Особенности строения и функций гипоталамуса. Что такое таламус и гипоталамус, его влияние на организм человека

Таламус. Морфофункциональная организация. Функции

Таламус, или зрительный бугор, является составной частью промежуточного мозга. Он занимает центральное место между большими полушариями. Особая локализация таламуса, его теснейшие связи с корой больших полушарий головного мозга и афферентными системами обусловливают особую функциональную роль этого образования. Как отмечал Уолкер (1964), «… в таламусе, этой огромной нейронной массе, лежит ключ к тайнам церебральной коры…».

Таламус представляет собой массивное парное образование, имеющее яйцевиднуюформу, длинная ось которого ориентированав дорсовентральномнаправлении. Медиальная поверхность таламуса образует стенку III желудочка, верхняя является дном бокового желудочка, наружная прилегает к внутренней капсуле, а нижняя переходит в гипоталамическую область. Таламус является ядерным образованием. В нем различают до 40 пар ядер. В настоящее время существует множество делений ядер таламуса на группы, в основе которых лежат различные принципы. Согласно Уолкеру (1966), а также Смирнову (1972), по топографическому признаку все ядра делят на 6 групп.

1. Передняя группа ядер включает ядра, составляющие передний бугор таламуса: переднее дорсальное (n. AD), переднее вентральное (n. AV), переднее медиальное (n. AM) и др.

2. Группа ядер средней линии включает в себя центральное медиальное (n. Cm), паравентрикулярное (n. Pv), ромбовидное (n. Rb) ядра, центральное серое вещество (Gc) и др.

3. Медиальная и интраламинарная группа содержит медиодорсальное (n. MD), центральное латеральное (n. CL), парацентральное (n. Pc) и другие ядра.

4. Вентролатеральная ядерная группа состоит из вентрального и латерального отделов. Вентральный отдел содержит вентральное переднее (n. VA), вентральное латеральное (n. VL) и вентральное заднее (n. VP) ядра. Латеральный отдел состоит из латерального дорсального (n. LD) и латерального заднего (n. LP) ядер. Здесь же находится ретикулярное ядро таламуса (n. R), ему принадлежит особое место в реализации функций таламуса.

5. Задняя группа ядер –подушечное ядро (PuCV), наружное и внутреннее коленчатые тела (n. GL, n. GM) и т.д.

6. Претектальная ядерная группа (иногда ее относят к задней группе ядер) содержит претектальное ядро (n. Prt), заднее ядро (n. P), претектальную зону и ядра задней спайки.

С функциональной точки зрения все ядра таламуса подразделяют на 3 группы:

1 группа – специфические (релейные) ядра (сенсорные и несенсорные);

2 группа – неспецифические ядра;

3 группа – ассоциативные ядра.

Специфические ядра имеют отчетливую топографическую и функциональную разграниченность проекций к определенным областям коры больших полушарий. Специфические ядра называют также релейными, переключающими. Специфические ядра делят на сенсорные релейные и несенсорные релейные. Несенсорные релейные ядра, в свою очередь, делятся на моторные ядра и переднюю группу. Отдельные морфологи переднюю группу и ряд неспецифических ядер называют лимбическими ядрами таламуса, учитывая их проекции на лимбическую кору. Например, специфические несенсорные ядра – переднее дорсальное, переднее медиальное и переднее вентральное – проецируются на различные поля поясной извилины. Релейные ядра таламуса получают афференты от лемнисковых систем (спинальной, тригемиальной, слуховой и зрительной), от некоторых структур головного мозга (вентральное переднее ядро таламуса, мозжечок, гипоталамус, полосатое тело) и имеют прямой выход в кору головного мозга (проекционные области, моторная и лимбическая кора).

Каждое релейное ядро получает нисходящие волокна из собственной кортикальной проекционной зоны. Тем самым создается морфологическая основа для функциональных связей между таламическим ядром и его корковой проекцией в виде замкнутых нейронных кругов циркулирующего возбуждения, посредством которых осуществляются их взаимно регулирующие отношения.

Нейронные поля релейных ядер таламуса содержат: 1) таламокортикальные релейные нейроны, аксоны которых идут в III и IV слоя коры;
2) длинноаксонные интегративные нейроны, аксоны которых дают коллатерали в ретикулярную формацию среднего мозга и другие ядра таламуса;
3) короткоаксонные нейроны, аксоны которых не выходят за пределы таламуса. Значительная часть нейронов релейных ядер отвечает только за стимуляцию определенной модальности, но имеются также и мультисенсорные нейроны. Релейным ядром для импульсации, несущей зрительную информацию, является наружное коленчатое тело, проецирующееся на зрительную кору (поля 17, 18, 19). Слуховые импульсы переключаются во внутреннем коленчатом теле. Проекционной корковой зоной являются поля 41, 42 и поперечная извилина Гешля. Вентральное переднее ядро таламуса (n. VA) получает обильную афферентацию из базальных ганглиев. Это ядро посылает прямые афференты к коре лобной области, оперкулуму и островку. Через это ядро проходят без переключения волокна от дорсомедиального ядра к лобной коре и к ретикулярному таламическому ядру. Благодаря вентральному переднему ядру хвостатое ядро проецируется на кору. Вентролатеральное ядро (n. VL) некоторыми авторами относится к одному из центров, который регулирует моторную активность и оказывает значительное влияние на активность пирамидных нейронов. Это ядро получает основные афференты по таламическому пучку лентикулярной петли, который начинается от нейронов внутреннего членика бледного шара. Другая часть афферентов приходит из красного и зубчатого ядер мозжечка. Из зубчатого ядра выходят прямые волокна, которые проходят красное ядро, а затем переключаются на нейроны рубро-таламического ядра и направляются в вентролатеральное ядро. Большое количество волокон к этому ядру приходит из ядра Кахала, расположенного в ретикулярной формации ствола мозга.

Неспецифические ядра образуют диффузную таламическую систему, филогенетически древнюю часть таламуса и представлены преимущественно интраламинарной группой и ядрами средней линии. Они получают афференты из филогенетически древней экстралемнисковой системы и спинного мозга, бульбарных отделов ретикулярной формации и, за некоторым исключением, не имеют прямого выхода к коре больших полушарий головного мозга. Выход к коре мозга осуществляется через оральный полюс ретикулярного ядра таламуса, который формирует диффузные связи с корой мозга. На нейронах этой группы ядер оканчивается некоторое количество волокон, составляющих основные каналы специфической афферентации, но главным является то, что они не связаны с проведением возбуждения какой-либо одной модальности и не имеют четких проекций в коре. Данная группа ядер выполняет модулирующие функции.

Ассоциативные ядра таламуса имеют, как правило, ограниченный афферентный вход из периферии, их афференты берут начало в других ядрах таламуса. Между ассоциативными ядрами таламуса и ассоциативными полями коры головного мозга, в особенности у высокоорганизованных млекопитающих, устанавливается мощная система связей. К ассоциативным ядрам поступает разнообразная афферентация от специфических и неспецифических ядер таламуса. Поэтому можно предполагать возможность осуществления здесь более сложных интегративных процессов, чем в других ядрах таламуса. Деление ядер на специфические, неспецифические и ассоциативные в какой-то мере условное.

Эфферентные волокна ассоциативных ядер направляются непосредственно в ассоциативные поля коры больших полушарий, где эти волокна, отдавая по пути коллатерали в IV и V слои коры, идут ко II и I слоям, вступая в контакт с пирамидными нейронами посредством аксо-дендри-
тических синапсов. Импульсы, возникающие в связи с раздражением рецепторов, вначале достигают релейных сенсорных и неспецифических ядер таламуса, где они переключаются на нейроны ассоциативных ядер таламуса, а после определенной организации и интеграции с потоками других импульсаций направляются в ассоциативные области коры. Многочисленные афферентные и эфферентные связи, а также полисенсорность нейронов ассоциативных ядер лежат в основе их интегративной функции. Ассоциативные ядра обеспечивают взаимодействие как таламических ядер, так и различных корковых полей и в определенной степени (учитывая межполушарные связи ассоциативных нейронов) совместную работу больших полушарий мозга. Ассоциативные ядра проецируются не только на ассоциативные области коры, но и на специфические проекционные поля. В свою очередь, кора головного мозга посылает волокна к ассоциативным таламическим ядрам, осуществляя регуляцию их деятельности. Наличие двусторонних связей дорсомедиального ядра с фронтальной корой, подушкой и латеральных ядер с теменной областью коры, а также существование связей ассоциативных ядер с таламическим и кортикальным уровнем специфических афферентных систем дало возможность А.С. Батуеву (1981) развить положение о наличии в составе целостного мозга таламофронтальной и таламотеменной ассоциативных систем, участвующих в формировании различных этапов эфферентного синтеза.

Подушка (pulvinar) является самым крупным таламическим образованием у человека. Главные афференты поступают в нее из коленчатых тел, неспецифических ядер и других таламических ядер. Кортикальная проекция от подушки идет к височно-теменно-затылочным областям новой коры, играющим важную роль в гностических и речевых функциях. При деструкции подушки, связанной с теменной корой, появляются нарушения «схемы тела». Разрушение некоторых отделов подушки могут устранять тяжелые боли.

В дорсомедиальное ядро (n. MD) таламуса афферентация поступает из таламических ядер, ростральных отделов ствола, гипоталамуса, миндалины, перегородки, свода, базальных ганглиев и префронтальной коры. Эти ядра проецируются на лобную ассоциативную и лимбическую кору. При двусторонних разрушениях дорсомедиальных ядер наблюдаются преходящие расстройства психической деятельности. Дорсомедиальное ядро рассматривают как таламический центр для лобных и лимбических отделов коры, участвующих в системных механизмах сложных поведенческих реакций, включая эмоциональные и мнестические процессы.

Функции таламуса. Таламус является интегративной структурой центральной нервной системы. В таламусе существует многоуровневая система интегративных процессов, которая не только обеспечивает проведение афферентной импульсации к коре головного мозга, но и выполняет множество других функций, позволяющих осуществлять координированные, хотя и простые реакции организма, проявляющиеся даже у таламических животных. Важно то, что основную роль во всех формах интегративных процессов в таламусе играет процесс торможения.

Интегративные процессы таламуса носят многоуровневый характер.

Первый уровень интеграции в таламусе осуществляется в гломерулах. Основу гломерулы составляет дендрит релейного нейрона и пресинаптические отростки нескольких типов: терминали восходящих афферентных и кортико-таламических волокон, а также аксонов интернейронов (клетки типа Гольджи П). Направленность синаптической передачи в гломерулах подчинена строгим закономерностям. В ограниченной группе синаптических образований гломерулы возможно столкновение разнородных афферентаций. Несколько гломерул, расположенных на соседних нейронах, могут взаимодействовать друг с другом благодаря малым безаксонным элементам, у которых розетки терминалей дендритов одной клетки входят в состав нескольких гломерул. Полагают, что объединение нейронов в ансамбли с помощью таких безаксонных элементов или с помощью дендро-дендритических синапсов, которые обнаружены в таламусе, может быть основой для поддержания синхронизации в ограниченной популяции таламических нейронов.

Вторым, более сложным, интернуклеарным уровнем интеграции является объединение значительной группы нейронов таламического ядра с помощью собственных (внутриядерных) тормозных интернейронов. Каждый тормозный вставочный нейрон устанавливает тормозные контакты со множеством релейных нейронов. В абсолютном выражении число интернейронов к числу релейных клеток составляет 1:3 (4), но за счет перекрытия взаимных тормозных интернейронов создаются такие соотношения, когда один интернейрон бывает связан с десятками и даже сотнями релейных нейронов. Всякое возбуждение такого вставочного нейрона приводит к торможению значительной группы релейных нейронов, в результате чего их деятельность синхронизируется. На этом уровне интеграции большое значение придается торможению, которое обеспечивает контроль афферентного входа в ядро и которое, вероятно, наиболее представлено в релейных ядрах.

Третий уровень интегративных процессов, происходящих в таламусе без участия коры головного мозга, представлен интраталамическим уровнем интеграции. Решающую роль в этих процессах играют ретикулярное ядро (n. R) и вентральное переднее ядро (n. VA) таламуса, предполагается участие и других неспецифических ядер таламуса. В основе интраталамической интеграции лежат также процессы торможения, осуществляющиеся за счет длинных аксональных систем, тела нейронов которых находятся в ретикулярном ядре и, возможно, в других неспецифических ядрах. Большинство аксонов таламокортикальных нейронов релейных ядер таламуса проходит через нейропиль ретикулярного ядра таламуса (охватывающего таламус почти со всех сторон), отдавая в него коллатерали. Предполагается, что нейроны n. R осуществляют возвратное торможение таламокортикальных нейронов релейных ядер таламуса.

Кроме контроля таламокортикального проведения, интрануклеарные и интраталамические интегративные процессы могут иметь важное значение для определенных специфических ядер таламуса. Так, интрануклеарные тормозные механизмы могут обеспечить дискриминативные процессы, усиливая контраст между возбужденными и интактными участками рецептивного поля. Предполагается участие ретикулярного ядра таламуса в обеспечении фокусированного внимания. Это ядро благодаря широкоразветвленной сети своих аксонов может затормаживать нейроны тех релейных ядер, к которым в данный момент не адресуется афферентный сигнал.

Четвертый, наивысший уровень интеграции, в котором принимают участие ядра таламуса, – это таламокортикальный. Кортико-фугальная импульсация играет важнейшую роль в деятельности ядер таламуса, контролируя проведение и многие другие функции, начиная с деятельности синаптических гломерул и заканчивая системами нейронных популяций. Влияние кортико-фугальной импульсации на деятельность нейронов ядер таламуса носит фазный характер: вначале на короткий промежуток наблюдается облегчение таламокортикального проведения (в среднем до 20 мс), а затем на относительно длинный период (в среднем до 150 мс) происходит торможение. Допускается и тоническое влияние кортико-фугальной импульсации. За счет связей нейронов таламуса с различными областями коры головного мозга и обратных связей устанавливается сложная система таламокортикальных взаимоотношений.

Таламус, реализуя свою интегративную функцию, принимает участие в следующих процессах:

1. Все сенсорные сигналы, кроме возникающих в обонятельной сенсорной системе, достигают коры через ядра таламуса и там осознаются.

2. Таламус является одним из источников ритмической активности в коре мозга.

3. Таламус принимает участие в процессах цикла сон – бодрствование.

4. Таламус является центром болевой чувствительности.

5. Таламус принимает участие в организации различных типов поведения, в процессах памяти, в организации эмоций и т.д.

Введение

Таламус (зрительный бугор)

Гипоталамус

Заключение

Медиальное коленчатое тело находится позади подушки таламуса; вместе с нижними холмиками пластинки крыши среднего мозга оно является подкорковым центром слухового анализатора.

Латеральное коленчатое тело располагается книзу от подушки таламуса. Вместе с верхними бугорками четверохолмия оно образует подкорковый центр зрительного анализатора.

Эпиталамус (надталамическая область) включает шишковидное тело (эпифиз), поводки и треугольники поводков . В треугольниках поводков залегают ядра, относящиеся к обонятельному анализатору. Поводки отходят от треугольников поводков, идут каудально, соединяются посредством спайки и переходят в шишковидное тело. Последнее как бы подвешено на них и располагается между верхними бугорками четверохолмия. Шишковидное тело является железой внутренней секреции. Его функции полностью не установлены, предполагается, что оно регулирует наступление полового созревания.

Таламус (зрительный бугор)

Общее строение и расположение таламуса.

Рисунок 1. Промежуточный мозг на сагиттальном разрезе.

Толща серого вещества таламуса разделена вертикальной Y-образной прослойкой (пластинкой) белого вещества на три части - переднюю, медиальную и латеральную.

Медиальная поверхность таламуса хорошо видна на сагиттальном (сагиттальный - стреловидный (лат. "sagitta" - стрела), делящей на симметричные правую и левую половины) разрезе мозга (рис.1). Медиальная (т.е. располагающаяся ближе к середине) поверхность правого и левого таламусов, обращенные друг к другу, образуют боковые стенки III мозгового желудочка (полость промежуточного мозга) посередине они соединены между собой межталамическим сращением .

Передняя (нижняя) поверхность таламусов сращена с гипоталамусом, через нее с каудальной стороны (т.е. находящейся ближе к нижней части тела) в промежуточный мозг входят проводящие пути из ножек мозга.

Латеральная ( т.е. боковая) поверхность таламуса граничит с внутренней капсулой - слоем белого вещества полушарий головного мозга, состоящего из проекционных волокон, соединяющих кору полушарий с нижележащими мозговыми структурами.

В каждой из этих частей таламуса находится несколько групп таламических ядер . Всего в таламусе содержится от 40 до 150 специализированных ядер .

Функциональное значение ядер таламуса.

По топографии ядра таламуса объединяют в 8 основных групп:

1. переднюю группу;

2. медиодорсальную группу;

3. группу ядер средней линии;

4. дорсолатеральную группу;

5. вентролатеральную группу;

6. вентральную заднемедиальную группу;

7. заднюю группу (ядра подушки таламуса);

8. интраламинарную группу.

Ядра таламуса делят на сенсорные ( специфические и неспецифические), моторные и ассоциативные . Рассмотрим основные группы ядер таламуса, необходимые для понимания его функциональной роли в передаче сенсорной информации в кору больших полушарий.

В передней части таламуса располагается передняя группа таламических ядер ( рис.2). Наиболее крупные из них - передневентральное ядро и переднемедиальное ядро. Они получают афферентные волокна от сосцевидных тел - обонятельного центра промежуточного мозга. Эфферентные волокна (нисходящие, т.е. выносящие импульсы из мозга) от передних ядер направляются к поясной извилине коры больших полушарий.

Передняя группа таламических ядер и связанные с нею структуры являются важным компонентом лимбической системы мозга, управляющей психоэмоциональным поведением .

Рис. 2. Топография ядер таламуса

В медиальной части таламуса различают медиодорсалъное ядро и группу ядер средней линии.

Медиодорсальное ядро имеет двусторонние связи с обонятельной корой лобной доли и поясной извилиной больших полушарий, миндалевидным телом и переднемедиальным ядром таламуса. Функционально оно тесно связано также с лимбической системой и имеет двусторонние связи с корой теменной, височной и островковой долей мозга.

Медиодорсальное ядро участвует в реализации высших психических процессов. Его разрушение приводит к снижению беспокойства, тревожности, напряженности, агрессивности, устранению навязчивых мыслей.

Ядра средней линии многочисленны и занимают наиболее медиальное положение в таламусе. Они получают афферентные (т.е. восходящие) волокна от гипоталамуса, от ядер шва, голубого пятна ретикулярной формации ствола мозга и частично от спинно-таламических путей в составе медиальной петли. Эфферентные волокна от ядер средней линии направляются к гиппокампу, миндалевидному телу и поясной извилине больших полушарий, входящих в состав лимбической системы. Связи с корой больших полушарий двусторонние.

Ядра средней линии играют важную роль в процессах пробуждения и активации коры больших полушарий, а также в обеспечении процессов памяти.

В латеральной (т.е. боковой) части таламуса располагаются дорсолатералъная, вентролатеральная, вентральная заднемедиальная и задняя группы ядер.

Ядра дорсолатералъной группы относительно мало изучены. Известно, что они причастны к системе восприятия боли.

Ядра вентролатералъной группы анатомически и функционально различаются между собой. Задние ядра вентролатеральной группы часто рассматриваются как одно вентролатеральное ядро таламуса. Эта группа получает волокна восходящего пути общей чувствительности в составе медиальной петли. Сюда приходят также волокна вкусовой чувствительности и волокна от вестибулярных ядер. Эфферентные волокна, начинающиеся от ядер вентролатеральной группы, направляются в кору теменной доли больших полушарий, куда проводят соматосенсорную информацию от всего тела.

К ядрам задней группы (ядра подушки таламуса) идут афферентные волокна от верхних холмиков четверохолмия и волокна в составе зрительных трактов. Эфферентные волокна широко распространяются в коре лобной, теменной, затылочной, височной и лимбической долей больших полушарий.

Ядерные центры подушки таламуса причастны к комплексному анализу различных сенсорных раздражителей. Они играют значительную роль в перцептивной (связанной с восприятием) и когнитивной (познавательной, мыслительной) деятельности мозга, а также в процессах памяти - хранения и воспроизведения информации.

Интраламинарная группа ядер таламуса лежит в толще вертикальной Y-образной прослойки белого вещества. Интраламинарные ядра взаимосвязаны с базальными ядрами, зубчатым ядром мозжечка и корой больших полушарий.

Эти ядра играют важную роль в активационной системе мозга. Повреждение интраламинарных ядер в обоих таламусах приводит к резкому снижению двигательной активности, а также апатии и разрушению мотивационной структуры личности.

Кора больших полушарий благодаря двусторонним связям с ядрами таламуса способна оказывать регулирующее воздействие на их функциональную активность.

Таким образом, основными функциями таламуса являются:

переработка сенсорной информации от рецепторов и подкорковых переключающих центров с последующей передачей её коре;

участие в регуляции движений;

обеспечение связи и интеграции различных отделов мозга .

Гипоталамус

Общее строение и расположение гипоталамуса.

Гипоталамус ( hypothalamus) представляет собой вентральный отдел (т.е. брюшной) промежуточного мозга. В его состав входит комплекс образований, расположенных под III желудочком. Гипоталамус спереди ограничивается зрительным перекрестом ( хиазмой), латерально - передней частью субталамуса, внутренней капсулой и зрительными трактами, отходящими от хиазмы. Сзади гипоталамус продолжается в покрышку среднего мозга. К гипоталамусу относят сосцевидные тела, серый бугор и зрительный перекрест. Сосцевидные тела располагаются по бокам средней линии кпереди от заднего продырявленного вещества. Это образования неправильной шаровидной формы белого цвета. Спереди от серого бугра располагается зрительный перекрёст . В нём происходит переход на противоположную сторону части волокон зрительного нерва, идущей от медиальной половины сетчатки. После перекрёста формируются зрительные тракты.

Серый бугор располагается кпереди от сосцевидных тел, между зрительными трактами. Серый бугор является полым выступом нижней стенки III желудочка, образованной тонкой пластинкой серого вещества. Верхушка серого бугра вытянута в узкую полую воронку , на конце которой находится гипофиз [ 4; 18].

Гипофиз: строение и функционирование

Гипофиз (hypophysis) - железа внутренней секреции, он располагается в специальном углублении основания черепа, "турецком седле" и при помощи ножки связан с основанием мозга. В гипофизе выделяют переднюю долю (аденогипофиз - железистый гипофиз ) и заднюю долю (нейрогипофиз ).

Задняя доля, или нейрогипофиз, состоит из нейроглиальных клеток и является продолжением воронки гипоталамуса. Более крупная доля - аденогипофиз, построена из железистых клеток. Благодаря тесному взаимодействию гипоталамуса с гипофизом в промежуточном мозге функционирует единая гипиталамо-гипофизарная система, управляющая работой всех эндокринных желез, а с их помощью - вегетативными функциями организма (рис.3).

Рисунок 3. Гипофиз и его влияние на другие эндокринные железы

В сером веществе гипоталамуса выделяют 32 пары ядер. Взаимодействие с гипофизом осуществляется посредством выделяемых ядрами гипоталамуса нейрогормонов - рилизинг-гормонов . По системе кровеносных сосудов они попадают в переднюю долю гипофиза (аденогипофиз), где способствуют высвобождению тропных гормонов, стимулирующих синтез специфических гормонов в других эндокринных железах.

В передней доле гипофиза вырабатываются тропные гормоны (тиреотропный гормон - тиреотропин, адренокортикотропный гормон - кортикотропин и гонадотропные гормоны - гонадотропины) и эффекторные гормоны (гормоны роста - соматотропин и пролактин) .

Гормоны передней доли гипофиза

Тиреотропный гормон (тиреотропин) стимулирует функцию щитовидной железы. Если удалить или разрушить гипофиз у животных, то наступает атрофия щитовидной железы, а введение тиреотропина восстанавливает ее функции.

Адренокортикотропный гормон (кортикотропин) стимулирует функцию пучковой зоны коры надпочечников, в которой образуются гормоны глюкокортикоиды. В меньшей степени выражено влияние гормона на клубочковую и сетчатую зоны. Удаление гипофиза у животных приводит к атрофии коркового слоя надпочечников. Атрофические процессы захватывают все зоны коры надпочечников, но наиболее глубокие изменения происходят в клетках сетчатой и пучковой зонах. Вненадпочечниковое действие кортикотропина выражается в стимуляции процессов липолиза, усилении пигментации, анаболическом влиянии.

Гонадотропные гормоны (гонадотропины). Фолликулостимулирующий гормон (фоллитропин) стимулирует рост везикулярного фолликула в яичнике. Влияние фоллитропина на образование женских половых гормонов (эстрогенов) небольшое. Этот гормон имеется как у женщин, так и у мужчин. У мужчин под влиянием фоллитропина происходит образование половых клеток (сперматозоидов). Лютеинизирующий гормон (лютропин) необходим для роста везикулярного фолликула яичника на стадиях, предшествующих овуляции, и для самой овуляции (разрыва оболочки созревшего фолликула и выхода из него яйцеклетки), образования желтого тела на месте лопнувшего фолликула. Лютропин стимулирует образование женских половых гормонов - эстрогенов. Однако для того чтобы этот гормон осуществил свое действие на яичник, необходимо предварительное длительное действие фоллитропина. Лютропин стимулирует выработку прогестерона желтым телом. Лютропин имеется как у женщин, так и у мужчин. У мужчин он способствует образованию мужских половых гормонов - андрогенов.

Эффекторные:

Гормон роста (соматотропин) стимулирует рост организма путем усиления образования белка. Под влиянием роста эпифизарных хрящей в длинных костях верхних и нижних конечностей происходит рост костей в длину. Гормон роста усиливает секрецию инсулина посредством соматомединов, образующихся в печени.

Пролактин стимулирует образование молока в альвеолах молочных желез. Свое действие на молочные железы пролактин оказывает после предварительного действия на них женских половых гормонов прогестерона и эстрогенов. Акт сосания стимулирует образование и выделение пролактина. Пролактин обладает также и лютеотропным действием (способствует продолжительному функционированию желтого тела и образованию им гормона прогестерона) .

Процессы в задней доле гипофиза

В задней доле гипофиза гормоны не вырабатываются. Сюда поступают неактивные гормоны, которые синтезируются в паравентрикулярном и супраоптическом ядрах гипоталамуса.

В нейронах паравентрикулярного ядра образуется преимущественно гормон окситоцин, а в нейронах супраоптического ядра - вазопрессин (антидиуретический гормон). Эти гормоны накапливаются в клетках задней доли гипофиза, где они превращаются в активные гормоны.

Вазопрессин (антидиуретический гормон) играет важную роль в процессах мочеобразования и в меньшей степени в регуляции тонуса кровеносных сосудов. Вазопрессин, или антидиуретический гормон - АДГ (диурез - выделение мочи) - стимулирует обратное всасывание (резорбцию) воды в почечных канальцах.

Окситоцин (оцитонин) усиливает сокращение матки. Ее сокращение резко усиливается, если она предварительно находилась под действием женских половых гормонов эстрогенов. Во время беременности окситоцин не влияет на матку, так как под влиянием гормона желтого тела прогестерона она становится нечувствительной к окситоцину. Механическое раздражение шейки матки вызывает отделение окситоцина рефлекторно. Окситоцин обладает способностью стимулировать также выделение молока. Акт сосания рефлекторно способствует выделению окситоцина из нейрогипофиза и выделению молока. В состоянии напряжения организма гипофиз выделяет дополнительное количество АКТГ, стимулирующего выброс адаптивных гормонов корой надпочечников .

Функциональное значение ядер гипоталамуса

В передне-боковой части гипоталамусаразличают переднюю и среднюю группы гипоталамических ядер (рис.4).


Рисунок 4. Топография ядер гипоталамуса

К передней группе относятся супрахиазматические ядра, преоптическое ядро, и самые крупные - супраоптическое и паравентрикулярное ядра.

В ядрах передней группы локализуются:

центр парасимпатического отдела (ПСНС) вегетативной нервной системы.

Стимуляция переднего отдела гипоталамуса приводит к реакциям парасимпатического типа: сужению зрачка, снижению частоты сокращений сердца, расширению просвета сосудов, падению артериального давления, усилению перистальтики (т.е. волнообразного сокращения стенок полых трубчатых органов, способствующего продвижению их содержимого к выходным отверстиям кишечника);

центр теплоотдачи. Разрушение переднего отдела сопровождается необратимым повышением температуры тела;

центр жажды;

нейросекреторные клетки, продуцирующие вазопрессин (супраоптическое ядро ) и окситоцин (паравентрикулярное ядро ). В нейронах паравентрикулярного и супраоптических ядер образуется нейросекрет, который по их аксонам перемещается в задний отдел гипофиза (нейрогипофиз), где высвобождается в виде нейрогормонов - вазопрессина и окситоцина , поступающих в кровь.

Повреждение передних ядер гипоталамуса приводит к прекращению выделения вазопрессина, вследствие чего развивается несахарный диабет . Окситоцин оказывает стимулирующее действие на гладкую мускулатуру внутренних органов, например матки. В целом от этих гормонов зависит водносолевой баланс организма.

В преоптическом ядре образуется один из рилизинг-гормонов - люлиберин, стимулирующий выработку в аденогипофизе лютеинизирующего гормона, контролирующего активность половых желез.

Супрахиазматические ядра принимают активное участие в регуляции циклических изменений активности организма - циркадианных, или суточных, биоритмов (например, в чередовании сна и бодрствования).

К средней группе гипоталамических ядер относят дорсомедиальное и вент-ромедиальное ядра, ядро серого бугра и ядро воронки.

В ядрах средней группы локализуются:

центр голода и насыщения. Разрушение вентромедиального ядра гипоталамуса приводит к избыточному потреблению пищи (гиперфагии) и ожирению, а повреждение ядра серою бугра - к снижению аппетита и резкому исхуданию (кахексии);

центр полового поведения;

центр агрессии;

центр удовольствия, играющий важную роль в процессах формирования мотиваций и психоэмоциональных форм поведения;

нейросекреторные клетки, продуцирующие рилизинг-гормоны (либерины и статины), регулирующие продукцию гипофизарных гормонов: соматостатин, соматолиберин, люлиберин, фоллиберин, пролактолиберин, тиреолиберин и др. Через гипоталамо-гипофизарную систему они оказывают влияние на ростовые процессы, скорость физического развития и полового созревания, формирование вторичных половых признаков, функции половой системы, а также на обмен веществ.

Средняя группа ядер контролирует водный, жировой и углеводный обмен, влияет на уровень сахара в крови, ионный баланс организма, проницаемость сосудов и клеточных мембран.

Задняя часть гипоталамусарасположена между серым бугром и задним продырявленным веществом и состоит из правого и левого сосцевидных тел.

В задней части гипоталамуса наиболее крупными ядрами являются: медиальное и латеральное ядра, заднее гипоталамическое ядро .

В ядрах задней группы локализуются:

центр, координирующий активность симпатического отдела (СНС) вегетативной нервной системы (заднее гипоталамическое ядро ). Стимуляция этого ядра приводит к реакциям симпатического типа: расширению зрачка, повышению частоты сокращений сердца и артериального давления, учащению дыхания и уменьшению тонических сокращений кишечника;

центр теплопродукции (заднее гипоталамическое ядро ). Разрушение заднего отдела гипоталамуса вызывает вялость, сонливость и снижение температуры тела;

подкорковые центры обонятельного анализатора. Медиальное и латеральное ядра в каждом сосцевидном теле являются подкорковыми центрами обонятельного анализатора, а также входят в лимбическую систему;

нейросекреторные клетки, продуцирующие рилизинг-гормоны, регулирующие продукцию гипофизарных гормонов .

Особенности кровоснабжения гипоталамуса

Ядра гипоталамуса получают обильное кровоснабжение. Капиллярная сеть гипоталамуса по своей разветвлённости в несколько раз больше, чем в других отделах ЦНС. Одной из особенностей капилляров гипоталамуса является их высокая проницаемость, обусловленная истонченностью стенок капилляров и их фенестрированностью ("окончатостью" - наличие промежутков - "окон" - между смежными эндотелиальными клетками капилляров (от лат. "fenestra " - окно). В результате этого в гипоталамусе слабо выражен гематоэнцефалический барьер (ГЭБ), и нейроны гипоталамуса способны воспринимать изменения состава спинномозговой жидкости и крови (температуру, содержание ионов, наличие и количество гормонов и т.д.).

Функциональное значение гипоталамуса

Гипоталамус является центральным звеном, связующим нервные и гуморальные механизмы регуляции вегетативных функций организма. Управляющая функция гипоталамуса обусловлена способностью его клеток к секреции и аксональному транспорту регуляторных веществ, которые переносится в другие структуры мозга, спинномозговую жидкость, кровь или в гипофиз, изменяя функциональную активность органов-мишеней.

В гипоталамусе выделяют 4 нейроэндокринные системы:

Гипоталамо-экстрагипоталамная система представлена нейросекреторными клетками гипоталамуса, аксоны которых уходят в таламус, структуры лимбической системы, продолговатый мозг. Эти клетки выделяют эндогенные опиоиды, соматостатин и др.

Гипоталамо-аденогипофизарная система связывает ядра заднего гипоталамуса с передней долей гипофиза. По этому пути транспортируются рилизинг-гормоны (либерины и статины). Посредством их гипоталамус регулирует секрецию тропных гормонов аденогипофиза, определяющих секреторную активность желёз внутренней секреции (щитовидной, половых и др.).

Гипоталамо-метагипофизарная система связывает нейросекреторные клетки гипоталамуса с гипофизом. По аксонам этих клеток транспортируются меланостатин и меланолиберин, которые регулируют синтез меланина - пигмента, определяющего окраску кожи, волос, радужки и других тканей организма.

Гипоталамо-нейрогипофизарная система связывает ядра переднего гипоталамуса с задней (железистой) долей гипофиза. По этим аксонам транспортируются вазопрессин и окситоцин, которые накапливаются в задней доле гипофиза и выделяются в кровоток по мере необходимости .

Заключение

Таким образом, дорсальный отдел промежуточного мозга представляет собой филогенетически более молодой таламический мозг, являющийся высшим подкорковым сенсорным центром, в котором переключаются практически все афферентные пути, несущие сенсорную информацию от органов тела и органов чувств к большим полушариям головного мозга. К задачам гипоталамуса относится также управление психоэмоциональным поведением и участие в реализации высших психических и психологических процессов, в частности памяти.

Вентральный отдел - гипоталамус являетсяболее старым в филогенетическом отношении образованием. Гипоталамо-гипофизарная система осуществляет контроль над гуморальной регуляцией водносолевого баланса, обменом веществ и энергии, работой иммунной системы, терморегуляцией, репродуктивной функцией и т.д. Выполняя и этой системе регулирующую роль, гипоталамус является высшим центром, управляющим автономной (вегетативной) нервной системой.

Список литературы

1. Анатомия человека / Под ред. М.Р. Сапина. - М.: Медицина, 1993.

2. Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум поведение. - М.: Мир, 1988.

3. Гистология / Под ред. В.Г. Елисеева. - М.: Медицина, 1983.

4. Привес М.Г., Лысенков Н.К., Бушкович В.И. Анатомия человека. - М.: Медицина, 1985.

5. Синельников Р.Д., Синельников Я.Р. Атлас анатомии человека. - М.: Медицина, 1994.

6. Тишевской И.А. Анатомия центральной нервной системы: Учебное пособие. - Челябинск: Изд-во ЮУрГУ, 2000.

Промежуточный мозг располагается под мозолистым телом и сводом, срастаясь по бокам с полушариями большого мозга.

К нему относятся:

Таламус (зрительные бугры),

Эпиталамус (надбугорная область),

Метаталамус (забугорная область) и

Гипоталамус (подбугорная область).

Полостью промежуточного мозга является III желудочек.

Таламус представляет собой парные скопления серого вещества, покрытые слоем белого вещества, имеющие яйцевидную форму.

В таламусе различают три основные группы ядер: передние, латеральные и медиальные . В латеральных ядрах происходит переключение всех чувствительных путей, направляющихся к коре больших полушарий.

В эпиталамусе лежит верхний придаток мозга - эпифиз, или шишковидное тело, подвешенное на двух поводках в углублении между верхними холмиками пластинки крыши.

Метаталамус представлен медиальными и латеральными коленчатыми телами. Они соединенными пучками волокон (ручки холмиков) с верхними и нижними холмиками пластинки крыши. В них лежат ядра, являющиеся рефлекторными центрами зрения и слуха.

Гипоталамус располагается вентральнее зрительного бугра и включает в себя собственно подбугорную область и ряд образований, расположенных на основании мозга.

Третий желудочек расположен по средней линии и представляет собой узкую вертикальную щель.

Главными образованиями промежуточного мозга являются таламус (зрительный бугор) и гипоталамус (подбугорная область).

Таламус - чувствительное ядро подкорки. Его называют "коллектором чувствительности", так как к нему сходятся афферентные (чувствительные) пути от всех рецепторов, исключая обонятельные рецепторы. Здесь находится третий нейрон афферентных путей, отростки которого заканчиваются в чувствительных зонах коры.

Главной функцией таламуса является интеграция (объединение) всех видов чувствительности. Для анализа внешней среды недостаточно сигналов от отдельных рецепторов. Здесь происходит сопоставление информации, получаемой по различным каналам связи, и оценка ее биологического значения. В зрительном бугре насчитывается 40 пар ядер, которые подразделяются на специфические (на нейронах этих ядер заканчиваются восходящие афферентные пути), неспецифические (ядра ретикулярной формации) и ассоциативные. Через ассоциативные ядра таламус связан со всеми двигательными ядрами подкорки - полосатым телом, бледным шаром, гипоталамусом и с ядрами среднего и продолговатого мозга.

Изучение функций зрительного бугра проводится путем перерезок, раздражения и разрушения. Кошка, у которой разрез сделан выше промежуточного мозга, резко отличается от кошки, у которой высшим отделом центральной нервной системы является средний мозг. Она не только поднимается и ходит, т. е. выполняет сложно координированные движения, но еще проявляет все признаки эмоциональных реакций. Легкое прикосновение вызывает злобную реакцию. Кошка бьет хвостом, скалит зубы, рычит, кусается, выпускает когти.

У человека зрительный бугор играет существенную роль в эмоциональном поведении, характеризующемся своеобразной мимикой, жестами и сдвигами функций внутренних органов. При эмоциональных реакциях повышается давление, учащаются пульс, дыхание, расширяются зрачки.

Мимическая реакция человека является врожденной. Если пощекотать нос плода 5 - 6 месяцев можно видеть типичную гримасу неудовольствия (П. К. Анохин). При раздражении зрительного бугра у животных возникают двигательные и болевые реакции - визг, ворчание. Эффект можно объяснить тем, что импульсы от зрительных бугров легко переходят на связанные с ними двигательные ядра подкорки.

В клинике симптомами поражения зрительных бугров являются сильная головная боль, расстройства сна, нарушения чувствительности, как в сторону повышения, так и понижения, нарушения движений, их точности, соразмерности, возникновение насильственных непроизвольных движений.

Гипоталамус является высшим подкорковым центром вегетативной нервной системы. В этой области расположены центры, регулирующие все вегетативные функции, обеспечивающие постоянство внутренней среды организма, а также регулирующие жировой, белковый, углеводный и водно-солевой обмен.

В деятельности вегетативной нервной системы гипоталамус играет такую же важную роль, какую играют красные ядра среднего мозга в регуляции скелетно-моторных функций соматической нервной системы.

Самые ранние исследования функций гипоталамуса принадлежат - Клоду Бернару. Он обнаружил, что укол в промежуточный мозг кролика вызывает повышение температуры тела почти на 3°С. Этот классический опыт, открывший локализацию центра терморегуляции в гипоталамусе, получил название теплового укола. После разрушения гипоталамуса животное становится пойкилотермным, т. е. теряет способность удерживать постоянство температуры тела. В холодной комнате температура тела понижается, а в жаркой повышается.

Позднее было установлено, что почти все органы, иннервируемые вегетативной нервной системой, могут быть активированы раздражением подбугорной области. Иными словами, все эффекты, которые можно получить при раздражении симпатических и парасимпатических нервов, получаются при раздражении гипоталамуса.

В настоящее время для раздражения различных структур мозга широко применяется метод вживления электродов. С помощью особой, так называемой стереотаксической техники, через трепанационное отверстие в черепе вводят электроды в любой заданный участок мозга. Электроды изолированы на всем протяжении, свободен только их кончик. Включая электроды в цепь, можно узко локально раздражать те или иные зоны.

При раздражении передних отделов гипоталамуса возникают парасимпатические эффекты - усиление движений кишечника, отделение пищеварительных соков, замедление сокращений сердца и др.

При раздражении задних отделов наблюдаются симпатические эффекты - учащение сердцебиения, сужение сосудов, повышение температуры тела и др. Следовательно, в передних отделах подбугорной области располагаются парасимпатические центры, а в задних - симпатические.

Так как раздражение при помощи вживленных электродов производится на животном, без применения анестезии, становится возможным судить о поведении животного. В опытах Андерсена на козе с вживленными электродами был найден центр, раздражение которого вызывает неутолимую жажду - центр жажды. При его раздражении коза могла выпивать до 10 л воды. Раздражением других участков можно было, заставить есть сытое животное (центр голода).

Широкую известность получили опыты испанского ученого Дельгадо на быке с электродом, вживленным в «центр страха». Когда на арене разъяренный бык бросался на тореадора, включали раздражение, и бык отступал с ясно выраженными признаками страха.

Американский исследователь Д. Олдз предложил модифицировать метод - предоставить возможность животному самому замыкать электроды, предполагая, что неприятных раздражений животное будет избегать и, наоборот, стремиться повторять приятные.

Опыты показали, что имеются структуры, раздражение которых вызывает безудержное стремление к повторению. Крысы доводили себя до истощения, нажимая на рычаг до 14000 раз! Кроме того, обнаружены структуры, раздражение которых, по-видимому, вызывает крайне неприятное ощущение, так как крыса второй раз избегает нажать на рычаг повторно и убегает от него. Первый центр, очевидно, является центром удовольствия, а второй - центром неудовольствия.

Чрезвычайно важным для понимания функций гипоталамуса явилось открытие в этом отделе мозга рецепторов, улавливающих изменения температуры крови (терморецепторы), осмотического давления (осморецепторы) и состава крови (глюкорецепторы).

С рецепторов, обращенных в кровь, возникают рефлексы, направленные на поддержание постоянства внутренней среды организма - гомеостаза. "Голодная кровь", раздражая глюко-рецепторы, возбуждает пищевой центр: возникают пищевые реакции, направленные на поиск и поедание пищи.

Одним из частых проявлений заболевания гипоталамуса в клинике является нарушение водно-солевого обмена, проявляющееся в выделении большого количества мочи с низкой плотностью. Заболевание носит название несахарного мочеизнурения или несахарного диабета.

Подбугорная область тесно связана с деятельностью гипофиза. В крупных нейронах надзрительного и околожелудочкового ядер гипофиза образуются гормоны - вазопрессин и окситоцин. По аксонам гормоны стекают к гипофизу, где накапливаются, а затем поступают в кровь.

Иное взаимоотношение между гипоталамусом и передней долей гипофиза. Сосуды, окружающие ядра гипоталамуса, объединяются в систему вен, которые спускаются к передней доле гипофиза и здесь распадаются на капилляры. С кровью к гипофизу поступают вещества - релизинг-факторы, или освобождающие факторы, стимулирующие образование гормонов в передней его доле.

Гипофиз тесно связан с гипоталамусом структурно и функционально. Задние отделы гипофиза (нейрогипофиз) накапливают гормоны, продуцируемые гипоталамусом и регулирующие водно-солевое равновесие, контролирующие функции матки и молочных желез.

Передние отделы гипофиза (аденогипофиз) вырабатывают:

адренокортикотропный гормон - АКТГ, который стимулирует работу желез надпочечников;

тиреотропный гормон - стимулирует рост и секрецию щитовидной железы;

гонадотропный гормон - регулирует активность половых желез;

соматотропный гормон - обеспечивает развитие костной системы; пролактин - стимулирует рост и активность молочных желез и др.

В гипоталамусе и гипофизе образуются также нейрорегуляторные энкефалины, эндорфины, обладающие морфиноподобным действием и способствующие снижению стресса.

Промежуточный мозг впроцессе эмбриогенеза развивается из переднего мозгового пузыря. Он образует стенки третьего мозгового желудочка. Промежуточный мозг расположен под мозолистым телом и состоит из таламусов, эпиталамуса, метаталамуса и гипоталамуса.

Таламусы (зрительные бугры) представляют собой скопление серого вещества, имеющего яйцевидную форму. Таламус является крупным подкорковым образованием, через которое в кору больших полушарий проходят разнообразные афферентные пути. Нервные клетки его группируются в большое количество ядер (до 40). Топографически последние разделяют на переднюю, заднюю, срединную, медиальную и латеральную группы. По функции таламические ядра можно дифференцировать на специфические, неспецифические, ассоциативные и моторные.

От специфических ядер информация о характере сенсорных стимулов поступает в строго определенные участки 3-4 слоев коры. Функциональной основной единицей специфических таламических ядер являются «релейные» нейроны, которые имеют мало дендритов, длинный аксон и выполняют переключательную функцию. Здесь происходит переключение путей, идущих в кору от кожной, мышечной и других видов чувствительности. Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности.

Неспецифические ядра таламуса связаны со многими участками коры и принимают участие в активизации ее деятельности, их относят к ретикулярной формации.

Ассоциативные ядра образованы мультиполярными, биполярными нейронами, аксоны которых идут в 1-ый и 2-ой слои, ассоциативных и частично проекционных областей, по пути отдавая в 4 и 5 слои коры, образуя ассоциативные контакты с пирамидными нейронами. Ассоциативные ядра связаны с ядрами полушарий головного мозга, гипоталамусом, средним и продолговатым мозгом. Ассоциативные ядра участвуют в высших интегративных процессах, однако их функции изучены еще недостаточно.

К моторным ядрам таламуса относится вентральное ядро, которое имеет вход от мозжечка и базальных ганглиев, и одновременно дает проекции в моторную зону коры больших полушарий. Это ядро включено в систему регуляции движений.

Таламус – структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору головного мозга от нейронов спинного мозга, среднего мозга, мозжечка. Возможность получить информацию о состоянии множества систем организма позволяет ему участвовать в регуляции и определять функциональное состояние организма в целом. Это подтверждается уже тем, что в таламусе около 120 разно функциональных ядер.

Функциональная значимость ядер таламуса определяется не только их проекцией на другие структуры мозга, но и тем, какие структуры посылают к нему свою информацию. В таламус приходят сигналы от зрительной, слуховой, вкусовой, кожной, мышечной систем, от ядер черепно-мозговых нервов, ствола, мозжечка, продолговатого и спинного мозга. В связи с этим таламус фактически является подкорковым чувствительным центром. Отростки нейронов таламуса направляются отчасти к ядрам полосатого тела конечного мозга (в связи с этим таламус рассматривается как чувствительный центр экстропирамидной системы), отчасти к коре большого мозга, образуя таламокортикальные пути.

Таким образом, таламус является подкорковым центром всех видов чувствительности, кроме обонятельного. К нему подходят и переключаются восходящие (афферентные) проводящие пути, по которым передается информация от различных рецепторов. От таламуса идут нервные волокна к коре большого мозга, составляя таламокортикальные пучки.

Гипоталамус – филогенетический старый отдел промежуточного мозга, который играет важную роль в поддержании постоянства внутренней среды и обеспечении интеграции функций вегетативной, эндокринной и соматической систем. Гипоталамус участвует в образовании дна III желудочка. К гипоталамусу относятся зрительный перекрест, зрительный тракт, серый бугор с воронкой и сосцевидное тело. Структуры гипоталамуса имеют различное происхождение. Из конечного мозга образуется зрительная часть (зрительный перекрест, зрительный тракт, серый бугор с воронкой, нейрогипофиз), а из промежуточного – обонятельная часть (сосцевидное тело и подбугорье).

Зрительный перекрест имеет вид поперечно лежащего валика, образованного волокнами зрительных нервов (II пара), частично переходящими на противоположную сторону. Этот валик с каждой стороны латерально и кзади продолжается в зрительный тракт, который проходит сзади от переднего продырявленного вещества, огибает ножку мозга с латеральной стороны и заканчивается двумя корешками в подкорковых центрах зрения. Более крупный латеральный корешок подходит к латеральному коленчатому телу, а более тонкий медиальный корешок направляется к верхнему холмику крыши среднего мозга.

К передней поверхности зрительного перекреста прилежит и срастается с ним относящаяся к конечному мозгу терминальная (пограничная, или конечная) пластинка. Она замыкает передний отдел продольной щели большого мозга и состоит из тонкого слоя серого вещества, которое в латеральных отделах пластинки продолжается в вещество лобных долей полушарий.

Зрительный перекрест (хиазма) – место в мозге, где встречаются и частично перекрещиваются зрительные нервы, идущие от правого и левого глаза.

Сзади от зрительного перекреста находится серый бугор, позади которого лежат сосцевидные тела, а по бокам – зрительные тракты. Книзу серый бугор переходит в воронку, которая соединяется с гипофизом. Стенки серого бугра образованы тонкой пластинкой серого вещества, содержащего серо-бугорные ядра. Со стороны полости III желудочка в область серого бугра и далее в воронку вдается суживающееся книзу, слепо заканчивающееся углубление воронки.

Сосцевидные тела расположены между серым бугром спереди и задним продырявленным веществом сзади. Они имеют вид двух небольших, диаметром около 0,5 см каждый, сферических образований белого цвета. Белое вещество расположено только снаружи сосцевидного тела. Внутри находится серое вещество, в котором выделяют медиальные и латеральные ядра сосцевидного тела. В сосцевидных телах заканчиваются столбы свода. По своей функции сосцевидные тела относятся к подкорковым обонятельным центрам.

Цитоархитектонически в гипоталамусе выделяются три области скопления ядер: передняя, средняя (медиальная) и задняя.

В передней области гипоталамуса находится супраоптическое ядро и паравентрикулярные ядра. Отростки клеток этих ядер образуют гипоталамо-гипофизарный пучок, заканчивающийся в задней доле гипофиза. Внейросекреторных клетках этих ядер вырабатываются вазопресин и окситоцин, которые поступают в заднюю долю гипофиза.

В средней области расположены дугообразные, серо-бугорные и другие поля, где вырабатываются рилизинг-факторы, либерины и статины, регулирующие деятельность аденогипофиза.

К ядрам задне й области относятся рассеянные крупные клетки, среди которых имеются скопления мелких клеток, а также ядра сосцевидного тела. Последние являются подкорковыми центрами обонятельных анализаторов.

В гипофизе залегают 32 пары ядер, которые являются звеньями экстропирамидной системы, а также ядра, относящиеся к подкорковым структурам лимбической системы.

Под III желудочком расположены сосцевидные тела, которые относятся к подкорковым обонятельным центрам, серый бугор и зрительный перекрест, образованный перекрестом зрительных нервов. В конце воронки расположен гипофиз. В сером бугре залегают ядра вегетативной нервной системы.

Гипофиз имеет обширные связи как со всеми отделами ЦНС, так и с периферическими эндокринными железами. Благодаря этим обширным многофункциональным связям гипоталамус выступает в качестве высшего подкоркового регулятора обмена веществ, температуры тела, мочеобразования, функции эндокринных желез.

Посредством нервных импульсов медиальная область гипоталамуса (медиобазальное ядро) управляет деятельностью задней доли гипофиза, а посредствам гормональных механизмов (рилизинг-факторов) – передней долей гипофиза. Под влиянием различных афферентных импульсов, поступающих в медиальный гипоталамус, последние начинают синтезировать рилизинг-гормоны, которые через систему крови (срединное возвышение) поступают в аденогипофиз. Они регулируют выработку различных тропных гормонов в передней доле гипофиза. Каждый либерин ответствен за синтез и высвобождение в гипофизе строго определенного тропного гормона. Тропный гормон из передней доли гипофиза поступает в кровь и регулирует синтез и поступление в кровь гормонов из периферических эндокринных желез. Отсюда, следует, что каждому тропному гормону соответствует строго определенная периферическая железа. Единственный соматотропный гормон (СТГ) не имеет периферической железы, он – белковый гормон, действующий непосредственно на ткани организма, образуя гормон – рецепторный комплекс на поверхности клеточных мембран. Гормональная регуляция заключается в том, что при понижении содержания в плазме крови гормонов периферических эндокринных желез или же при действии какого-то стрессора, при физических нагрузках медиальный гипофиз увеличивает выброс либеринов в кровь. Последние воздействуют на аденогипофиз и стимулируют выработку тропных гормонов. Если же содержание гормонов периферических эндокринных желез, напротив, повышено, то в медиальном гипоталамусе увеличивается образование и соответствующий выброс подавляющих гормонов (статинов), которые тормозят секрецию тропных гормонов и уменьшают их содержание в плазме крови. Такой механизм регуляции называется регуляцией по принципу отрицания обратной связи.

Гипоталамус и поведение.

Гипоталамус выполняет следующие функции:

    участвует в регуляции пищеварения, поведения, которое тесно связано с уменьшением содержания глюкозы в крови;

    обеспечивает терморегуляцию организма;

    участвует в регуляции осмотического давления;

    участвует в регуляции деятельности половых желез;

    участвует в формировании оборонительных реакций – оборонительного поведения и бегства.

Пищевое поведение сопровождается поиском пищи. При этом вегетативная реакция несколько иная – увеличивается слюноотделение, повышается моторика и кровоснабжение кишечника, уменьшается мышечный кровоток, так как повышается активность парасимпатической нервной системы.

В гипоталамусе имеются области, отвечающие за те или иные поведенческие реакции, которые перекрываются между собой. Морфологически выделяют области, которые четко отвечают строго определенным поведенческим реакциям. При нарушении боковых (латеральных) областей гипоталамуса, где расположены ядра голода и насыщения, возникает афагия (отказ от приема пищи) и гиперфагия (чрезмерное потребление пищи).

В гипоталамусе вырабатывается большое количество медиаторов: адреналин, нордадреналин – возбуждающие медиаторы, глицин, -аминомасляная кислота – тормозящие медиаторы.

Таким образом, гипоталамус занимает ведущее место в регуляции многих функций организма и прежде всего гомеостаза. Под его контролем находятся функции автономной нервной системы и эндокринных желез.

Эпиталамус . Эпиталамическая область расположена дорсально по отношению к каудальным отделам зрительного бугра и занимает относительно небольшой объем. В ее состав входит треугольник поводков, образованный как расширение каудальной части мозговых полосок таламуса и расположенных в его основании ядер поводков. Треугольники соединены комиссурой поводков, в глубине которой проходит задняя комиссура. На поводках – парных тяжах, начинающихся от треугольника, подвешено непарное шишковидное тело, или эпифиз – коническое образование длиной около 6 мм. В передней части он связан с обеими комиссурами и лежащим в задней стенке III желудочка субкомиссуральным органом.

Ядра поводков сформированы двумя клеточными группами – медиальными и латеральными ядрами. Афферентами медиального ядра являются волокна мозговых полосок, проводящие импульсацию от лимбических образований конечного мозга (области перегородок, гиппокампа, миндалины), а также от медиального ядра, бледного шара и гипоталамуса. Латеральное ядро получает входы от латеральной преоптической области, внутреннего сегмента бледного шара и медиального ядра. Эфференты медиального ядра, адресованные интерпедункулярному ядру среднего мозга, формируют отогнутый пучок. Эфференты латерального ядра поводков следуют в составе этого же пути, проходят межножковое ядро без переключений и адресуются компактной части черной субстанции, центральному серому веществу среднего мозга и ретикулярным ядрам среднего мозга.

Эпифиз находится посередине под утолщенной задней частью мозолистого тела и располагается в неглубокой борозде, отделяющей друг от друга верхние холмики крыши среднего мозга. Снаружи эпифиз покрыт соединительнотканной капсулой, содержащей большое количество кровеносных сосудов. От капсулы внутрь органа проникают соединительнотканные трабекулы, подразделяющие паренхиму эпифиза на дольки.

Эпифиз является железой внутренней секреции (пинеальная железа) и состоит из глиальных элементов и особых клеток пинеалоцитов. Он иннервируется ядрами поводков, к нему подходят также волокна мозговых полосок задней комиссуры и проекции верхнего шейного симпатического ганглия. Аксоны, входящие в железу, ветвятся среди пинеалоцитов, обеспечивая регуляцию их активности. К числу биологически активных веществ, вырабатываемых эпифизом, относятся мелатонин и вещества, играющие важную роль в регуляции процессов развития, в частности, полового созревания и деятельности надпочечников.

В шишковидном теле у взрослых людей, особенно в старческом возрасте, нередко встречаются причудливой формы отложения, которые придают эпифизу определенное сходство с еловой шишкой, чем и объясняется его название.

Метаталамус представлен латеральным и медиальным коленчатыми телами – парными образованиями. Они имеют продолговато-овальную форму и соединяется с холмиками крыши среднего мозга при помощи ручек верхнего и нижнего холмиков. Латеральное коленчатое тело находится возле нижнебоковой поверхности таламуса, сбоку от его подушки. Его легко можно обнаружить, следуя по ходу зрительного тракта, волокна которого направляются к латеральному коленчатому телу.

Несколько кнутри и сзади от латерального коленчатого тела, под подушкой, находится медиальное коленчатое тело, на клетках ядра которого заканчиваются волокна латеральной (слуховой) петли.

Метаталамус состоит из серого вещества.

Латеральное коленчатое тело, правое и левое, является подкорковым, первичным центром зрения. К нейронам его ядра подходят нервные волокна зрительного тракта (от сетчатки глаза). Аксоны этих нейронов идут в зрительную зону коры. Медиальные коленчатые тела являются подкорковыми первичными центрами слуха.

III желудочек представляет собой узкую вертикальную щель, которая служит продолжением водопровода вперед в область промежуточного мозга. По бокам своей передней части III желудочек сообщается правым и левым межжелудочковыми отверстиями с боковыми желудочками, лежащими внутри полушарий. Спереди III желудочек ограничен тонкой пластинкой серого вещества – конечной пластинкой, которая представляет собой самую переднюю часть первоначальной стенки мозга, оставшейся посередине между двумя сильно выросшими полушариями. Соединяя оба полушария конечного мозга, эта пластинка и сама принадлежит ему. Непосредственно над ней располагается соединительный пучок волокон, идущих из одного полушария в другое в поперечном направлении; эти волокна связывают участки полушарий, имеющие отношение к обонятельным нервам. Это – передняя комиссура. Ниже конечной пластинки полость III желудочка ограничена перекрестом зрительных нервов.

Боковые стенки III желудочка образованы медиальными сторонами зрительных бугров. На этих стенках проходит продольное углубление – подбугровая борозда. Назад она ведет к Сильвиеву водопроводу, вперед – к межжелудочковым отверстиям. Дно III желудочка построено из следующих образований (спереди назад): перекреста зрительных нервов, воронки, серого бугра, сосцевидных тел и заднего продырявленного пространства. Крышу образует эпендема, входящая в состав сосудистых сплетений III и бокового желудочков. Над ней расположен свод и мозолистое тело.

Основную массу промежуточного мозга (20г) составляет таламус. Парный орган яйцевидной формы, передняя часть которого заострена (передний бугорок), а задняя расширенная (подушка) нависает над коленчатыми телами. Левый и правый таламусы соединены межталамической спайкой. Серое вещество таламуса разделено пластинками белого вещества на переднюю, медиальную и латеральную части. Говоря о таламусе, включают также метаталамус (коленчатые тела), принадлежащий к таламической области. Таламус наиболее развит у человека. Таламус (thalamus), зрительный бугор, - ядерный комплекс, в котором происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга.

Морфофункциональная организация

Таламус (thalamus), зрительный бугор, - ядерный комплекс, в котором происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга. В ядрах таламуса происходит переключение информации, поступающей от экстеро-, проприорецепторов и интерорецепторов и начинаются таламокортикальные пути. Учитывая, что коленчатые тела являются подкорковыми центрами зрения и слуха, а узел уздечки и переднее зрительное ядро участвует в анализе обонятельных сигналов, можно утверждать, что зрительный бугор в целом является подкорковой «станцией» для всех видов чувствительности. Здесь раздражения внешней и внутренней среды интегрируются, после чего поступают в кору большого мозга.

Зрительный бугор является центром организации и реализации инстинктов, влечений, эмоций. Возможность получать информацию о состоянии множества систем организма позволяет таламусу участвовать в регуляции и определении функционального состояния организма. В целом (подтверждением тому служит наличие в таламусе около 120 разнофункциональных ядер).

Функции ядер таламуса

Ядра образуют своеобразные комплексы, которые можно разделить по признаку проекции в кору на 3 группы. Передняя проецирует аксоны своих нейронов в поясную извилину коры большого мозга. Медиальная - в лобную долю коры. Латеральная - в теменную, височную, затылочную доли коры. Ядра таламуса функционально по характеру входящих и выходящих из них путей делятся на специфические, неспецифические и ассоциативные.

Специфические сенсорные и несенсорные ядра

К специфическим ядрам относятся переднее вентральное, медиальное, вентролатеральное, постлатеральное, постмедиальное, латеральное и медиальное коленчатые тела. Последние относятся к подкорковым центрам зрения и слуха соответственно. Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору большого мозга от кожных, мышечных и других рецепторов.

В свою очередь специфические (релейные) ядра делятся на сенсорные и несенсорные. От специфических сенсорных ядер информация о характере сенсорных стимулов поступает в строго определенные участки III-IV слоев коры большого мозга. Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности, так как ядра таламуса, как и кора большого мозга, имеют соматотопическую локализацию. Отдельные нейроны специфических ядер таламуса возбуждаются рецепторами только своего типа. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвергируют сигналы от интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса. Латеральное коленчатое тело имеет прямые эфферентные связи с затылочной долей коры большого мозга и афферентные связи с сетчаткой глаза и с передними буграми четверохолмий. Нейроны латеральных коленчатых тел по-разному реагируют на цветовые раздражения, включение, выключение света, т.е. могут выполнять детекторную функцию. В медиальное коленчатое тело поступают афферентные импульсы из латеральной петли и от нижних бугров четверохолмий. Эфферентные пути от медиальных коленчатых тел идут в височную зону коры большого мозга, достигая там первичной слуховой области коры.

Несенсорные ядра переключают в кору несенсорную импульсацию, поступающую в таламус из разных отделов головного мозга. В передние ядра импульсация поступает в основном из сосочковых тел гипоталамуса. Нейроны передних ядер проецируются в лимбическую кору, откуда аксонные связи идут к гиппокампу и опять к гипоталамусу, в результате чего образуется нейронный круг, движение возбуждения по которому обеспечивает формирование эмоций («эмоциональное кольцо Пейпеца»). В связи с этим передние ядра таламуса рассматриваются как часть лимбической системы. Вентральные ядра участвуют в регуляции движения, выполняя таким образом моторную функцию. В этих ядрах переключается импульсация от базальных ганглиев, зубчатого ядра мозжечка, красного ядра среднего мозга, которая после этого проецируется в моторную и премоторную кору. Через эти ядра таламуса происходит передача в моторную кору сложных двигательных программ, образованных в мозжечке и базальных ганглиях.

Неспецифические ядра

Эволюционно более древняя часть таламуса, включающая парные ретикулярные ядра и интраламинарную (внутрипластинчатую) ядерную группу. Ретикулярные ядра содержат преимущественно мелкие, многоотростчатые нейроны и функционально рассматриваются как производное ретикулярной формации ствола мозга. Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны поднимаются в кору большого мозга и контактируют со всеми ее слоями, образуя диффузные связи. К неспецифическим ядрам поступают связи из ретикулярной формации ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса. Благодаря этим связям неспецифические ядра таламуса выступают в роли посредника между стволом мозга и мозжечком, с одной стороны, и новой корой, лимбической системой и базальными ганглиями, с другой стороны, объединяя их в единый функциональный комплекс.

Ассоциативные ядра

Ассоциативные ядра принимают импульсацию от других ядер таламуса. Эфферентные выходы от них направляются, главным образом, в ассоциативные поля коры. Основными клеточными структурами этих ядер являются мультиполярные, биполярные трехотростчатые нейроны, т. е. нейроны, способные выполнять полисенсорные функции. Ряд нейронов изменяет активность только при одновременном комплексном раздражении. Подушка получает главную импульсацию от коленчатых тел и неспецифических ядер таламуса. Эфферентные пути идут от нее в височно-теменно-затылочные зоны коры, участвующие в гностических (узнавание предметов, явлений), речевых и зрительных функциях (интеграция слова со зрительным образом), а также в восприятии «схемы тела». Медиодорсальное ядро получает импульсацию от гипоталамуса, миндалины, гиппокампа, таламических ядер, центрального серого вещества ствола. Проекция этого ядра распространяется на ассоциативную лобную и лимбическую кору. Оно участвует в формировании эмоциональной и поведенческой двигательной активности. Латеральные ядра получают зрительную и слуховую импульсацию от коленчатых тел и соматосенсорную импульсацию от вентрального ядра.

Сложное строение таламуса, наличие в нем взаимосвязанных специфических, неспецифических и ассоциативных ядер, позволяет ему организовывать такие двигательные реакции, как сосание, жевание, глотание, смех. Двигательные реакции интегрируются в таламусе с вегетативными процессами, обеспечивающими эти движения.