Основные реакции алкенов. Гомологический ряд алкенов

Для алкенов характерны, прежде всего, реакции присоединения по двойной связи. В основном эти реакции идут по ионному механизму. Пи-связь разрывается, и образуются две новые сигма-связи. Напомню, что для алканов типичными были реакции замещения и шли они по радикальному механизму. Присоединяться к алкенам могут молекулы водорода, эти реакции называются гидрирование, молекулы воды, гидратация, галогены — галогенирование, галогенводороды — гидрогалогенирование. Но обо всем по порядку.

Реакции присоединения по двойной связи

Итак, первое химическое свойство — способность присоединять галогеноводороды, гидрогалогенирование.

Пропен и остальные алкены реагируют с галогеноводородами по правилу Марковникова.

Атом водорода присоединяется к наиболее гидрированному, или правильнее сказать гидрогенизированному, атому углерода.

Вторым номером в нашем списке свойств будет гидратация, присоединение воды.

Реакция проходит при нагревании в присутствии кислоты — обычно серной или фосфорной. Присоединение воды происходит также по правилу Марковникова, то есть первичный спирт можно получить только гидратацией этилена, остальные неразветвленные алкены дают вторичные спирты.

И для гидрогалогениерования и для гидратации существуют исключения из правила Марковникова. Во-первых, против этого правила присоединение протекает в присутствии пероксидов.

Во-вторых, для производных алкенов, в которых присуствуют электронноакцепторне группы. Например, для 3,3,3-трифторпропена-1.

Атомы фтора за счет высокой электроотрицательности оттягивают на себя электронную плотность по цепи сигма-связей. Такое явление называется отрицательным индуктивным эффектом.

Из-за этого происходит смещение подвижных пи-электронов двойной связи и у крайнего атома углерода оказывается частичный положительный заряд, который обычно обозначается как дельта плюс. Именно к нему и пойдет отрицательно заряженный ион брома, а катион водорода присоединится к наименее гидрированному атому углерода.

Помимо трифторметильной группы отрицательным индуктивным эффектом обладает, например, трихлорметильная группа, нитрогруппа, карбоксильная группа и некоторые другие.

Этот второй случай нарушения правила Марковникова в ЕГЭ встречается очень редко, но все-таки желательно иметь его в виду, если вы планируете сдать экзамен на максимальный балл.

Третье химическое свойство — присоединение молекул галогенов.

В первую очередь это касается брома, поскольку данная реакция является качественной на кратную связь. При пропускании, например, этилена через бромную воду, то есть раствор брома в воде, имеющий коричневый цвет, происходит ее обесцвечивание. Если пропускать через бромную воду смесь газов, например, этан и этен, то можно получить чистый этан без примеси этена, поскольку тот останется в реакционной колбе в виде дибромэтана, представляющего собой жидкость.

Особым образом стоит отметить реакцию алкенов в газовой фазе при сильном нагревании, например, с хлором.

При таких условиях протекает не реакция присоединения, а реакция замещения. При чем исключительно по альфа-атому углерода, то есть атому, соседствующему с двойной связью. В данном случае получается 3-хлорпропен-1. Эти реакции на экзамене встречаются нечасто, поэтому большинство учеников их не помнит и, как правило, совершает ошибки.

Четвертым номером идет реакция гидрирования, а вместе с ней и реакция дегидрирования. То есть присоединение или отщепление водорода.

Гидрирование происходит при не очень высокой температуре на никелевом катализаторе. При более высокой температуре возможно дегидрирование с получением алкинов.

Пятым свойством алкенов является способность к полимеризации, когда сотни и тысячи молекул алкена за счет разрыва пи-связи и образования сигма-свзяей друг с другом образуют очень длинные и прочные цепочки.

В данном случае получился полиэтилен. Обратите внимание, что в получившейся молекуле кратные связи отсутствуют. Такие вещества называются полимерами, исходные молекулы называются мономерами, повторяющийся фрагмент — это элементарное звено полимера, а число n — степень полимеризации.

Также возможны реакции получения других важных полимерных материалов, например, полипропилена.

Еще один важный полимер — поливинилхлорид.

Исходным веществом для производства этого полимера является хлорэтен, тривиальное название которого винилхлорид. Поскольку этот непредельный заместитель называется винил. Часто встречающаяся аббревиатура на пластмассовых изделиях ПВХ как раз расшифровывается как поливинилхлорид.

Мы обсудили пять свойств, которые представляли собой реакции присоединения по двойной связи. Теперь обратимся к реакциям окисления .

Реакции окисления алкенов

Шестое химическое свойство в нашем общем списке — это мягкое окисление или реакция Вагнера. Оно протекает при воздействии на алкен водным раствором перманганата калия на холоду, поэтому часто в экзаменационных заданиях указывают температуру ноль градусов.

В результате получается двухатомный спирт. В данном случае этиленгликоль, а в целом такие спирты носят общее название гликоли. В процессе реакции фиолетово-розовый раствор перманганата обесцвечивается, поэтому эта реакция также является качественной на двойную связь. Марганец в нейтральной среде из степени окисления +7 восстанавливается до степени окисления +4. Рассмотрим еще несколько примеров. УРАВНЕНИЕ

Здесь получился пропандиол-1,2. Однако таким же образом будут реагировать и циклические алкены. УРАВНЕНИЕ

Еще один вариант, когда двойная связь находится, например, в боковой цепи ароматических углеводородов. Регулярно в заданиях егэ встречается реакция Вагнера с участием стирола, его второе название винилбензол.

Я надеюсь, что представил вашему вниманию достаточно примеров, чтобы вы поняли, что мягкое окисление двойной связи всегда подчиняется довольно простому правилу — пи-связь разрывается и к каждому атому углерода присоединяется гидроксигруппа.

Теперь, что касается жесткого окисления. Это будет наше седьмое свойство. Такое окисление происходит, когда алкен реагирует с кислотным раствором перманганата калия при нагревании.

Происходит деструкция молекулы, то есть ее разрушение по двойной связи. В случае бутена-2 получились две молекулы уксусной кислоты. В целом же, по продуктам окисления можно судить о положении кратной связи в углеродной цепи.

При окислении бутена-1 получается молекула пропионовой (пропановой) кислоты и углекислый газ.

В случае этилена получится две молекулы углекислого газа. Во всех случаях в кислой среде марганец из степени окисления +7 восстанавливается до +2.

И, наконец, восьмое свойство — полное окисление или горение.

Алкены сгорают, как и другие углеводороды, до углекислого газа и воды. Запишем уравнение сгорания алкенов в общем виде.

Молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле алкена, поскольку в состав молекулы CO 2 входит один атом углерода. То есть n молекул CO 2 . Молекул воды будет в два раза меньше, чем атомов водорода, то есть 2n/2, а значит просто n.

Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа плюс n из воды, итого 3n. Слева атомов кислорода столько же, а значит молекул в два раза меньше, потому как в состав молекулы входят два атома. То есть 3n/2 молекул кислорода. Можно записать 1,5n.

Мы рассмотрели восемь химических свойств алкенов.

Самыми простыми органическими соединениями являются предельные и непредельные углеводороды. К ним относят вещества класса алканов, алкинов, алкенов.

Формулы их включают атомы водорода и углерода в определенной последовательности и количестве. Они часто встречаются в природе.

Определение алкенов

Другое их название - олефины или углеводороды этиленовые. Именно так назвали данный класс соединений в 18 столетии при открытии маслянистой жидкости − хлористого этилена.

К алкенам относятся вещества, состоящие из водородных и углеродных элементов. Они относятся к ациклическим углеводородам. В их молекуле присутствует единственная двойная (ненасыщенная) связь, соединяющая два углеродных атома между собой.

Формулы алкенов

Каждый класс соединений имеет свое химическое обозначение. В них символами элементов периодической системы указывается состав и структура связи каждого вещества.

Общая формула алкенов обозначается следующим образом: C n H 2n , где число n больше или равняется 2. При ее расшифровке видно, что на каждый атом углерода приходится по два атома водорода.

Молекулярные формулы алкенов из гомологического ряда представлены следующими структурами: C 2 H 4 , C 3 H 6 , C 4 H 8 , C 5 H 10 , C 6 H 12 , C 7 H 14 , C 8 H 16 , C 9 H 18 , C 10 H 20 . Видно, что каждый последующий углеводород содержит на один больше углерода и на 2 больше водорода.

Существует графическое обозначение расположения и порядка химических соединений между атомами в молекуле, которое показывает формула алкенов структурная.С помощью валентных черточек обозначается связь углеродов с водородами.

Формула алкенов структурная может быть изображена в развернутом виде, когда показываются все химические элементы и связи. При более кратком выражении олефинов не показывается соединение углерода и водорода с помощью валентных черточек.

Формулой скелетной обозначают самую простую структуру. Ломаной линией изображают основу молекулы, в которой атомы углерода представлены ее верхушками и концами, а звеньями указывают водород.

Как образуются наименования олефинов

CH 3 -HC=CH 2 + H 2 O → CH 3 -OHCH-CH 3 .

При воздействии на алкены кислотой серной происходит процесс сульфирования:

CH 3 -HC=CH 2 + HO−OSO−OH → CH 3 -CH 3 CH-O−SO 2 −OH.

Реакция протекает с образованием кислых эфиров, например, изопропилсерной кислоты.

Алкены подвержены окислению во время их сжигания при действии кислорода с формированием воды и газа углекислого:

2CH 3 -HC=CH 2 + 9O 2 → 6CO 2 + 6H 2 O.

Взаимодействие олефиновых соединений и разбавленного калия перманганата в форме раствора приводит к возникновению гликолей или спиртов двухатомного строения. Данная реакция также является окислительной с образованием этиленгликоля и обесцвечиванием раствора:

3H 2 C=CH 2 + 4H 2 O+ 2KMnO 4 → 3OHCH-CHOH+ 2MnO 2 +2KOH.

Молекулы алкенов могут быть задействованы в процессе полимеризации со свободнорадикальным или катионно-анионным механизмом. В первом случае под влиянием пероксидов получается полимер типа полиэтилена.

По второму механизму катионными катализаторами выступают кислоты, а анионными являются вещества металлорганические с выделением стереоселективного полимера.

Что такое алканы

Их еще называют парафинами или предельными ациклическими углеводородами. Они обладают линейной или разветвлённой структурой, в которой содержатся только насыщенные простые связи. Все представители данного класса имеют общую формулу C n H 2n+2 .

В их составе присутствуют только атомы углерода и водорода. Общая формула алкенов образуется из обозначения предельных углеводородов.

Названия алканов и их характеристика

Самым простым представителем данного класса является метан. За ним следуют вещества типа этана, пропана и бутана. В основе их названия лежит корень числительного на греческом языке, к которому прибавляют суффикс -ан. Наименования алканов занесены в IUPAC номенклатуру.

Общая формула алкенов, алкинов, алканов включает только две разновидности атомов. К ним относятся элементы углерода и водорода. Количество углеродных атомов во всех трех классах совпадает, отличие наблюдается только в численности водорода, который может отщепляться или присоединяться. Из получают ненасыщенные соединения. У представителей парафинов в молекуле содержится на 2 атома водорода больше, чем у олефинов, что подтверждает общая формула алканов, алкенов. Алкенов структура считается ненасыщенной за счет наличия двойной связи.

Если соотнести число во-до-ро-дных и уг-ле-ро-дных ато-мов в ал-ка-нах, то значение будет мак-си-маль-ным в сравнении с другими классами уг-ле-во-до-ро-дов.

Начиная с метана и заканчивая бутаном (от С 1 до С 4), вещества существуют в газообразном виде.

В жидкой форме представлены углеводороды гомологического промежутка от С 5 до С 16 . Начиная с алкана, имеющего в основной цепи 17 атомов углерода, происходит переход физического состояния в твердую форму.

Для них характерна изомерия по углеродному скелету и оптические видоизменения молекулы.

В парафинах углеродные ва-лент-но-сти считаются полностью за-ня-тыми соседними уг-ле-ро-да-ми или во-до-ро-да-ми с образованием связи σ-типа. С хи-ми-че-ской точки зрения это обуславливает их слабые свой-ства, именно поэтому алканы носят название пре-дель-ны-х или на-сы-щен-ны-х уг-ле-во-до-ро-дов, лишенных сродства.

Они вступают в реакции замещения, связанные с галогенированием по радикальному типу, сульфохлорированием или нитрованием молекулы.

Парафины подвергаются процессу окисления, горения или разложения при высоких температурах. Под действием ускорителей реакций происходит отщепление атомов водорода или дегидрирование алканов.

Что такое алкины

Их еще называют ацетиленовыми углеводородами, у которых в цепочке углеродной присутствует тройная связь. Структура алкинов описывается общей формулой C n H 2 n-2 . Из нее видно, что в отличие от алканов, у ацетиленовых углеводородов недостает четыре атома водорода. Их заменяет тройная связь, образованная двумя π- соединениями.

Такое строение обуславливает химические свойства данного класса. Структурная формула алкенов и алкинов наглядно показывает ненасыщенность их молекул, а также наличие двойной (H 2 C꞊CH 2) и тройной (HC≡CH) связи.

Наименование алкинов и их характеристика

Самым простым представителем является ацетилен или HC≡CH. Его также именуют этином. Происходит оно от названия насыщенного углеводорода, в котором убирают суффикс -ан и добавляют -ин. В наименованиях длинных алкинов цифрой указывают расположение тройной связи.

Зная строение углеводородов насыщенных и ненасыщенных, можно определить, под какой буквой обозначена общая формула алкинов: а) CnH2n; в) CnH2n+2; c) CnH2n-2; г) CnH2n-6. Правильным ответом будет третий вариант.

Начиная с ацетилена и заканчивая бутаном (от С 2 до С 4), вещества имеют газообразную природу.

В жидкой форме находятся углеводороды гомологического промежутка от С 5 до С 17 . Начиная с алкина, имеющего в основной цепи 18 атомов углерода, происходит переход физического состояния в твердую форму.

Для них характерна изомерия по углеродному скелету, по положению связи тройной, а также межклассовые видоизменения молекулы.

По химическим характеристикам ацетиленовые углеводороды подобны алкенам.

Если у алкинов тройная связь концевая, то они выполняют функцию кислоты с образованием солей алкинидов, например, NaC≡CNa. Наличие двух π-связей делает молекулу ацетиледина натрия сильным нуклеофилом, вступающим в реакции замещения.

Ацетилен подвергается хлорированию в присутствии хлорида меди с получением дихлорацетилена, конденсации под действием галогеналкинов с выделением диацетиленовых молекул.

Алкины участвуют в реакциях принцип которых лежит в основе галогенирования, гидрогалогенирования, гидротации и карбонилирования. Однако такие процессы протекают слабее, чем у алкенов с двойной связью.

Для ацетиленовых углеводородов возможны реакции присоединения по нуклеофильному типу молекулы спирта, первичного амина или сероводорода.

Продолжение. Начало см. в № 15, 16, 17, 18, 19/2004

Урок 9.
Химические свойства алкенов

Химические cвойства алкенов (этилена и его гомологов) во многом определяются наличием в их молекулах д… связи. Алкены вступают в реакции всех трех типов, причем наиболее характерными для них являются реакции п… . Рассмотрим их на примере пропилена С 3 Н 6 .
Все реакции присоединения протекают по двойной связи и состоят в расщеплении -связи алкена и образовании на месте разрыва двух новых -связей.

Присоединение галогенов:

Присоединение водорода (реакция гидрирования):

Присоединение воды (реакция гидратации):

Присоединение галогеноводородов (HHal) и воды к несимметричным алкенам происходит по правилу В.В.Марковникова (1869). Водород кислоты Hhal присоединяется к наиболее гидрированному атому углерода при двойной связи. Соответственно остаток Hal связывается с атомом С, при котором находится меньшее число атомов водорода.

Горение алкенов на воздухе.
При поджигании алкены горят на воздухе:

2СН 2 =СНСН 3 + 9О 2 6СО 2 + 6Н 2 О.

С кислородом воздуха газообразные алкены образуют взрывчатые смеси.
Алкены окисляются перманганатом калия в водной среде, что сопровождается обесцвечиванием раствора KMnO 4 и образованием гликолей (соединений с двумя гидроксильными группами при соседних атомах С). Этот процесс – гидроксилирование алкенов :

Алкены окисляются кислородом воздуха в эпоксиды при нагревании в присутствии серебряных катализаторов:

Полимеризация алкенов – связывание множества молекул алкена друг с другом. Условия реакции: нагревание, присутствие катализаторов. Соединение молекул происходит путем расщепления внутримолекулярных-cвязей и образования новых межмолекулярных -cвязей:

В этой реакции диапазон значений n = 10 3 –10 4 .

Упражнения.

1. Напишите уравнения реакций бутена-1 с: а) Br 2 ; б) HBr; в) H 2 O; г) H 2 . Назовите продукты реакций.

2. Известны условия, в которых присоединение воды и галогеноводородов по двойной связи алкенов протекает против правила Марковникова. Составьте уравнения реакций
3-бромпропилена по анти-Марковникову с: а) водой; б) бромоводородом.

3. Напишите уравнения реакций полимеризации: а) бутена-1; б) винилхлорида СН 2 =СНСl;
в) 1,2-дифторэтилена.

4. Составьте уравнения реакций этилена с кислородом для следующих процессов: а) горение на воздухе; б) гидроксилирование с водным KMnO 4 ; в) эпоксидирование (250 °С, Ag).

5. Напишите структурную формулу алкена, зная, что 0,21 г этого соединения способно присоединить 0,8 г брома.

6. При сгорании 1 л газообразного углеводорода, обесцвечивающего малиновый раствор перманганата калия, расходуется 4,5 л кислорода, причем получается 3 л СО 2 . Составьте структурную формулу этого углеводорода.

Урок 10.
Получение и применение алкенов

Реакции получения алкенов сводятся к обращению реакций, представляющих химические свойства алкенов (протеканию их справа налево, см. урок 9). Надо только подыскать соответствующие условия.
Отщепление двух атомов галогена от дигалогеноалканов , содержащих галогены при соседних атомах С. Реакция протекает под действием металлов (Zn и др.):

Крекинг предельных углеводородов. Так, при крекинге (см. урок 7) этана образуется смесь этилена и водорода:

Дегидратация спиртов. При действии на спирты водоотнимающих средств (концентрированной серной кислоты) или при нагревании 350 °С в присутствии катализаторов отщепляется вода и образуются алкены:

Таким способом в лаборатории получают этилен.
Промышленным способом получения пропилена наряду с крекингом служит дегидратация пропанола над оксидом алюминия:

Дегидрохлорирование хлоралканов проводят при действии на них раствора щелочи в спирте, т.к. в воде продуктами реакции оказываются не алкены, а спирты.

Применение этилена и его гомологов основано на их химических свойствах, т. е. способности превращаться в различные полезные вещества.

Моторные топлива , обладающие высокими октановыми числами, получают гидрированием разветвленных алкенов:

Обесцвечивание желтого раствора брома в инертном растворителе (ССl 4) происходит при добавлении капли алкена или пропускании через раствор газообразного алкена. Взаимодействие с бромом – характерная качественная реакция на двойную связь :

Продукт гидрохлорирования этилена – хлорэтан – используют в химическом синтезе для введения группы С 2 Н 5 – в молекулу:

Хлорэтан также обладает местным анестезирующим (обезболивающим) действием, что используется при хирургических операциях.

Гидратацией алкенов получают спирты, например, этанол :

Спирт C 2 H 5 ОН используют как растворитель, для дезинфекции, в синтезе новых веществ.

Гидратация этилена в присутствии окислителя [O] приводит к этиленгликолю – антифризу и полупродукту химического синтеза :

Окислением этилена получают этиленоксид и ацетальдегид – сырье в химической отрасли промышленности:

Полимеры и пластики – продукты полимеризации алкенов, например, политетрафторэтилен (тефлон):

Упражнения.

1. Завершите уравнения реакций элиминирования (отщепления), назовите получающиеся алкены :

2. Составьте уравнения реакций гидрирования: а) 3,3-диметилбутена-1;
б) 2,3,3-триметилбутена-1. В этих реакциях получаются алканы, используемые в качестве моторных топлив, дайте им названия.

3. Через трубку с нагретым оксидом алюминия пропустили 100 г этилового спирта С 2 Н 5 ОН. В результате получили 33,6 л углеводорода (н.у.). Сколько спирта (в %) прореагировало?

4. Сколько граммов брома прореагирует с 2,8 л (н.у.) этилена?

5. Составьте уравнение реакции полимеризации трифторхлорэтилена. (Образующаяся пластмасса устойчива к действию горячей серной кислоты, металлического натрия и т.п.)

Ответы на упражнения к теме 1

Урок 9

5. Реакция алкена С n H 2n с бромом в общем виде:

Молярная масса алкена M n H 2n ) = 0,21 160/0,8 = 42 г/моль.
Это – пропилен.
Ответ . Формула алкена – СН 2 =СНСН 3 (пропилен).

6. Поскольку все участвующие в реакции вещества – газы, стехиометрические коэффициенты в уравнении реакции пропорциональны их объемным соотношениями. Запишем уравнение реакции:

С a H в + 4,5О 2 3СО 2 + 3Н 2 О.

Число молекул воды определяем по уравнению реакции: 4,5 2 = 9 атомов О вступило в реакцию, 6 атомов О связаны в СО 2 , остальные 3 атома О входят в состав трех молекул Н 2 О. Поэтому индексы равны: а = 3, в = 6. Искомый углеводород – пропилен С 3 Н 6 .
Ответ . Структурная формула пропилена – СН 2 =СНСН 3 .

Урок 10

1. Уравнения реакций элиминирования (отщепления) – синтез алкенов:

2. Реакции гидрирования алкенов при нагревании под давлением в присутствии катализатора:

3. Реакция дегидратации этилового спирта имеет вид:

Здесь через х обозначена масса спирта, превратившегося в этилен.
Найдем значение х : х = 46 33,6/22,4 = 69 г.
Доля прореагировавшего спирта составила: 69/100 = 0,69, или 69%.
Ответ . Прореагировало 69% спирта.

4.

Поскольку стехиометрические коэффициенты перед формулами реагирующих веществ (С 2 Н 4 и Br 2) равны единице, справедливо соотношение:
2,8/22,4 = х /160. Отсюда х = 20 г Br 2 .
Ответ . 20 г Br 2 .

Алкены ненасыщенные алифатические углеводороды с одной или несколькими двойными углерод-углеродными связями. Двойная связь превращает два атома углерода в плоскую структуру с валентными углами между соседними связями по 120°С:

Гомологический ряд алкенов имеет общую формулу двумя его первыми членами являются этен (этилен) и пропен (пропилен):

Члены ряда алкенов с четырьмя или большим числом атомов углерода обнаруживают изомерию положения связей. Например, алкен с формулой имеет три изомера, два из которых являются изомерами положения связей:

Заметим, что нумерация цепи алкенов производится с того ее конца, который ближе к двойной связи. Положение двойной связи указывается меньшим из двух номеров, которые соответствуют двум атомам углерода, связанным между собой двойной связью. Третий изомер имеет разветвленную структуру:

Число изомеров какого-либо алкена возрастает с числом атомов углерода. Например, гексен имеет три изомера положения связей:

диенов является бута-1,3-диен, или просто бутадиен:

Соединения, содержащие три двойные связи, называются триенами. Соединения с несколькими двойными связями имеют общее название полиены.

Физические свойства

Алкены имеют несколько более низкие температуры плавления и кипения, чем соответствующие им алканы. Например, пентан имеет температуру кипения . Этилен, пропен и три изомера бутена при комнатной температуре и нормальном давлении находятся в газообразном состоянии. Алкены с числом атомов углерода от 5 до 15 в нормальных условиях находятся в жидком состоянии. Их летучесть, как и у алканов, возрастает при наличии разветвления в углеродной цепи. Алкены с числом атомов углерода больше 15 при нормальных условиях представляют собой твердые вещества.

Получение в лабораторных условиях

Двумя основными способами получения алкенов в лабораторных условиях являются дегидратация спиртов и дегидрогалогенирование галогеноалканов. Например, этилен можно получить дегидратацией этанола при действии избытка концентрированной серной кислоты при температуре 170 °С (см. разд. 19.2):

Этилен можно также получить из этанола, пропуская пары этанола над поверхностью нагретого оксида алюминия. Для этой цели можно использовать установку, схематически изображенную на рис. 18.3.

Второй распространенный метод получения алкенов основан на проведении дегидрогалогенирования галогеноалканов в условиях основного катализа

Механизм реакции элиминирования такого типа описан в разд. 17.3.

Реакции алкенов

Алкены обладают намного большей реакционной способностью, чем алканы. Это обусловлено способностью -электронов двойной связи притягивать электрофилы (см. разд. 17.3). Поэтому характерные реакции алкенов представляют собой главным образом реакции электрофильного присоединения по двойной связи:

Многие из этих реакций имеют ионные механизмы (см. разд. 17.3).

Гидрирование

Если какой-нибудь алкен, например этилен, смешать с водородом и пропустить эту смесь над поверхностью платинового катализатора при комнатной температуре или никелевого катализатора при температуре около 150°С, то произойдет присоединение

водорода по двойной связи алкена. При этом образуется соответствующий алкан:

Реакция этого типа представляет собой пример гетерогенного катализа. Его механизм описан в разд. 9.2 и схематически показан на рис. 9.20.

Присоединение галогенов

Хлор или бром легко присоединяются по двойной связи алкена; эта реакция протекает в неполярных растворителях, например в тетрахлорометане или гексане. Реакция протекает по ионному механизму, который включает образование карбкатиона. Двойная связь поляризует молекулу галогена, превращая ее в диполь:

Поэтому раствор брома в гексане или тетрахлорометане при встряхивании с алкеном обесцвечивается. То же самое происходит, если встряхивать алкен с бромной водой. Бромная вода представляет собой раствор брома в воде. Этот раствор содержит бромноватистую кислоту . Молекула бромноватистой кислоты присоединяется по двойной связи алкена, и в результате образуется бромозамещенный спирт. Например

Присоединение галогеноводородов

Механизм реакции этого типа описан в разд. 18.3. В качестве примера рассмотрим присоединение хлороводорода к пропену:

Отметим, что продукт этой реакции представляет собой 2-хлоропропан, а не 1-хлоро-пропан:

В таких реакциях присоединения наиболее электроотрицательный атом или наиболее электроотрицательная группа всегда присоединяются к атому углерода, связанному с

наименьшим числом атомов водорода. Эта закономерность носит название правила Марковникова.

Предпочтительное присоединение электроотрицательного атома или группы к атому углерода, связанному с наименьшим числом атомов водорода, обусловлено повышением устойчивости карбкатиона по мере возрастания числа алкильных заместителей на атоме углерода. Это повышение устойчивости в свою очередь объясняется индуктивным эффектом, возникающим в алкильных группах, так как они являются донорами электронов:

В присутствии какого-либо органического пероксида пропен реагирует с бромоводородом, образуя т. е. не по правилу Марковникова. Такой продукт называется антимарковниковским. Он образуется в результате протекания реакции по радикальному, а не ионному механизму.

Гидратация

Алкены реагируют с холодной концентрированной серной кислотой, образуя алкил-гидросульфаты. Например

Эта реакция представляет собой присоединение, поскольку в ней происходит присоединение кислоты по двойной связи. Она является обратной реакцией по отношению к дегидратации этанола с образованием этилена. Механизм этой реакции подобен механизму присоединения галогеноводородов по двойной связи. Он включает образование промежуточного карбкатиона. Если продукт этой реакции разбавить водой и осторожно нагревать, он гидролизуется, образуя этанол:

Реакция присоединения серной кислоты к алкенам подчиняется правилу Марковникова:

Реакция с подкисленным раствором перманганата калия

Фиолетовая окраска подкисленного раствора перманганата калия исчезает, если этот раствор встряхивают в смеси с каким-либо алкеном. Происходит гидроксилирование алкена (введение в него гидроксигруппы, образующейся вследствие окисления), который в результате превращается в диол. Например, при встряхивании избыточного количества этилена с подкисленным раствором происходит образование этан-1,2-диола (этиленгликоля)

Если алкен встряхивают с избыточным количеством раствора -ионов, происходит окислительное расщепление алкена, приводящее к образованию альдегидов и кетонов:

Альдегиды, образующиеся при этом, подвергаются дальнейшему окислению с образованием карбоновых кислот.

Гидроксилирование алкенов с образованием диолов может также проводиться с помощью щелочного раствора перманганата калия.

Реакция с пербензойной кислотой

Алкены реагируют с пероксикислотами (надкислотами), например с пербензойной кислотой, образуя простые циклические эфиры (эпоксисоединения). Например

При осторожном нагревании эпоксиэтана с разбавленным раствором какой-либо кислоты образуется этан-1,2-диол:

Реакции с кислородом

Как и все другие углеводороды, алкены горят и при обильном доступе воздуха образуют диоксид углерода и воду:

При ограниченном доступе воздуха горение алкенов приводит к образованию моноксида углерода и воды:

Поскольку алкены имеют более высокое относительное содержание углерода, чем соответствующие алканы, они горят с образованием более дымного пламени. Это обусловлено образованием частиц углерода:

Если смешать какой-либо алкен с кислородом и пропустить эту смесь над поверхностью серебряного катализатора, при температуре около 200 °С образуется эпоксиэтан:

Озонолиз

При пропускании газообразного озона через раствор какого-либо алкена в трихлорометане или тетрахлорометане при температуре ниже 20 °С образуется озонид соответствующего алкена (оксиран)

Озониды - неустойчивые соединения и могут быть взрывоопасными. Они подвергаются гидролизу с образованием альдегидов или кетонов. Например

В этом случае часть метаналя (формальдегида) реагирует с пероксидом водорода, образуя метановую (муравьиную) кислоту:

Полимеризация

Простейшие алкены могут полимеризоваться с образованием высокомолекулярных соединений, которые обладают той же эмпирической формулой, что и исходный алкен:

Эта реакция протекает при высоком давлении, температуре 120°С и в присутствии кислорода, который играет роль катализатора. Однако полимеризацию этилена можно проводить и при более низком давлении, если воспользоваться катализатором Циглера. Одним из наиболее распространенных катализаторов Циглера является смесь триэтилалюминия и тетрахлорида титана.

Полимеризация алкенов более подробно рассматривается в разд. 18.3.

Содержащие пи-связь - это непредельные углеводороды. Они являются производными алканов, в молекулах которых произошло отщепление двух атомов водорода. Образовавшиеся свободные валентности формируют новый тип связи, которая располагается перпендикулярно плоскости молекулы. Так возникает новая группа соединений - алкены. Физические свойства, получение и применение веществ этого класса в быту и промышленности мы рассмотрим в этой статье.

Гомологический ряд этилена

Общая формула всех соединений, называемых алкенами, отражающая их качественный и количественный состав, - это C n H 2 n . Названия углеводородов по систематической номенклатуре имеют следующий вид: в термине соответствующего алкана изменяется суффикс с -ан на -ен, например: этан - этен, пропан - пропен и т. д. В некоторых источниках можно встретить еще одно название соединений этого класса - олефины. Далее мы изучим процесс образования двойной связи и физические свойства алкенов, а также определим их зависимость от строения молекулы.

Как образуется двойная связь

Электронную природу пи-связи на примере этилена можно представить следующим образом: атомы карбона в его молекуле находятся в форме sp 2 -гибридизации. В этом случае формируется сигма-связь. Еще две гибридные орбитали - по одной от атомов углерода, формируют простые сигма-связи с водородными атомами. Два оставшихся свободных гибридных облака атомов карбона перекрываются над и под плоскостью молекулы - образуется пи-связь. Именно она определяет физические и химические свойства алкенов, речь о которых пойдет далее.

Пространственная изомерия

Соединения, имеющие один и тот же количественный и качественный состав молекул, но различное пространственное строение, называются изомерами. Изомерия встречается в группе веществ, называемых органическими. На характеристику олефинов большое влияние оказывает явление оптической изомерии. Она выражается в том, что гомологи этилена, содержащие у каждого из двух углеродных атомов при двойной связи различные радикалы или заместители, могут встречаться в форме двух оптических изомеров. Они отличаются друг от друга положением заместителей в пространстве относительно плоскости двойной связи. Физические свойства алкенов в этом случае также будут разными. Например, это касается температур кипения и плавления веществ. Так, олефины неразветвленного строения углеродного скелета имеют более высокие температуры кипения, чем соединения-изомеры. Также температуры кипения цис-изомеров алкенов выше, чем транс-изомеров. В отношении температур плавления картина противоположная.

Сравнительная характеристика физических свойств этилена и его гомологов

Первые три представителя олефинов являются газообразными соединениями, затем, начиная с пентена C 5 H 10 и до алкена с формулой C 17 H 34 , - жидкости, а далее идут твердые вещества. У гомологов этена прослеживается следующая тенденция: температуры кипения соединений снижаются. Например, у этилена этот показатель равен -169,1°C, а у пропилена -187,6°C. Зато температуры кипения с увеличением молекулярной массы повышаются. Так, у этилена она равна -103,7°C, а у пропена -47,7°C. Подводя итог сказанному, можно сделать вывод, звучащий кратко: физические свойства алкенов зависят от их молекулярной массы. С ее увеличением изменяется агрегатное состояние соединений в направлении: газ - жидкость - твердое вещество, а также снижается температура плавления, а температуры кипения возрастают.

Характеристика этена

Первый представитель гомологического ряда алкенов - это этилен. Он является газом, малорастворимым в воде, но хорошо растворяющимся в органических растворителях, не имеющим цвета. Молекулярная масса - 28, этен немного легче воздуха, имеет едва уловимый сладковатый запах. Он легко вступает в реакции с галогенами, водородом и галогеноводородами. Физические свойства алкенов и парафинов тем не менее достаточно близки. Например, агрегатное состояние, способность метана и этилена к жесткому окислению и т. д. Как же можно различить алкены? Как выявить непредельный характер олефина? Для этого существуют качественные реакции, на которых мы и остановимся подробнее. Напомним, какую особенность в строении молекулы имеют алкены. Физические и химические свойства этих веществ определяются наличием в их составе двойной связи. Чтобы доказать ее присутствие, пропускают газообразный углеводород через фиолетовый раствор перманганата калия или бромную воду. Если они обесцветились, значит, соединение содержит в составе молекул пи-связи. Этилен вступает в реакцию окисления и обесцвечивает растворы KMnO 4 и Br 2 .

Механизм реакций присоединения

Разрыв двойной связи заканчивается присоединением к свободным валентностям карбона атомов других химических элементов. Например, при взаимодействии этилена с водородом, называемом гидрогенизацией, получается этан. Необходим катализатор, например порошковидный никель, палладий или платина. Реакция с HCl заканчивается образованием хлорэтана. Алкены, содержащие более двух атомов углерода в составе своих молекул, проходят реакцию присоединения галогеноводородов с учетом правила В. Марковникова.

Как гомологи этена взаимодействуют с галогеноводородами

Если перед нами стоит задание "Охарактеризуйте физические свойства алкенов и их получение", нам нужно рассмотреть правило В. Марковникова более подробно. Практическим путем установлено, что гомологи этилена реагируют с хлороводородом и другими соединениями по месту разрыва двойной связи, подчиняясь некоторой закономерности. Она заключается в том, что атом водорода присоединяется к наиболее гидрогенизированному углеродному атому, а ион хлора, брома или йода - к карбоновому атому, содержащему наименьшее количество атомов водорода. Эта особенность протекания реакций присоединения получила название правила В. Марковникова.

Гидратация и полимеризация

Продолжим далее рассматривать физические свойства и применение алкенов на примере первого представителя гомологического ряда - этена. Его реакция взаимодействия с водой используется в промышленности органического синтеза и имеет важное практическое значение. Впервые процесс был проведен еще в XIX веке А.М. Бутлеровым. Реакция требует выполнения ряда условий. Это, прежде всего, использование концентрированной серной кислоты или олеума в качестве катализатора и растворителя этена, давление порядка 10 атм и температура в пределах 70°. Процесс гидратации происходит в две фазы. Вначале по месту разрыва пи-связи к этену присоединяются молекулы сульфатной кислоты, при этом образуется этилсерная кислота. Затем полученное вещество реагирует с водой, получается этиловый спирт. Этанол - важный продукт, применяемый в пищевой промышленности для получения пластмасс, синтетических каучуков, лаков и других продуктов органической химии.

Полимеры на основе олефинов

Продолжая изучать вопрос применения веществ, относящихся к классу алкенов, изучим процесс их полимеризации, в котором могут участвовать соединения, содержащие непредельные химические связи в составе своих молекул. Известно несколько типов реакции полимеризации, по которым происходит образование высокомолекулярных продуктов - полимеров, например таких как полиэтилен, полипропилен, полистирол и т. д. Свободнорадикальный механизм приводит к получению полиэтилена высокого давления. Это одно из наиболее широко применяемых соединений в промышленности. Катионно-ионный тип обеспечивает получение полимера стереорегулярного строения, например полистирола. Он считается одним из наиболее безопасных и удобных в использовании полимеров. Изделия из полистирола устойчивы к агрессивным веществам: кислотам и щелочам, негорючие, легко окрашиваются. Еще один вид механизма полимеризации - димеризация, он приводит к получению изобутена, применяемого в качестве антидетонационной добавки к бензину.

Способы получения

Алкены, физические свойства которых мы изучаем, получают в лабораторных условиях и промышленности различными методами. В опытах в школьном курсе органической химии используют процесс дегидратации этилового спирта с помощью водоотнимающих средств, например таких, как пятиокись фосфора или сульфатная кислота. Реакция проводится при нагревании и является обратной процессу получения этанола. Еще один распространенный способ получения алкенов нашел свое применение в промышленности, а именно: нагревание галогенопроизводных предельных углеводородов, например хлорпропана с концентрированными спиртовыми растворами щелочей - гидроксида натрия или калия. В реакции происходит отщепление молекулы хлороводорода, по месту появления свободных валентностей атомов карбона образуется двойная связь. Конечным продуктом химического процесса будет олефин - пропен. Продолжая рассматривать физические свойства алкенов, остановимся на главном процессе получения олефинов - пиролизе.

Промышленное производство непредельных углеводородов ряда этилена

Дешевое сырье - газы, образующиеся в процессе крекинга нефти, служат источником получения олефинов в химической промышленности. Для этого применяют технологическую схему пиролиза - расщепление газовой смеси, идущее с разрывом углеродных связей и образованием этилена, пропена и других алкенов. Пиролиз проводят в специальных печах, состоящих из отдельных пирозмеевиков. В них создается температура порядка 750-1150°C и присутствует водяной пар в качестве разбавителя. Реакции происходят по цепному механизму, идущему с образованием промежуточных радикалов. Конечный продукт - это этилен или пропен, их получают в больших объемах.

Мы подробно изучили физические свойства, а также применение и способы получения алкенов.