протяни руку, и вот ответ. Неудивительно, что академии разных стран, научные институты, даже редакции газет были завалены десятками тысяч доказательств. Их число беспрецедентно, уступает разве что проектам "вечных двигателей". Но если эти сумасшедшие идеи серьезная наука давно не рассматривает, то работы "фермистов" честно и заинтересованно изучает. И, увы, находит ошибки. Говорят, что за три с лишним века образовалось целое математическое кладбище решений теоремы.

Не зря говорят: близок локоть, а не укусишь. Проходили года, десятилетия, века, и задача Ферма представлялась все более удивительной и заманчивой. Вроде бы простенькая, она оказалась не по зубам стремительно наращивающему мускулы прогрессу. Человек уже расщепил атом, добрался до гена, ступил на Луну, а Ферма не давался, продолжая манить потомков ложными надеждами.

Однако попытки одолеть научную вершину не прошли даром. Первый шаг сделал великий Эйлер, доказав теорему для четвертой степени, затем для третьей. В конце XIX века немец Эрнст Куммер довел число степеней до ста. Наконец, вооружившись компьютерами, ученые увеличили эту цифру до 100 тысяч. Но Ферма-то говорил о любых степенях. В этом состояла вся загвоздка.

Конечно, мучились ученые над задачей не из-за спортивного интереса. Знаменитый математик Давид Гильберт говорил, что теорема - это пример, как вроде бы малозначительная проблема может оказать на науку огромное влияние. Работая над ней, ученые открыли совершенно новые математические горизонты, например, были заложены фундаменты теории чисел, алгебры, теории функций.

И все же Великая теорема была в 1995 году покорена. Ее решение представил американец из Принстонского университета Эндрю Уайлс, и оно официально признано научным сообществом. Более семи лет жизни отдал он, чтобы найти доказательство. По мнению ученых, эта выдающаяся работа свела воедино труды многих математиков, восстановив утраченные связи между разными ее разделами.

Итак, вершина взята, и наука ответ получила, - сказал корреспонденту "РГ" ученый секретарь Отделения математики Российской академии наук, доктор технических наук Юрий Вишняков. - Теорема доказана, пусть и не простейшим способом, на чем настаивал сам Ферма. А теперь желающие могут печатать свои варианты.

Однако семейство "фермистов" вовсе не собирается признавать доказательство Уайлса. Нет, они не опровергают решение американца, ведь оно очень сложное, а потому понятно лишь узкому кругу специалистов. Но не проходит недели, чтобы в Интернете ни появилось новое откровение очередного энтузиаста, "наконец-то поставившего точку в многолетней эпопее".

Кстати, буквально вчера в редакцию "РГ" позвонил один из старейших в нашей стране "фермистов" Всеволод Ярош: "А вы знаете, что теорему Ферма я доказал еще до Уайлса. Более того, потом нашел у него ошибку, о чем написал выдающемуся нашему математику академику Арнольду с просьбой напечатать об этом в научном журнале. Теперь жду ответа. Переписываюсь по этому поводу и с французской академией наук".

И вот только что, как сообщается в ряде СМИ, с "легким изяществом раскрыл великую тайну математики", еще один энтузиаст - бывший генеральный конструктор ПО "Полет" из Омска, доктор технических наук Александр Ильин. Решение оказалось настолько простым и коротким, что поместилось на маленьком участке газетной площади одного из центральных изданий.

Редакция "РГ" обратилась в ведущий в стране Институт математики им. Стеклова РАН с просьбой оценить это решение. Ученые были категоричны: нельзя комментировать газетную публикацию. Но после долгих уговоров и учитывая повышенный интерес к знаменитой задаче, согласились. По их словам, в опубликованном очередном доказательстве допущено несколько принципиальных ошибок. Кстати, их вполне мог бы заметить даже студент математического факультета.

И все же редакция хотела получить информацию из первых рук. Тем более что вчера в академии авиации и воздухоплавания Ильин должен был представить свое доказательство. Однако оказалось, что о такой академии мало кто знает даже среди специалистов. А когда все-таки с величайшим трудом удалось разыскать телефон ученого секретаря этой организации, то, как выяснилось, он даже не подозревал, что именно у них должно состояться столь историческое событие. Словом, корреспонденту "РГ" стать свидетелем мировой сенсации так и не удалось.

ФЕРМА ВЕЛИКАЯ ТЕОРЕМА - утверждение Пьера Ферма (французский юрист и по совместительству математик) о том, что диофантово уравнение X n + Y n = Z n , при показателе степени n>2, где n = целое число, не имеет решений в целых положительных числах. Авторский текст: "Невозможно разложить куб на два куба, или биквадрат на два биквадрата, или вообще степень, большую двух, на две степени с тем же самым показателем."

"Ферма и его теорема", Амадео Модильяни, 1920

Пьер придумал эту теорему 29 марта 1636-го года. А ещё через каких-то 29 лет скончался. Но тут-то всё и началось. Ведь состоятельный немецкий любитель математики по фамилии Вольфскель завещал сто тысяч марок тому, кто предъявит полное доказательство теоремы Ферма! Но ажиотаж вокруг теоремы был связан не только с этим, но и с профессиональным математическим азартом. Сам Ферма намекнул математическому сообществу, что знает доказательство - незадолго до смерти, в 1665-ом году он оставил на полях книги Диофанта Александрийского "Арифметика" следующую запись: "Я располагаю весьма поразительным доказательством, но оно слишком велико, чтобы его можно было разместить на полях."

Именно этот намёк (плюс, конечно, денежная премия) заставил математиков безуспешно тратить на поиск доказательства свои лучшие годы (по подсчётам американских учёных, только профессиональными математиками было потрачено на это 543 лет в общей сложности).

В какой-то момент (в 1901-ом) работа над теоремой Ферма приобрела сомнительную славу "работы, сродни поиску вечного двигателя" (появился даже уничижительный термин - "ферматисты"). И вдруг 23 июня 1993 года на математической конференции по теории чисел в Кембридже английский профессор математики из Принстонского университета (Нью-Джерси, США) Эндрю Уайлс объявил, что наконец-то доказал Ферма!

Доказательство, правда, было не только сложным, но и очевидно ошибочным, на что Уайлсу было указано его коллегами. Но профессор Уайлс всю жизнь мечтал доказать теорему, поэтому не удивительно что в мае 1994-го он представил на суд учёного сообщества новый, доработанный вариант доказательства. В нём не было стройности, красоты, и оно по-прежнему было весьма сложным - тот факт, что математики целый год (!) это доказательство анализировали, что бы понять, не является ли оно ошибочным, говорит сам за себя!

Но в итоге доказательство Уайлса было признано верным. А вот Пьеру Ферма его тот самый намёк в "Арифметике" математики не простили, и, фактически, стали считать его лжецом. Собственно, первым, кто рискнул усомниться в моральной чистоплотности Ферма был сам Эндрю Уайлс, который заметил, что "Ферма не мог располагать таким доказательством. Это доказательство ХХ века." Затем и среди других ученых укрепилось мнение, что Ферма "не мог доказать свою теорему другим путём, а доказать её тем путем, по которому пошёл Уайлс, Ферма не мог по объективным причинам."

На самом деле, Ферма конечно же мог доказать её, и чуть позже это доказательство будет аналитиками "Новой Аналитической Энциклопедии" воссоздано. Но - что же это за такие "объективные причины"?
Такая причина на самом деле только одна: в те годы, когда жил Ферма, не могла появиться гипотеза Таниямы, на которой и построил свой доказательство Эндрю Уайлс, ведь модулярные функции, которыми оперирует гипотеза Таниямы были открыты только в конце XIX века.

Как доказал теорему сам Уайлс? Вопрос непраздный - это важно для понимания того, каким образом свою теорему мог доказать сам Ферма. Уайлс построил своё доказательство на доказательстве гипотезы Таниямы, выдвинутой в 1955-ом 28-летним японским математиком Ютакой Таниямой.

Гипотеза звучит так: "каждой эллиптической кривой соответствует определенная модулярная форма". Эллиптические кривые, известные с давних пор, имеют двухмерный вид (располагаются на плоскости), модулярные же функции, имеют четырехмерный вид. Т.е гипотеза Таниямы соединила совершенно разные понятия - простые плоские кривые и невообразимые четырёхмерные формы. Сам факт соединения разномерных фигур в гипотезе показался учёным абсурдным, именно поэтому в 1955-ом ей не придали значения.

Однако осенью 1984 года о "гипотезе Таниямы" вдруг снова вспомнили, и не просто вспомнили, но связали её возможное доказательство с доказательством теоремы Ферма! Это сделал математик из Саарбрюкена Герхард Фрей, который сообщил учёному сообществу, что "если бы кому-нибудь удалось доказать гипотезу Таниямы, то тем самым была бы доказана и Великая теорема Ферма".

Что сделал Фрей? Он преобразовал уравнение Ферма в кубическое, затем обратил внимание на то, что эллиптическая кривая, полученная при помощи преобразованного в кубическое уравнения Ферма не может быть модулярной. Однако гипотеза Таниямы утверждала, что любая эллиптическая кривая может быть модулярной! Соответственно, эллиптическая кривая, построенная из уравнения Ферма не может существовать, значит не может быть целых решений и теоремы Ферма, значит она верна. Ну а в 1993-ем Эндрю Уайлс попросту доказал гипотезу Таниямы, а значит и теорему Ферма.

Однако, теорему Ферма можно доказать значительно проще, на основе той же самой многомерности, которой оперировали и Танияма, и Фрей.

Для начала, обратим внимание на условие, оговорённое самим Пьером Ферма - n>2. Для чего было нужно это условие? Да лишь для того, что при n=2 частным случаем теоремы Ферма становится обычная теорема Пифагора Х 2 +Y 2 =Z 2 , которое имеет бесчисленное множество целых решений - 3,4,5; 5,12,13; 7,24,25; 8,15,17; 12,16,20; 51,140,149 и так далее. Таким образом, теорема Пифагора является исключением из теоремы Ферма.

Но почему именно в случае с n=2 возникает подобное исключение? Всё становится на свои места, если увидеть взаимосвязь между степенью (n=2) и мерностью самой фигуры. Пифагоров треугольник - двухмерная фигура. Не удивительно, что Z (то есть гипотенуза), может быть выражена через катеты (X и Y), которые могут быть целыми числами. Размер угла (90) дает возможность рассматривать гипотенузу как вектор, а катеты - векторы, расположенные на осях и идущие из начала координат. Соответственно, можно выразить двумерный вектор, не лежащий ни на одной из осей, через векторы, на них лежащие.

Теперь, если перейти к третьему измерению, а значит к n=3, для того чтобы выразить трёхмерный вектор, будет недостаточно информации о двух векторах, а следовательно, выразить Z в уравнении Ферма можно будет как минимум через три слагаемых (три вектора, лежащих, соответственно, на трех осях системы координат).

Если n=4, значит, слагаемых должно быть уже 4, если n=5, то слагаемых должно быть 5 и так далее. В этом случае, целых решений будет хоть отбавляй. Например, 3 3 +4 3 +5 3 =6 3 и так далее (другие примеры для n=3, n=4 и так далее можете подобрать самостоятельно).

Что из всего этого следует? Из этого следует, что теорема Ферма действительно не имеет целых решений при n>2 - но лишь потому, что само по себе уравнение некорректно! С таким же успехом можно было бы пытаться выразить объём параллелепипеда через длины двух его рёбер - разумеется, это невозможно (целых решений никогда не будет найдено), но лишь потому, что для нахождения объёма параллелепипеда нужно знать длины всех трёх его рёбер.

Когда знаменитого математика Давида Гилберта спросили, какая задача сейчас для науки наиболее важна, он ответил "поймать муху на обратной стороне Луны". На резонный вопрос "А кому это надо?" он ответил так: "Это никому не надо. Но подумайте над тем, сколько важных сложнейших задач надо решить, чтобы это осуществить".

Другими словами, Ферма (юрист в первую очередь!) сыграл со всем математическим миром остроумную юридическую шутку, основанную на неверной постановке задачи. Он, фактически, предложил математикам найти ответ, почему муха на другой стороне Луны жить не может, а на полях "Арифметики" хотел написать лишь о том, что на Луне просто нет воздуха, т.е. целых решений его теоремы при n>2 быть не может лишь потому, что каждому значению n должно соответствовать определённое количество членов в левой части его уравнения.

Но была ли это просто шутка? Отнюдь. Гениальность Ферма заключается именно в том, что он фактически первый увидел взаимосвязь между степенью и мерностью математической фигуры - то есть, что абсолютно эквивалентно, количеством членов в левой части уравнения. Смысл его знаменитой теоремы был именно в том, чтобы не просто натолкнуть математический мир на идею этой взаимосвязи, но и инициировать доказательство существования этой взаимосвязи - интуитивно понятной, но математически пока не обоснованной.

Ферма как никто другой понимал, что установление взаимосвязи между, казалось бы, различными объектами чрезвычайно плодотворно не только в математике, но и в любой науке. Такая взаимосвязь указывает на какой-то глубокий принцип, лежащий в основе обоих объектов и позволяющий глубже понять их.

Например, первоначально физики рассматривали электричество и магнетизм как совершенно не связанные между собой явления, а в XIX веке теоретики и экспериментаторы поняли, что электричество и магнетизм тесно связаны между собой. В результате было достигнуто более глубокое понимание и электричества, и магнетизма. Электрические токи порождают магнитные поля, а магниты могут индуцировать электричество в проводниках, находящихся вблизи магнитов. Это привело к изобретению динамомашин и электромоторов. В конце концов было открыто, что свет представляет собой результат согласованных гармонических колебаний магнитного и электрического полей.

Математика времён Ферма состояла из островов знания в море незнания. На одном острове обитали геометры, занимающиеся изучением форм, на другом острове теории вероятностей математики изучали риски и случайность. Язык геометрии сильно отличался от языка теории вероятностей, а алгебраическая терминология была чужда тем, кто говорил только о статистике. К сожалению, математика и наших времён состоит примерно из таких же островов.

Ферма первым понял, что все эти острова взаимосвязаны. И его знаменитая теорема - ВЕЛИКАЯ ТЕОРЕМА ФЕРМА - отличное тому подтверждение.