Окраска соединений хрома. Химические свойства

Хром (III) (d3).

Общая характеристика комплексных соединений хрома (III)

Степень окисления +3 наиболее характерна для хрома. Для этого состояния характерно большое число кинетически устойчивых комплексов. Именно из-за такой кинетической инертности удалось выделить в твердом состоянии большое число комплексных соединений хрома, которые в растворе остаются неизменными в течение длительного времени.

Наличие трех неспаренных электронов обусловливает парамагнетизм соединений Cr (III), большинство из которых интенсивно окрашены. Окраска комплексов. Окраска комплексов d- элементов связана с переходами электронов с одной d- орбитали на другую. В случае комплексов с большим числом электронов картина спектра усложняется: появляются дополнительные полосы. Это связано с тем, что возбужденное состояние может быть реализовано несколькими способами в зависимости от того, на каких двух d -орбиталях находятся электроны. Чтобы описать электронные спектры более детально, необходимо ввести некоторые понятия. Любое расположение электронов на подуровне называют микросостоянием. Каждое микросостояние характеризуется собственными значениями спинового и углового моментов. Набор микросостояний с одинаковыми энергиями называют термом. Окраску комплексов помимо d-d переходов с одной d- орбитали на другую (с t 2g - на e g - в октаэдрических комплексах) обусловливают еще три фактора: переходы с орбиталей лиганда на орбитали металла, взаимодействие комплекса с растворителем и переходы внутри орбиталей лиганда.

В литературе описано множество комплексов трехвалентного хрома. Во всех без исключения комплексах Cr III имеет координационное число (КЧ) шесть.

Ярко выраженная способность трехвалентного хрома к образованию комплексных соединений особенно отчетливо проявляется в его различных комплексных продуктов присоединения аммиака.

В соответствии со своим КЧ 6 ион хрома (III) может координационно связать шесть молекул аммиака. При этом образуется комплексный ион 3+ , заряд которого совпадает с зарядом хрома, фигурирующего в качестве центрального атома, поскольку молекулы аммиака не заряжены.

Вследствие прочного связывания молекул аммиака при растворении в воде соединений, содержащих комплекс 3+ , не происходит моментального распада комплекса - он существует в растворе как ион и лишь постепенно происходит замещение аммиака молекулами воды.

3+ 3+ 3+ 3+

Исследования поведения гексаакваиона хрома (III) в растворах соляной кислоты во времени, позволили установить, что равновесие в системе Cr 3+ -H 2 O-Cl - Cr-H 2 O-Cl - условное обозначение растворов, содержащих гидратированные ионы трехвалентного хрома и хлорид - ионы. устанавливается примерно 3,5 месяца.

Комплексообразование в этих растворах протекает последовательно по ступеням во времени:

Спектры поглощения растворов показывают, что даже в самом концентрированном относительно соляной кислоты растворе (12 н ) комплексообразование заканчивается на третьей ступени.

Таким образом, реакция внедрения ионов хлора в координационную сферу комплекса протекает крайне медленно, инертными являются не только гексааквокомплекс, но и смешанные аквахлориды хрома (III) по отношению к реакции обмена молекул воды на хлорид-ионы, происходящего в процессе образования комплексов; инертность смешанных комплексов уменьшается с увеличением числа ионов хлора в координационной сфере комплекса.

Процессы акватации транс- и цис- дихлородиэтилендиамминхромихлорида:

2+ ] 3+ +Cl -

Гидроксил может образоваться из молекулы воды, содержащейся во внутренней координационной сфере, в результате отщепления протона. Вероятность образования гидроксила во внутренней координационной сфере растет при повышении рН и уменьшается при понижении рН. Поэтому прибавление кислоты понижает вероятность образования гидроксила во внутренней координационной сфере и, следовательно замедляет процессы акватации именно тех ацидокомплексов, во внутренней координационной сфере которых содержится молекула воды. Если же во внутренней координационной сфере нет молекулы воды, то такого рода влияние величины рН исключается.

Достаточно широко исследовано влияние ионов Cr 2+ на процессы акватации ацидохроми-комплексов. Оказалось, что ионы Cr 2+ катализируют процессы акватации изученных ацидохроми-комплексов.

Например, каталитический процесс акватации транс-дихлородиаминхроми-хлорида протекает следующим образом. Вероятно, катализатор образует промежуточный комплекс, в котором связь между атомами Cr 2+ и Cr 3+ осуществляется через ион хлора:

Транс - + + 2+ 3+ .

После передачи электрона может произойти распад комплекса. Наиболее вероятен распад по связи Cr II - Cl:

3+ > + + 2+ ,

освободившееся координационное место у Cr II заняла молекула воды.

Замена во внутренней сфере одних лигандов другими часто сопровождается отчетливым изменением окраски комплекса.

Ион 3+ поглощает свет в красной, голубой частях видимого спектра, а также в ближайшей ультрафиолетовой области, поэтому имеет фиолетовую окраску, вызванную наложением двух дополнительных цветов.

Известно много комплексных анионов состава 3- , где Х - монодентатный лиганд типа F - , Cl - , NCS - , CN - , или часть полидентатного аниона типа оксалата (C 2 O 4 2-). Существует, разумеется, множество смешанных ацидоамино - и и ацидоакво - комплексов.

Проведем некоторую их классификацию В качестве лигандов могут выступать NH 3 , CH 3 NH 2 , py; Hal - , NCS - , CN - , NO 3 - , OH - и т.д. :

1) 3+ , 3+ , 3+ , 3+ , 3+ , 3+

2) 2+ , 2+ , 2+ , 2+ , 2+

3) + , + , + , +

4) , ,

5) - , -

6) 2-

Важно заметить, что во всех рядах отсутствуют моноамминные соединения, и отсутствуют только они, указывает на существование какой-то закономерности, проявляющейся в неспособности к существованию моноамминных соединений.

Большой интерес представляют соединения типа: + - . Из соединений первого типа известны главным образом соединения этилендиамина. Они интересны ввиду наблюдающегося у них явления изомерии (стереоизомерии) Пространственная изомерия (стереоизомерия) возникает в результате различий в пространственной конфигурации молекул, имеющих одинаковое химическое строение. Этот тип изомеров подразделяют на энантиомерию (оптическую изомерию) и диастереомерию .

Энантиомерами (оптическими изомерами, зеркальными изомерами) являются пары оптических антиподов -- веществ, характеризующихся противоположными по знаку и одинаковыми по величине вращениями плоскости поляризации света при идентичности всех других физических и химических свойств (за исключением реакций с др. оптически активными веществами и физических свойств в хиральной среде).

Диастереомерными считают любые комбинации пространственных изомеров, не составляющие пару оптических антиподов.

Хиральность (молекулярная хиральность) -- в химии свойство молекулы быть несовместимой со своим зеркальным отражением любой комбинацией вращений и перемещений в трёхмерном пространстве.. При октаэдрическом расположении комплексно связанных групп А и В вокруг центрального атома комплекс с общей формулой может существовать в двух формах (см. рис.3 )

В случае этилендиаминных соединений различие заключается еще и в том, что в противоположность транс-соединению цис-соединение представляет собой смесь двух оптически активных форм, поскольку, как видно из рис.4, в этом случае могут существовать две цис-формы, относящиеся друг к другу, как предмет к его зеркальному отражению.


Переходя к рассмотрению второго типа соединений, нужно подчеркнуть, что поскольку в состав комплекса входят четыре отрицательных эквивалента, он представляет собой анион и образует соли с металлами. Хорошо известно соединение, принадлежащее к данному классу, так называемая соль Рейнеке NH 4 ЧH 2 O, анион которой часто применяют для осаждения больших катионов, как органических, так и неорганических, соль Рейнеке удобно использовать для количественного определения меди, так как можно легко провести осаждение последней в форме Cu , не удаляя из раствора другие металлы (кроме Ag, Hg, Tl). Реакция с солью Рейнеке может служить также и как очень чувствительная качественная проба на медь.

17.doc

Хром. Оксиды хрома (II), (III) и (VI). Гидроксиды и соли хрома (II) и (III). Хроматы и дихроматы. Комплексные соединения хрома (III)

17.1. Краткая характеристика элементов подгруппы хрома

Подгруппа хрома является побочной подгруппой VI группы периодической системы элементов Д.И. Менделеева. В подгруппу входят хром Cr, молибден Mo, вольфрам W.

Эти элементы относятся также к числу переходных металлов, т.к. у них застраивается d-подуровень предвнешнего слоя. Во внешнем слое атомов этих элементов имеется один (у хрома и молибдена) или два (у вольфрама) электрона. Таким образом, атомы элементов подгруппы хрома имеют шесть валентных элек-тронов, способных участвовать в образовании химической связи (см. табл. 30).

Хром, молибден, вольфрам похожи по многим физическим и химическим свойствам: так, в виде простых веществ все они пред-ставляют собой тугоплавкие серебристо-белые металлы, обладаю-щие большой твердостью и рядом ценных механических свойств - способностью к прокатыванию, протягиванию и штам-повке.

С химической точки зрения все металлы подгруппы хрома устойчивы к действию воздуха и воды (при обычных условиях), при нагревании все они взаимодействуют с кислородом, галогена-ми, фосфором, углеродом.

Под действием концентрированных кислот (HNO 3 , H 2 SO 4) при обычной температуре металлы подгруппы хрома пассивируются.

Для всех элементов подгруппы хрома наиболее типичны со-единения, где их степени окисления бывают +2, +3, +6 (хотя есть соединения, где их степени могут быть также +4 и +5, а у хрома и +1). У элементов подгруппы хрома не бывает отрицательной сте-пени окисления, и они не образуют летучих водородных соедине-ний. Твердые гидриды, такие, как CrH 3 , известны только для хрома. Соединения двухвалентных элементов неустойчивы и легко окисляются до более высоких степеней окисления.

С увеличением степени окисления усиливается кислотный характер оксидов, с максимальной степенью окисления +6 обра-зуются оксиды типа RO 3 , которым соответствуют кислоты H 2 RO 4 . Сила кислот закономерно снижается от хрома к вольфраму. Боль-шинство солей этих кислот в воде малорастворимы, хорошо рас-творяются только соли щелочных металлов и аммония.

Как и в других случаях, у элементов подгруппы хрома с воз-растанием порядкового номера усиливаются металлические свой-

Ства. Химическая активность металлов в ряду хром - молиб-ден - вольфрам заметно понижается.

Все металлы подгруппы хрома широко используются в совре-менной технике, в особенности в металлургической промышлен-ности для производства специальных сталей.

17.2. Хром

Нахождение в природе

Хром относится к достаточно распространенным элементам, содержание его в земной коре составляет примерно 0,02% (22-е место). Встречается хром исключительно в соединениях, основ-ными минералами являются хромит FeCr 2 O 4 (или FeO Cr 2 O 3), или хромистый железняк, и крокоит PbCtO 4 (или PbO CrO 3). Окраска многих элементов обусловлена присутствием в них хрома. Так, например, золотисто-зеленый тон изумруду или крас-ный - рубину придает примесь оксида хрома Cr 2 O 3 .

Получение

Сырьем для промышленного получения хрома служит хро-мистый железняк. Его химическая переработка приводит к Cr 2 O 3 . Восстановление Cr 2 O 3 с помощью алюминия или кремния дает металлический хром невысокой степени чистоты:

Cr 2 O 3 +Аl=Аl 2 O 3 +2Cr

2Cr 2 O 3 +3Si=3SiO 2 +4Cr

Более чистый металл получают электролизом концентриро-ванных растворов соединений хрома.

^ Физические свойства

Хром - металл серо-стального цвета, твердый, довольно тя-желый (= 7,19 г/см 3), пластичный, ковкий, плавится при 1890°С, кипит при 2480°С. В природе встречается в виде смеси четырех стабильных изотопов с массовыми числами 50, 52, 53 и 54. Наиболее распространен изотоп 52 Cr (83,76%).

Химические свойства

Расположение электронов на 3d- и 4s-орбиталях атома хрома можно представить схемой:

Отсюда видно, что хром может проявлять в соединениях раз-личные степени окисления от +1 до +6; из них наиболее устойчи-вы соединения хрома со степенями окисления +2, +3, +6. Таким образом, в образовании химических связей участвует не только s-электрон внешнего уровня, но и пять d-электронов предвнешнего уровня.

При обычных условиях хром устойчив по отношению к кис-лороду, воде, а также к некоторым другим химическим реаген-там. При высоких температурах хром горит в кислороде:

4Cr+3O 2 =2Cr 2 O 3

В раскаленном состоянии реагирует с парами воды:

2Cr+3Н 2 O=Cr 2 O 3 +3H 2 

Металлический хром при нагревании реагирует также с гало-генами, серой, азотом, фосфором, углем, кремнием и бором. Например: 2Cr+N 2 =2CrN 2Cr+3S=Cr 2 S 3 Cr+2Si=CrSi 2

Металл растворяется при обычной температуре в разбавлен-ных кислотах (НСl, H 2 SO 4) с выделением водорода. В этих случаях в отсутствие воздуха образуются соли хрома (II):

Cr+2HCl=CrCl2+H 2  А на воздухе - соли хрома (III): 4Cr+12НCl+3О 2 =4CrСl+6Н 2 O

Если же металл погрузить на некоторое время в азотную кис-лоту (концентрированную или разбавленную), то он перестает растворяться в НСl и в H 2 SO 4 , не изменяется при нагревании с галогенами и т.д. Это явление - пассивирование - объясняется образованием на поверхности металла защитного слоя - очень плотной и механически прочной (хотя и очень тонкой) пленки оксида хрома Cr 2 O 3 .

Применение

Основной потребитель хрома - металлургия. Сталь при до-бавлении хрома становится гораздо более стойкой к действию химических реагентов; повышаются и такие важные свойства стали, как прочность, твердость и износостойкость. Электролити-ческое покрытие хромом железных изделий (хромирование) также сообщает им устойчивость к коррозии.

Семейство хромовых сплавов весьма многочисленно. Нихро-мы (сплавы с никелем) и хромали (с алюминием и железом) устой-

Чивы, обладают высоким сопротивлением и используются для изготовления нагревателей в электрических печах сопротивле-ния. Стеллит - сплав хрома (20-25%), кобальта (45-60%), вольфрама (5-20%), железа (1-3%) - очень тверд, стоек против износа и коррозии; применяется в металлоперерабатывающей промышленности для изготовления режущих инструментов. Хромомолибденовые стали используются для создания фюзеля-жей самолетов.

^ 17.3. Оксиды хрома (II), (III) и (VI)

Хром образует три оксида: CrO, Cr 2 O 3 , CrO 3 .

Оксид хрома (II) CrO - пирофорный черный порошок. Обла-дает основными свойствами.

В окислительно-восстановительных реакциях ведет себя как восстановитель:

CrO получают разложением в вакууме карбонила хрома Cr(СО) 6 при 300°С.

Оксид хрома (III) Cr 2 O 3 - тугоплавкий порошок зеленого цвета. По твердости близок к корунду, поэтому его вводят в состав полирующих средств. Образуется при взаимодействии Cr и O 2 при высокой температуре. В лаборатории оксид хрома (III) можно получить нагреванием дихромата аммония:

(N -3 H 4) 2 Cr +6 2 O 7 =Cr +3 2 O 3 +N 0 2 +4Н 2 О

Оксид хрома (III) обладает амфотерными свойствами. При взаимодействии с кислотами образуются соли хрома (III): Cr 2 O 3 +3H 2 SO 4 =Cr 2 (SO 4) 3 +3Н 2 О

При взаимодействии с щелочами в расплаве образуются со-единения хрома (III) - хромиты (в отсутствие кислорода): Cr 2 O 3 +2NaOH=2NaCrO 2 +Н 2 О

В воде оксид хрома (III) нерастворим.

В окислительно-восстановительных реакциях оксид хрома (III) ведет себя как восстановитель:

Оксид хрома (VI) CrO 3 - хромовый ангидрид, представляет собой темно-красные игольчатые кристаллы. При нагревании около 200°С разлагается:

4CrO 3 =2Cr 2 O 3 +3O 2 

Легко растворяется в воде, имея кислотный характер, образу-ет хромовые кислоты. С избытком воды образуется хромовая кис-лота H 2 CrO 4:

CrO 3 +Н 2 O=Н 2 CrO 4

При большой концентрации CrO 3 образуется дихромовая кис-лота Н 2 Cr 2 О 7:

2CrO 3 +Н 2 О=Н 2 Cr 2 О 7

Которая при разбавлении переходит в хромовую кислоту:

Н 2 Cr 2 О 7 +Н 2 О=2Н 2 CrO 4

Хромовые кислоты существуют только в водном растворе, ни одна из этих кислот в свободном состоянии не выделена. Однако соли их весьма устойчивы.

Оксид хрома (VI) является сильным окислителем:

3S+4CrO 3 =3SO 2 +2Cr 2 O 3

Окисляет иод, серу, фосфор, уголь, превращаясь в Cr 2 O 3 . Получают CrO 3 действием избытка концентрированной сер-ной кислоты на насыщенный водный раствор дихромата натрия: Na 2 Cr 2 O 7 +2H 2 SO 4 =2CrO 3 +2NaHSO 4 +H 2 O Следует отметить сильную токсичность оксида хрома (VI).

^ 17.4. Гидроксиды и соли хрома (II) и (III). Комплексные соединения хрома (III)

Гидроксид хрома (II) Cr(ОН) 2 получают в виде желтого осадка, обрабатывая растворы солей хрома (II) щелочами в отсутствие кислорода:

CrСl 2 +2NaOH=Cr(OH) 2 +2NaCl

Cr(OH) 2 обладает типичными основными свойствами и явля-ется сильным восстановителем:

2Cr(OH) 2 +H 2 O+1/2O 2 =2Cr(OH) 3 

Водные растворы солей хрома (II) получают без доступа воз-духа растворением металлического хрома в разбавленных кисло-тах в атмосфере водорода или восстановлением цинком в кислой среде солей трехвалентного хрома. Безводные соли хрома (II) белого цвета, а водные растворы и кристаллогидраты - синего цвета.

По своим химическим свойствам соли хрома (II) похожи на соли двухвалентного железа, но отличаются от последних более ярко выраженными восстановительными свойствами, т.е. легче, чем соответствующие соединения двухвалентного железа, окис-ляются. Именно поэтому очень трудно получать и хранить соеди-нения двухвалентного хрома.

Гидроксид хрома (III) Cr(ОН) 3 - студнеобразный осадок серо-зеленого цвета, его получают при действии щелочей на растворы солей хрома (III):

Cr 2 (SO 4) 3 +6NaOH=2Cr(OH) 3 +3Na 2 SO 4

Гидроксид хрома (III) обладает амфотерными свойствами, растворяясь как в кислотах с образованием солей хрома (III):

2Cr(ОН) 3 +3H 2 SO 4 =Cr 2 (SO 4) 3 +6Н 2 О так и в щелочах с образованием гидроксихромитов: Cr(OH) 3 +NaOH=Na 3

При сплавлении Cr(ОН) 3 с щелочами образуются метахромиты и ортохромиты:

Cr(ОН) 3 +NaOH=NaCrO 2 +2Н 2 O Cr(ОН) 3 +3NaOH=Na 3 CrO 3 +3Н 2 О

При прокаливании гидроксида хрома (III) образуется оксид хрома (III):

2Cr(ОН) 3 =Cr 2 O 3 +3Н 2 O

Соли трехвалентного хрома как в твердом состоянии, так и в водных растворах окрашены. Например, безводный сульфат хрома (III) Cr 2 (SO 4) 3 фиолетово-красного цвета, водные растворы сульфата хрома (III) в зависимости от условий могут менять цвет от фиолетового до зеленого. Это объясняется тем, что в водных растворах катион Cr 3+ существует только в виде гидратированного иона 3+ благодаря склонности трехвалентного хрома к образованию комплексных соединений. Фиолетовый цвет вод-ных растворов солей хрома (III) обусловлен именно катионом 3+ . При нагревании комплексные соли хрома (III) могут

Частично терять воду, образуя соли различного цвета, вплоть до зеленого.

Соли трехвалентного хрома сходны с солями алюминия по составу, строению кристаллической решетки, по растворимости; так, для хрома (III) так же, как и для алюминия, типично образо-вание хромокалиевых квасцов KCr(SO 4) 2 12Н 2 О, их применяют для дубления кож и в качестве протравы в текстильном деле.

Соли хрома (III)Cr 2 (SО 4) 3 , CrСl 3 и т.д. при хранении на воздухе устойчивы, а в растворах подвергаются гидролизу:

Cr 3+ +3Сl - +НОНCr(ОН) 2+ +3Сl - +Н +

Гидролиз идет по I ступени, но есть соли, которые гидролизуются нацело:

Cr 2 S 3 +Н 2 O=Cr(OH) 3 +H 2 S

В окислительно-восстановительных реакциях в щелочной среде соли хрома (III) ведут себя как восстановители:

Следует отметить, что в ряду гидроксидов хрома различных степеней окисления Cr(ОН) 2 - Cr(ОН) 3 - Н 2 CrО 4 закономерно происходит ослабление основных свойств и усиление кислотных. Такое изменение свойств обусловлено увеличением степени окис-ления и уменьшением ионных радиусов хрома. В этом же ряду последовательно усиливаются окислительные свойства. Соедине-ния Cr (II) - сильные восстановители, легко окисляются, превра-щаясь в соединения хрома (III). Соединения хрома(VI) - сильные окислители, легко восстанавливаются в соединения хрома (III). Соединения с промежуточной степенью окисления, т.е. соедине-ния хрома (III), могут при взаимодействии с сильными восстано-вителями проявлять окислительные свойства, переходя в соеди-нения хрома (II), а при взаимодействии с сильными окислителями проявлять восстановительные свойства, превращаясь в соедине-ния хрома (VI).

^ 17.5. Хроматы и дихроматы

Хромовые кислоты образуют два ряда соединений: хроматы - так называются соли хромовой кислоты, и дихроматы - так называются соли дихромовой кислоты. Хроматы окрашены в желтый цвет (цвет хромат-иона CrO 2- 4), дихроматы - в оранже-вый (цвет дихромат-иона Cr 2 O 2- 7).

Хроматы и дихроматы диссоциируют, образуя соответствен-но хромат- и дихромат-ионы:

К 2 CrO 4 2К + +CrO 2- 4

К 2 Cr 2 О 7  2К + +Cr 2 О 2- 7

Хроматы получают при взаимодействии CrO 3 с щелочами:

CrO 3 +2NaOH=Na 2 CrO 4 +Н 2 О

Дихроматы образуются при добавлении кислот к хроматам:

2Na 2 CrO 4 +H 2 SO 4 =Na 2 Cr 2 O 7 +Na 2 SO 4 +H 2 O

Возможен и обратный переход при добавлении щелочей к растворам дихроматов:

Na 2 Cr 2 O 7 +2NaOH=2Na 2 CrO 4 +Н 2 О

Таким образом, в кислых растворах преимущественно суще-ствуют дихроматы (они окрашивают раствор в оранжевый цвет), а в щелочном - хроматы (растворы желтого цвета). Равновесие в системе хромат-дихромат можно представить следующим уравне-нием в сокращенной ионной форме:

2CrO 2- 4 +2Н + Cr 2 O 2- 7 +Н 2 О Cr 2 O 2- 7 +2OH - 2CrO 2- 4 +Н 2 О

Соли хромовых кислот в кислой среде являются сильными окислителями. Они обычно восстанавливаются до соединений хрома (III), например:

Применение

Соединения хрома (VI) сильно ядовиты: поражают кожу, ды-хательные пути, вызывают воспаление глаз. В лабораториях для мытья химический посуды часто применяют хромовую смесь,

Которая состоит из равных объемов насыщенного водного раствора К 2 Cr 2 О 7 и концентрированной H 2 SO 4 .

Растворимые в воде хроматы натрия и калия применяют в текстильном и кожевенном производстве, как консерванты дре-весины. Нерастворимые хроматы некоторых металлов - пре-красные художественные краски. Это и желтые кроны (PbCrO 4 , |ZnCrO 4 , SrCrO 4), и красный свинцово-молибденовый крон (содержит PbCrO 4 и МоCrO 4) и многие другие. Богатством оттенков - от розово-красного до фиолетового - славится SnCrO 4 , используе-мая в живописи по фарфору.

Гидроксид хрома (II) Cr(ОН) 2 получают в виде желтого осадка, обрабатывая растворы солей хрома (II) щелочами в отсутствие кислорода:

CrСl 2 +2NaOH=Cr(OH) 2 ¯+2NaCl

Cr(OH) 2 обладает типичными основными свойствами и явля­ется сильным восстановителем:

2Cr(OH) 2 +H 2 O+1/2O 2 =2Cr(OH) 3 ¯

Водные растворы солей хрома (II) получают без доступа воз­духа растворением металлического хрома в разбавленных кисло­тах в атмосфере водорода или восстановлением цинком в кислой среде солей трехвалентного хрома. Безводные соли хрома (II) белого цвета, а водные растворы и кристаллогидраты - синего цвета.

По своим химическим свойствам соли хрома (II) похожи на соли двухвалентного железа, но отличаются от последних более ярко выраженными восстановительными свойствами, т.е. легче, чем соответствующие соединения двухвалентного железа, окис­ляются. Именно поэтому очень трудно получать и хранить соеди­нения двухвалентного хрома.

Гидроксид хрома (III) Cr(ОН) 3 - студнеобразный осадок серо-зеленого цвета, его получают при действии щелочей на растворы солей хрома (III):

Cr 2 (SO 4) 3 +6NaOH=2Cr(OH) 3 ¯+3Na 2 SO 4

Гидроксид хрома (III) обладает амфотерными свойствами, растворяясь как в кислотах с образованием солей хрома (III):

2Cr(ОН) 3 +3H 2 SO 4 =Cr 2 (SO 4) 3 +6Н 2 О так и в щелочах с образованием гидроксихромитов: Cr(OH) 3 +NaOH=Na 3

При сплавлении Cr(ОН) 3 с щелочами образуются метахромиты и ортохромиты:

Cr(ОН) 3 +NaOH=NaCrO 2 +2Н 2 O Cr(ОН) 3 +3NaOH=Na 3 CrO 3 +3Н 2 О

При прокаливании гидроксида хрома (III) образуется оксид хрома (III):

2Cr(ОН) 3 =Cr 2 O 3 +3Н 2 O

Соли трехвалентного хрома как в твердом состоянии, так и в водных растворах окрашены. Например, безводный сульфат хрома (III) Cr 2 (SO 4) 3 фиолетово-красного цвета, водные растворы сульфата хрома (III) в зависимости от условий могут менять цвет от фиолетового до зеленого. Это объясняется тем, что в водных растворах катион Cr 3+ существует только в виде гидратированного иона 3+ благодаря склонности трехвалентного хрома к образованию комплексных соединений. Фиолетовый цвет вод­ных растворов солей хрома (III) обусловлен именно катионом 3+ . При нагревании комплексные соли хрома (III) могут

частично терять воду, образуя соли различного цвета, вплоть до зеленого.

Соли трехвалентного хрома сходны с солями алюминия по составу, строению кристаллической решетки, по растворимости; так, для хрома (III) так же, как и для алюминия, типично образо­вание хромокалиевых квасцов KCr(SO 4) 2 12Н 2 О, их применяют для дубления кож и в качестве протравы в текстильном деле.

Соли хрома (III)Cr 2 (SО 4) 3 , CrСl 3 и т.д. при хранении на воздухе устойчивы, а в растворах подвергаются гидролизу:

Cr 3+ +3Сl - +НОН«Cr(ОН) 2+ +3Сl - +Н +

Гидролиз идет по I ступени, но есть соли, которые гидролизуются нацело:

Cr 2 S 3 +Н 2 O=Cr(OH) 3 ¯+H 2 S­

В окислительно-восстановительных реакциях в щелочной среде соли хрома (III) ведут себя как восстановители:

Следует отметить, что в ряду гидроксидов хрома различных степеней окисления Cr(ОН) 2 - Cr(ОН) 3 - Н 2 CrО 4 закономерно происходит ослабление основных свойств и усиление кислотных. Такое изменение свойств обусловлено увеличением степени окис­ления и уменьшением ионных радиусов хрома. В этом же ряду последовательно усиливаются окислительные свойства. Соедине­ния Cr (II) - сильные восстановители, легко окисляются, превра­щаясь в соединения хрома (III). Соединения хрома(VI) - сильные окислители, легко восстанавливаются в соединения хрома (III). Соединения с промежуточной степенью окисления, т.е. соедине­ния хрома (III), могут при взаимодействии с сильными восстано­вителями проявлять окислительные свойства, переходя в соеди­нения хрома (II), а при взаимодействии с сильными окислителями проявлять восстановительные свойства, превращаясь в соедине­ния хрома (VI).

Цель: углубить знания учащихся по теме занятия.

Задачи:

  • дать характеристику хрома как простого вещества;
  • познакомить учащихся с соединениями хрома разной степени окисления;
  • показать зависимость свойств соединений от степени окисления;
  • показать окислительно – восстановительные свойства соединений хрома;
  • продолжить формирование умений учащихся записывать уравнения химических реакций в молекулярном и ионном виде, составлять электронный баланс;
  • продолжить формирование умений наблюдать химический эксперимент.

Форма занятия: лекция с элементами самостоятельной работы учащихся и наблюдением за химическим экспериментом.

Ход занятия

I. Повторение материала предыдущего занятия.

1. Ответить на вопросы и выполнить задания:

Какие элементы относятся к подгруппе хрома?

Написать электронные формулы атомов

К какому типу элементов относятся?

Какие степени окисления проявляют в соединениях?

Как изменяется радиус атомов и энергия ионизации от хрома к вольфраму?

Можно предложить заполнить учащимся заполнить таблицу, используя табличные величины радиусов атомов, энергии ионизации и сделать выводы.

Образец таблицы:

2. Заслушать сообщение учащегося по теме «Элементы подгруппы хрома в природе, получение и применение».

II. Лекция.

План лекции:

  1. Хром.
  2. Соединения хрома. (2)
  • Оксид хрома; (2)
  • Гидроксид хрома. (2)
  1. Соединения хрома. (3)
  • Оксид хрома; (3)
  • Гидроксид хрома. (3)
  1. Соединения хрома (6)
  • Оксид хрома; (6)
  • Хромовая и дихромовая кислоты.
  1. Зависимость свойств соединений хрома от степени окисления.
  2. Окислительно – восстановительные свойства соединений хрома.

1. Хром.

Хром – это белый с голубоватым отливом блестящий металл, очень твердый (плотность 7, 2 г/см 3), температура плавления 1890˚С.

Химические свойства: хром при обычных условиях неактивный металл. Это объясняется тем, что его поверхность покрыта оксидной пленкой (Сr 2 О 3). При нагревании оксидная пленка разрушается, и хром реагирует с простыми веществами при высокой температуре:

  • 4Сr +3О 2 = 2Сr 2 О 3
  • 2Сr + 3S = Сr 2 S 3
  • 2Сr + 3Cl 2 = 2СrСl 3

Задание: составить уравнения реакций хрома с азотом, фосфором, углеродом и кремнием; к одному из уравнений составить электронный баланс, указать окислитель и восстановитель.

Взаимодействие хрома со сложными веществами:

При очень высокой температуре хром реагирует с водой:

  • 2Сr + 3 Н 2 О = Сr 2 О 3 + 3Н 2

Задание:

Хром реагирует с разбавленной серной и соляной кислотами:

  • Сr + Н 2 SО 4 = СrSО 4 + Н 2
  • Сr + 2НСl= СrСl 2 + Н 2

Задание: составить электронный баланс, указать окислитель и восстановитель.

Концентрированные серная соляная и азотная кислоты пассивируют хром.

2. Соединения хрома. (2)

1. Оксид хрома (2) - СrО – твердое ярко – красное вещество, типичный основной оксид (ему соответствует гидроксид хрома (2) - Сr(ОН) 2), не растворяется в воде, но растворяется в кислотах:

  • СrО + 2НСl = СrСl 2 + Н 2 О

Задание: составить уравнение реакции в молекулярном и ионном виде взаимодействия оксида хрома (2) с серной кислотой.

Оксид хрома (2) легко окисляется на воздухе:

  • 4СrО+ О 2 = 2Сr 2 О 3

Задание: составить электронный баланс, указать окислитель и восстановитель.

Оксид хрома (2) образуется при окислении амальгамы хрома кислородом воздуха:

2Сr (амальгама) + О 2 = 2СrО

2. Гидроксид хрома (2) - Сr(ОН) 2 – вещество желтого цвета, плохо растворимо в воде, с ярко выраженным основным характером, поэтому взаимодействует с кислотами:

  • Сr(ОН) 2 + Н 2 SО 4 = СrSO 4 + 2Н 2 О

Задание: составить уравнения реакций в молекулярном и ионном виде взаимодействия оксида хрома (2) с соляной кислотой.

Как и оксид хрома (2), гидроксид хрома (2) окисляется:

  • 4 Сr(ОH) 2 + О 2 + 2Н 2 О = 4Сr(ОН) 3

Задание: составить электронный баланс, указать окислитель и восстановитель.

Получить гидроксид хрома (2) можно при действии щелочей на соли хрома (2):

  • CrCl 2 + 2KOH = Cr(OH) 2 ↓ + 2KCl

Задание: составить ионные уравнения.

3. Соединения хрома. (3)

1. Оксид хрома (3) - Сr 2 О 3 – порошок темно – зеленого цвета, нерастворим в воде, тугоплавкий, по твёрдости близок к корунду (ему соответствует гидроксид хрома (3) – Сr(ОН) 3). Оксид хрома (3) имеет амфотерный характер, однако в кислотах и щелочах растворяется плохо. Реакции со щелочами идут при сплавлении:

  • Сr 2 О 3 + 2КОН = 2КСrО 2 (хромит К) + Н 2 О

Задание: составить уравнение реакции в молекулярном и ионном виде взаимодействия оксида хрома (3) с гидроксидом лития.

С концентрированными растворами кислот и щелочей взаимодействует с трудом:

  • Сr 2 О 3 + 6 КОН + 3Н 2 О = 2К 3 [Сr(ОН) 6 ]
  • Сr 2 О 3 + 6НСl = 2СrСl 3 + 3Н 2 О

Задание: составить уравнения реакций в молекулярном и ионном виде взаимодействия оксида хрома (3) с конценрированной серной кислотой и концентрированным раствором гидроксида натрия.

Оксид хрома (3) может быть получен при разложении дихромата аммония:

  • (NН 4)2Сr 2 О 7 = N 2 + Сr 2 О 3 +4Н 2 О

2. Гидроксид хрома (3) Сr(ОН) 3 получают при действии щелочей на на растворы солей хрома (3):

  • СrСl 3 +3КОН = Сr(ОН) 3 ↓ + 3КСl

Задание: составить ионные уравнения

Гидроксид хрома (3) представляет собой осадок серо – зеленого цвета, при получении которого, щелочь надо брать в недостатке. Полученный таким образом гидроксид хрома (3), в отличие от соответствующего оксида легко взаимодействует с кислотами и щелочами, т.е. проявляет амфотерные свойства:

  • Сr(ОН) 3 + 3НNО 3 = Сr(NО 3) 3 + 3Н 2 О
  • Сr(ОН) 3 + 3КОН = К 3 [Сr(ОН)6](гексагидроксохромит К)

Задание: составить уравнения реакций в молекулярном и ионном виде взаимодействия гидроксида хрома (3) с соляной кислотой и гидроксидом натрия.

При сплавлении Сr(ОН) 3 со щелочами получаются метахромиты и ортохромиты:

  • Cr(OH) 3 + KOH = KCrO 2 (метахромит К) + 2H 2 O
  • Cr(OH) 3 + KOH = K 3 CrO 3 (ортохромит К) + 3H 2 O

4. Соединения хрома. (6)

1. Оксид хрома (6) - СrО 3 – темно – красное кристаллическое вещество, хорошо растворимо в воде – типичный кислотный оксид. Этому оксиду соответствует две кислоты:

  • СrО 3 + Н 2 О = Н 2 СrО 4 (хромовая кислота – образуется при избытке воды)
  • СrО 3 + Н 2 О =Н 2 Сr 2 О 7 (дихромовая кислота – образуется при большой концентрации оксида хрома (3)).

Оксид хрома (6) – очень сильный окислитель, поэтому энергично взаимодействует с органическими веществами:

  • С 2 Н 5 ОН + 4СrО 3 = 2СО 2 + 2Сr 2 О 3 + 3Н 2 О

Окисляет также иод, серу, фосфор, уголь:

  • 3S + 4CrO 3 = 3SO 2 + 2Cr 2 O 3

Задание: составить уравнения химических реакций оксида хрома (6) с йодом, фосфором, углем; к одному из уравнений составить электронный баланс, указать окислитель и восстановитель

При нагревании до 250 0 С оксид хрома (6) разлагается:

  • 4CrO 3 = 2Cr 2 O 3 + 3O 2

Оксид хрома (6) можно получить при действии концентрированной серной кислоты на твердые хроматы и дихроматы:

  • К 2 Сr 2 О 7 + Н 2 SО 4 = К 2 SО 4 + 2СrО 3 + Н 2 О

2. Хромовая и дихромовая кислоты.

Хромовая и дихромовая кислоты существуют только в водных растворах, образуют устойчивые соли, соответственно хроматы и дихроматы. Хроматы и их растворы имеют желтую окраску, дихроматы – оранжевую.

Хромат - ионы СrО 4 2- и дихромат – ионы Сr 2О 7 2- легко переходят друг в друга при изменении среды растворов

В кислой среде раствора хроматы переходят в дихроматы:

  • 2К 2 СrО 4 + Н 2 SО 4 = К 2 Сr 2 О 7 + К 2 SО 4 + Н 2 О

В щелочной среде дихроматы переходят в хроматы:

  • К 2 Сr 2 О 7 + 2КОН = 2К 2 СrО 4 + Н 2 О

При разбавлении дихромовая кислота переходит в хромовую кислоту:

  • H 2 Cr 2 O 7 + H 2 O = 2H 2 CrO 4

5. Зависимость свойств соединений хрома от степени окисления.

Степень окисления +2 +3 +6
Оксид СrО Сr 2 О 3 СrО 3
Характер оксида основной амфотерный кислотный
Гидроксид Сr(ОН) 2 Сr(ОН) 3 – Н 3 СrО 3 Н 2 СrО 4
Характер гидроксида основной амфотерный кислотный

→ ослабление основных свойств и усиление кислотных→

6. Окислительно – восстановительные свойства соединений хрома.

Реакции в кислотной среде.

В кислотной среде соединения Сr +6 переходят в соединения Сr +3 под действием восстановителей: H 2 S, SO 2 , FeSO 4

  • К 2 Сr 2 О 7 +3Н 2 S +4Н 2 SО 4 = 3S + Сr 2 (SО 4) 3 + K 2 SO 4 + 7Н 2 О
  • S -2 – 2e → S 0
  • 2Cr +6 + 6e → 2Cr +3

Задание:

1. Уравнять уравнение реакции методом электронного баланса, указать окислитель и восстановитель:

  • Na 2 CrO 4 + K 2 S + H 2 SO 4 = S + Cr 2 (SO 4) 3 + K 2 SO 4 + Na 2 SO 4 + H 2 O

2. Дописать продукты реакции, уравнять уравнение методом электронного баланса, указать окислитель и восстановитель:

  • K 2 Cr 2 O 7 + SO 2 + H 2 SO 4 = ? +? +Н 2 О

Реакции в щелочной среде.

В щелочной среде соединения хрома Сr +3 переходят в соединения Сr +6 под действием окислителей: J2, Br2, Cl2, Ag2O, KClO3, H2O2, KMnO4:

  • 2KCrO 2 +3 Br 2 +8NaOH =2Na 2 CrO 4 + 2KBr +4NaBr + 4H 2 O
  • Cr +3 - 3e → Cr +6
  • Br2 0 +2e → 2Br -

Задание:

Уравнять уравнение реакции методом электронного баланса, указать окислитель и восстановитель:

  • NaCrO 2 + J 2 + NaOH = Na 2 CrO 4 + NaJ + H 2 O

Дописать продукты реакции, уравнять уравнение методом электронного баланса, указать окислитель и восстановитель:

  • Cr(OH) 3 + Ag 2 O + NaOH = Ag + ? + ?

Таким образом, окислительные свойства последовательно усиливаются с изменением степеней окисления в ряду: Cr +2 → Сr +3 → Сr +6 . Соединения хрома (2) - сильные восстановители, легко окисляются, превращаясь в соединения хрома (3). Соединения хрома (6) – сильные окислители, легко восстанавливаются в соединения хрома (3). Соединения хрома (3) при взаимодействии с сильными восстановителями проявляют окислительные свойства, переходя в соединения хрома (2), а при взаимодействии с сильными окислителями проявляют восстановительные свойства, превращаясь в соединеня хрома (6)

К методике проведения лекции:

  1. Для активизации познавательной деятельности учащихся и поддержания интереса, целесообразно в ходе лекции проводить демонстрационный эксперимент. В зависимости от возможностей учебной лаборатории можно демонстрировать учащимся следующие опыты:
  • получении оксида хрома (2) и гидроксида хрома (2), доказательство их основных свойств;
  • получение оксида хрома (3) и гидроксида хрома (3), доказательство их амфотерных свойств;
  • получение оксида хрома (6) и растворение его в воде (получение хромовой и дихромовой кислот);
  • переход хроматов в дихроматы, дихроматов в хроматы.
  1. Задания самостоятельной работы можно дифференцировать с учетом реальных учебных возможностей учащихся.
  2. Завершить лекцию можно выполнением следующих заданий: напишите уравнения химических реакций с помощью которых можно осуществить следующие превращения:

.III. Домашнее задание: доработать лекцию (дописать уравнения химических реакций)

  1. Васильева З.Г. Лабораторные работы по общей и неорганической химии. -М.: «Химия», 1979 – 450 с.
  2. Егоров А.С. Репетитор по химии. – Ростов-на-Дону: «Феникс», 2006.-765 с.
  3. Кудрявцев А.А. Составление химических уравнений. - М., «Высшая школа», 1979. - 295 с.
  4. Петров М.М. Неорганическая химия. – Ленинград: «Химия», 1989. – 543 с.
  5. Ушкалова В.Н. Химия: конкурсные задания и ответы. - М.: «Просвещение», 2000. – 223 с.

Хром образует три оксида: CrO, Cr 2 O 3 , CrO 3 .

Оксид хрома (II) CrO - пирофорный черный порошок. Обла­дает основными свойствами.

В окислительно-восстановительных реакциях ведет себя как восстановитель:

CrO получают разложением в вакууме карбонила хрома Cr(СО) 6 при 300°С.

Оксид хрома (III) Cr 2 O 3 - тугоплавкий порошок зеленого цвета. По твердости близок к корунду, поэтому его вводят в состав полирующих средств. Образуется при взаимодействии Cr и O 2 при высокой температуре. В лаборатории оксид хрома (III) можно получить нагреванием дихромата аммония:

(N -3 H 4) 2 Cr +6 2 O 7 =Cr +3 2 O 3 +N 0 2 ­+4Н 2 О

Оксид хрома (III) обладает амфотерными свойствами. При взаимодействии с кислотами образуются соли хрома (III): Cr 2 O 3 +3H 2 SO 4 =Cr 2 (SO 4) 3 +3Н 2 О

При взаимодействии с щелочами в расплаве образуются со­единения хрома (III) - хромиты (в отсутствие кислорода): Cr 2 O 3 +2NaOH=2NaCrO 2 +Н 2 О

В воде оксид хрома (III) нерастворим.

В окислительно-восстановительных реакциях оксид хрома (III) ведет себя как восстановитель:

Оксид хрома (VI) CrO 3 - хромовый ангидрид, представляет собой темно-красные игольчатые кристаллы. При нагревании около 200°С разлагается:

4CrO 3 =2Cr 2 O 3 +3O 2 ­

Легко растворяется в воде, имея кислотный характер, образу­ет хромовые кислоты. С избытком воды образуется хромовая кис­лота H 2 CrO 4:

CrO 3 +Н 2 O=Н 2 CrO 4

При большой концентрации CrO 3 образуется дихромовая кис­лота Н 2 Cr 2 О 7:

2CrO 3 +Н 2 О=Н 2 Cr 2 О 7

которая при разбавлении переходит в хромовую кислоту:

Н 2 Cr 2 О 7 +Н 2 О=2Н 2 CrO 4

Хромовые кислоты существуют только в водном растворе, ни одна из этих кислот в свободном состоянии не выделена. Однако соли их весьма устойчивы.

Оксид хрома (VI) является сильным окислителем:

3S+4CrO 3 =3SO 2 ­+2Cr 2 O 3

Окисляет иод, серу, фосфор, уголь, превращаясь в Cr 2 O 3 . Получают CrO 3 действием избытка концентрированной сер­ной кислоты на насыщенный водный раствор дихромата натрия: Na 2 Cr 2 O 7 +2H 2 SO 4 =2CrO 3 +2NaHSO 4 +H 2 O Следует отметить сильную токсичность оксида хрома (VI).