Павел корнев "скользкий". Задача о ледяных сосульках

Цель. Развивать познавательную и речевую активность.

Задачи :

1. Познакомить детей со свойствами льда;

2. Показать зависимость силы трения от характера поверхности, значение водяной плёнки в скольжении ;

3. Закреплять умение получать информацию во время видеопросмотра;

делать выводы на основе, проведённых опытов ;

4. Воспитывать самостоятельность, активность.

Предварительная работа : оформление презентации «Почему скользят коньки совместно с родителями, замораживание льда.

Материал : оборудование для просмотра мультимедиа; презентация «Почему скользят коньки ; лэпбук «Про лёд» , листки бумаги, фломастеры, кубики льда, пластиковые тарелки, стаканчики с водой, молоток, лист стекла небольшого размера.

Ход занятия.

I. Организационный момент (2 мин.)

Воспитатель. Идет зима. Прекрасное время года.

Много нам забав чудесных дарит зимушка-зима :

Мы катаемся на санках. Лепим мы снеговика И в хоккей играем дружно, И на лыжах с гор летим. И пора нам в детский садик, А мы вовсе не хотим. (автор : Боровлева Н. А.)

У каждого из вас есть своя любимая игра. О своей любимой игре зимой нам расскажет Савелий.

II. Основная часть (22 мин.)

1. Представление исследовательского проекта ребёнком.

Воспитатель. Вы внимательно слушали рассказ.

А как вы думаете, сможем ли мы с вами повторить исследование Савелия? Или это получилось только у него (ответы детей)

Начиная наше исследование, вспомним, что мы должны узнать. (ответы детей)

2. Проведение детьми опытно- экспериментальной деятельности .

Воспитатель. Давайте проведём опыт : «Свойства льда» .

Возьмите в руки кубик льда.

Какой он внешне?

Какой он на ощупь?

Постучим по кубику льда молотком. Что произошло?

Положите кубик льда в стакан. Посмотрите, утонет ли лёд?

Зажмите кубик льда в ладони. Что происходит со льдом?

(дети выполняют манипуляции со льдом, отвечают на вопросы) .

Обобщение. Лёд прозрачный. Он холодный, гладкий на ощупь. Одновременно твёрдый и хрупкий. Лёд не тонет в воде. В тепле он легко превращается в воду.

Как вы думаете, какое из перечисленных свойств делает лёд скользким ?

(ответы детей)

Для уточнения этого, сравним стекло и лёд.

Опыт «Почему лёд скользкий

Дети рассматривают стекло совместно с воспитателем, сравнивают их внешние свойства.

Обобщение. Стекло и лёд очень похожи : стекло, как и лёд, прозрачное, холодное, гладкое. Одновременно твёрдое и хрупкое.

Но лёд более скользкий , чем стекло. Почему ?

Чтобы ответить на это, расскажите, что происходит с поверхностью льда во время скольжения по нему ?

Проведите пальчиком по льду и стеклу, что происходит с ними (ответы детей)

Обобщение. При воздействии лёд легко тает, образуется вода, которая помогает скольжению , а стекло не тает, поэтому и скользить по нему , как льду, нельзя.

3. Оформление детьми лэпбука «Про лёд» .

Воспитатель. Нарисуйте всё, что вам было особенно интересно и больше понравилось сегодня на занятии.

Дети рисуют запомнившиеся моменты занятия, оформляют совместно с воспитателем лэпбук «Про лёд» .

III. Заключительная часть (1мин.)

Воспитатель. Сегодня мы проводили научные опыты , благодаря которым узнали о свойствах льда; о зависимости быстроты скольжения от характера поверхности, на которой происходит скольжение ; о значение водяной плёнки в скольжении . Вечером поделитесь своими научными открытиями с мамами и папами.

На гладко натертом полу легче поскользнуться, нежели на обыкновенном. Казалось бы, то же самое должно происходить на льду, т. е. гладкий лед должен быть более скользок, нежели лед бугорчатый, шероховатый.

Но если вам случалось везти нагруженные ручные санки через неровную, бугристую ледяную поверхность, вы могли убедиться, что, вопреки ожиданиям, сани проскальзывали по такой поверхности заметно легче, чем по гладкой. Шероховатый лед более скользок, чем зеркально гладкий! Это объясняется тем, что скользкость льда зависит главным образом не от гладкости, а от совершенно особой причины: от того, что температура плавления льда понижается при увеличении давления.

Разберем, что происходит, когда мы катаемся в санях или на коньках. Стоя на коньках, мы опираемся на очень маленькую площадь, всего в несколько квадратных миллиметров. И на эту небольшую площадь целиком давит вес нашего тела. Если вы вспомните сказанное в главе второй о давлении , то поймете, что конькобежец давит на лед со значительной силой. Под большим давлением лед тает при пониженной температуре; если, например, лед имеет температуру - 5°, а давление коньков понизило точку плавления льда, попираемого коньками, более чем на 5°, то эти части льда будут таять [Теоретически можно вычислить, что для понижения точки таяния льда на 1° требуется весьма значительное давление в 130 кг на квадратный сантиметр. Производят ли сани или конькобежец такое огромное давление на лед? Если распределить вес саней (или конькобежца) на поверхность полозьев (или коньков), то получатся числа гораздо меньшие. Это доказывает, что ко льду прилегает вплотную далеко не вся поверхность полоза, а лишь незначительная часть ее]. Что же получается? Теперь между полозьями коньков и льдом находится тонкий слой воды, - неудивительно, что конькобежец скользит. И как только он переместит ноги в другое место, там произойдет то же самое. Всюду под ногами конькобежца лед превращается в тонкий слой воды. Такими свойствами из всех существующих тел обладает только лед; один советский физик назвал его “единственным скользким телом в природе”. Прочие тела гладки, но не скользки.

[При теоретическом расчете предполагается, что при плавлении и лед, и вода находятся под одинаковым давлением. Автор же описывает примеры, когда вода, образующаяся при плавлении, находится при атмосферном давлении. В этом случае требуется меньшее давление для понижения точки таяния льда. - Прим. ред. ]

Теперь мы можем вернуться к вопросу о том, гладкий или шероховатый лед более скользок. Мы знаем, что один и тот же груз давит тем сильнее, чем на меньшую площадь он опирается. В каком же случае человек оказывает на опору большее давление: когда он стоит на зеркально гладком или на шероховатом льду? Ясно, что во втором случае: ведь здесь он опирается лишь на немногие выступы и бугорки шероховатой поверхности. А чем больше давление на лед, тем обильнее плавление и, следовательно, лед тем более скользок (если только полоз достаточно широк; для узкого полоза коньков, врезающегося в бугорки, это неприложимо - энергия движения расходуется здесь на срезывание бугорков).

Понижением точки таяния льда под значительным давлением объясняется и множество других явлений обыденной жизни. Благодаря этой особенности льда отдельные куски его смерзаются вместе, если их сильно сдавливать. Мальчик, сжимая в руках комья снега при игре в снежки, бессознательно пользуется именно этим свойством ледяных крупинок (снежинок) смерзаться под усиленным давлением, понижающим температуру их таяния. Катая снежный ком для “снежной бабы”, мы опять-таки пользуемся указанной особенностью льда: снежинки в местах соприкосновения, в нижней части кома, смерзаются под тяжестью надавливающей на них массы. Вы понимаете теперь, конечно, почему в сильные морозы снег образует рассыпающиеся снежки, а “баба” плохо лепится. Под давлением ног прохожих снег на тротуарах постепенно уплотняется в лед: снежинки смерзаются в сплошной пласт.

Всем детям, несомненно, нравится лед, который зимой дарит столько радости. Катание с горки, на коньках — красота! Откуда же появляется лед? Где льда больше всего? Почему лед скользкий и почему льдины плавают? Можно ли увидеть лед летом? На все эти и другие вопросы ответит наш рассказ про лед.

В природе лед встречается там, где холодно. И это неспроста. Оказывается, что такое известное вещество, как вода, при охлаждении до определенной температуры затвердевает и превращается в лед. Итак, лед – это замерзшая вода. Когда наступает зима, поверхность рек и озер покрывается льдом.

Почему лед не тонет в воде?
По какой причине мы наблюдаем лед именно на поверхности воды, а не где-то в глубине? Причина в том, что плотность льда меньше, чем у воды. За счет меньшей плотности лед легче воды и плавает на ее поверхности.

Изменение плотности во время превращения воды в лед порождает интересные эффекты. Например, стеклянную бутылку с водой, выставленную на мороз, разрывает на части, когда вода в бутылке превращается в лед. Поэтому следует быть осторожным при охлаждении напитков на морозе.

Почему лед скользкий?
А почему же лед скользкий? На этот вопрос знают ответ ученые-физики. Они объясняют, что при давлении на поверхность льда (когда мы наступаем на лед ногой или катимся по нему на коньках) лед немного плавится и возникает тонкая водяная пленка, которая и обеспечивает скольжение.

Свойство льда – скользкость — очень нравится всем детям. Как здорово зимой скатиться с высокой ледяной горки, покататься на катке на фигурных коньках или поиграть в хоккей!

Всегда ли тает лед?
В нашем сознании лед неразрывно связан с зимой. А есть ли места на нашей планете Земля, где лед не тает никогда? Да, такие места есть. Это ледники, которые находятся на вершинах высоких гор и в полярных областях Земли — в Арктике и в Антарктиде. Причем наибольшие запасы льда накоплены именно в ледниках Антарктиды, где толщина льда местами достигает четырех километров!

Ледники, соприкасающиеся с океаном, рождают айсберги. Айсберг – это часть ледника, отколовшаяся от него и свободно плавающая в океане. Айсберги представляют определенную опасность для мореплавателей.

Практическое использование льда
Способность льда накапливать холод люди давно научились использовать в практических целях. Еще в древние времена они устраивали искусственные ледники для хранения скоропортящихся продуктов. Такой ледник представлял собой деревянный сруб, врытый в землю и накрытый толстым слоем земли и дерна. Получившееся подземное помещение зимой наполняли льдом, который не таял даже летом.

Что такое град?
А может ли лед образоваться летом? Да, такое возможно, если в очень жаркий день влажные воздушные массы поднимутся на высоту выше 2,5 километров, где температура воздуха ниже точки замерзания воды. В таких условиях водяные капли замерзают и тогда на землю выпадает град – льдинки круглой или неправильной формы размером от горошины до голубиного яйца. Иногда градины бывают и более крупного размера. Град может представлять опасность для людей, для техники, для природы.

На гладко натертом полу легче поскользнуться, нежели на обыкновенном. Казалось бы, то же самое должно происходить на льду, т. е. гладкий лед должен быть более скользок, нежели лед бугорчатый, шероховатый.

Но если вам случалось везти нагруженные ручные санки через неровную, бугристую ледяную поверхность, вы могли убедиться, что, вопреки ожиданиям, сани проскальзывали по такой поверхности заметно легче, чем по гладкой. Шероховатый лед более скользок, чем зеркально гладкий!

Это объясняется тем, что скользкость льда зависит главным образом не от гладкости, а от совершенно особой причины: от того, что температура плавления льда понижается при увеличении давления.

Разберем, что происходит, когда мы катаемся в санях или на коньках. Стоя на коньках, мы опираемся на очень маленькую площадь, всего в несколько квадратных миллиметров. И на эту небольшую площадь целиком давит вес нашего тела. Если вы вспомните сказанное в главе второй о давлении, то поймете, что конькобежец давит на лед со значительной силой. Под большим давлением лед тает при пониженной температуре; если, например, лед имеет температуру - 5°, а давление коньков понизило точку плавления льда, попираемого коньками, более чем на 5°, то эти части льда будут таять [Теоретически можно вычислить, что для понижения точки таяния льда на 1° требуется весьма значительное давление в 130 кг на квадратный сантиметр. Производят ли сани или конькобежец такое огромное давление на лед? Если распределить вес саней (или конькобежца) на поверхность полозьев (или коньков), то получатся числа гораздо меньшие. Это доказывает, что ко льду прилегает вплотную далеко не вся поверхность полоза, а лишь незначительная часть ее]. Что же получается?

Теперь между полозьями коньков и льдом находится тонкий слой воды, - неудивительно, что конькобежец скользит. И как только он переместит ноги в другое место, там произойдет то же самое. Всюду под ногами конькобежца лед превращается в тонкий слой воды. Такими свойствами из всех существующих тел обладает только лед; один советский физик назвал его “единственным скользким телом в природе”. Прочие тела гладки, но не скользки.

[При теоретическом расчете предполагается, что при плавлении и лед, и вода находятся под одинаковым давлением. Автор же описывает примеры, когда вода, образующаяся при плавлении, находится при атмосферном давлении. В этом случае требуется меньшее давление для понижения точки таяния льда. - Прим. ред ]

Теперь мы можем вернуться к вопросу о том, гладкий или шероховатый лед более скользок. Мы знаем, что один и тот же груз давит тем сильнее, чем на меньшую площадь он опирается. В каком же случае человек оказывает на опору большее давление: когда он стоит на зеркально гладком или на шероховатом льду? Ясно, что во втором случае: ведь здесь он опирается лишь на немногие выступы и бугорки шероховатой поверхности. А чем больше давление на лед, тем обильнее плавление и, следовательно, лед тем более скользок (если только полоз достаточно широк; для узкого полоза коньков, врезающегося в бугорки, это неприложимо - энергия движения расходуется здесь на срезывание бугорков).

Понижением точки таяния льда под значительным давлением объясняется и множество других явлений обыденной жизни. Благодаря этой особенности льда отдельные куски его смерзаются вместе, если их сильно сдавливать. Мальчик, сжимая в руках комья снега при игре в снежки, бессознательно пользуется именно этим свойством ледяных крупинок (снежинок) смерзаться под усиленным давлением, понижающим температуру их таяния. Катая снежный ком для “снежной бабы”, мы опять-таки пользуемся указанной особенностью льда: снежинки в местах соприкосновения, в нижней части кома, смерзаются под тяжестью надавливающей на них массы. Вы понимаете теперь, конечно, почему в сильные морозы снег образует рассыпающиеся снежки, а “баба” плохо лепится. Под давлением ног прохожих снег на тротуарах постепенно уплотняется в лед: снежинки смерзаются в сплошной пласт.

Задача о ледяных сосульках

Случалось ли вам задумываться над тем, как образуются ледяные сосульки, которые мы часто видим свешивающимися с крыш?
В какую погоду образовались сосульки: в оттепель или в мороз? Бели в оттепель, то как могла замерзнуть вода при температуре выше нуля? Если в мороз, то откуда могла взяться вода на крыше?
Вы видите, что задача не так проста, как кажется сначала. Чтобы могли образоваться ледяные сосульки, нужно в одно и то же время иметь две температуры: для таяния - выше нуля и для замерзания - ниже нуля.

На самом деле так и есть: снег на склоне крыши тает, потому что солнечные лучи нагревают его до температуры выше нуля, а стекающие капли воды у края крыши замерзают, потому что здесь температура ниже нуля. (Конечно, мы говорим не о том случае образования сосулек, который обусловлен теплотой отапливаемого под крышей помещения.)

Рис. 87. Лучи Солнца греют наклонную крышу сильнее, чем горизонтальную земную поверхность
(числа указывают величину углов).

Представьте такую картину. Ясный день; мороз всего в 1 - 2 градуса. Солнце заливает все своими лучами; однако же эти косые лучи не нагревают землю настолько, чтобы снег мог таять. Но на склон крыши, обращенный к Солнцу, лучи падают не полого, как на землю, а круче, под углом, более близким к прямому. Известно, что освещение и нагревание лучами тем больше, чем больший угол составляют лучи с плоскостью, на которую они падают. (Действие лучей пропорционально синусу этого угла; для случая, изображенного на рис. 87, снег на крыше получает тепла в 2,5 раза больше, нежели равная площадь снега на горизонтальной поверхности, потому что синус 60° больше синуса 20° в 2,5 раза.) Вот почему скат крыши нагревается сильнее и снег на нем может таять. Оттаявшая вода стекает и каплями свисает с края крыши. Но под крышей температура ниже нуля, и капля, охлаждаемая к тому же испарением, замерзает. На замерзшую каплю натекает следующая, также замерзающая; затем третья капля, и т. д.; постепенно образуется маленький ледяной бугорок. В другой раз при такой же погоде эти ледяные наплывы еще удлиняются, и в результате образуются сосульки, вырастающие наподобие известковых сталактитов в подземных пещерах. Так возникают сосульки на крышах сараев и вообще неотапливаемых помещений.

Та же причина вызывает на наших глазах и более грандиозные явления: ведь различие в климатических поясах и временах года обусловлено в значительной степени [Но не всецело: другая важная причина заключается в неодинаковой продолжительности дня, т. е. того промежутка времени, в течение которого Солнце согревает Землю. Обе причины, впрочем, обусловлены одним астрономическим фактом: наклоном земной оси к плоскости обращения Земли вокруг Солнца] изменением угла падения солнечных лучей. Солнце от нас зимой почти на таком же расстоянии, как и летом; оно одинаково удалено от полюсов и экватора (различия в расстоянии настолько ничтожны, что не имеют значения). Но наклон солнечных лучей к поверхности Земли близ экватора больше, чем у полюсов; летом этот угол больше, чем зимой. Это вызывает заметные различия в температуре дня и, следовательно, в жизни всей природы.

В первый раз, когда вы наступаете на ледовый каток, вы делаете это боязливо опасаясь падения. Но что делает лёд настолько скользким? Интересно, что ученые отвечают.

Физики верили, что лёд скользкий из-за воздействия силы тела. Это давление, которое они теоретизируют, увеличивает температуру плавления верхнего слоя льда.

Когда человек катается на льду, под давлением вызванном металлическим лезвием коньков, тает лёд. Этот тонкий слой воды позволяет коньку плавно скользить по поверхности. После прохождения льда колея снова замерзает.

Однако большинство ученых утверждают, что эта теория ошибочна. Лёд — загадочное тело, говорит Роберт М. Розенберг, профессор химии в Университете Лоуренса.

Исследователи обнаружили, что давление которое снижает температуру плавления льда, составляет лишь небольшое повышение градуса. Вместо этого они предложили, что трение конька заставляет лёд таять под ним.

Другие полагают что лёд естественно имеет слой жидкости, состоящий из нестабильных . Хотя эти молекулы стремятся к стабильности, они хаотично движутся по поверхности льда и создают скользкий слой.

Почему горячая вода замерзает быстрее?

Команда исследователей из Технологического университета Наньян в Сингапуре считает это хорошей тайной почему горячая вода замерзает быстрее холодной. Это явление, которое кажется совершенно нелогичным, уже было замечено самим Аристотелем. Он рассказывал, что некоторые жители нынешней Турции распыляли доски своих заборов горячей водой на которые нельзя было влезть, потому что таким образом они замерзали быстрее.

Однако до 70-х годов он получил название, эффект Мембы. Эрасто Б. Мемба, который понял в школе, что горячая смесь для мороженого замерзает быстрее.

Но до сих пор ученым не удалось найти удовлетворительного объяснения. По их мнению, дело связано с тем, как энергия хранится в водородных связях между молекулами воды.

Как известно, молекулы воды имеют один атом кислорода и два атома водорода, все они связаны ковалентными связями (обмен электронами).

В молекулах воды атомы водорода также притягиваются к атомам кислорода в других соседних молекулах воды. Это называется водородной связью. Но в то же время молекулы воды в целом отталкиваются друг от друга.

Авторы исследования отмечают, что чем больше воды нагревается, тем больше расстояние между молекулами обусловлено силой отталкивания между ними. Это заставляет молекулы водорода растягиваться, так что энергия сохраняется. Эта энергия, по мнению исследователей, высвобождается, когда вода охлаждается, позволяя молекулам сблизиться.

Горячая вода имеет большее количество водородных связей, чем холодная вода. Поэтому она хранит больше энергии и больше выделяется при воздействии температур ниже нуля. Вот почему, говорят исследователи, она замерзает быстрее, чем холодная вода.