Понятие дифференциала и его свойства. Инвариантность формы дифференциала

Являясь неразрывно связанными между собой, оба они уже несколько столетий активно используются при решении практически всех задач, которые возникали в процессе научно-технической деятельности человека.

Возникновение понятия о дифференциале

Впервые разъяснил, что такое дифференциал, один из создателей (наряду с Исааком Ньютоном) дифференциального исчисления знаменитый немецкий математик Готфрид Вильгельм Лейбниц. До этого математиками 17 ст. использовалось весьма нечеткое и расплывчатое представление о некоторой бесконечно малой «неделимой» части любой известной функции, представлявшей очень малую постоянную величину, но не равную нулю, меньше которой значения функции быть просто не могут. Отсюда был всего один шаг до введения представления о бесконечно малых приращениях аргументов функций и соответствующих им приращениях самих функций, выражаемых через производные последних. И этот шаг был сделан практически одновременно двумя вышеупомянутыми великими учеными.

Исходя из необходимости решения насущных практических задач механики, которые ставила перед наукой бурно развивающаяся промышленность и техника, Ньютон и Лейбниц создали общие способы нахождения скорости изменения функций (прежде всего применительно к механической скорости движения тела по известной траектории), что привело к введению таких понятий, как производная и дифференциал функции, а также нашли алгоритм решения обратной задачи, как по известной (переменной) скорости найти пройденный путь, что привело к появлению понятия интеграла.

В трудах Лейбница и Ньютона впервые появилось представление о том, что дифференциалы - это пропорциональные приращениям аргументов Δх основные части приращений функций Δу, которые могут быть с успехом применены для вычисления значений последних. Иначе говоря, ими было открыто, что приращение функции может быть в любой точке (внутри области ее определения) выражено через ее производную как Δу = y"(x) Δх + αΔх, где α Δх - остаточный член, стремящийся к нулю при Δх→0, гораздо быстрее, чем само Δх.

Согласно основоположникам матанализа, дифференциалы - это как раз и есть первые члены в выражениях приращений любых функций. Еще не обладая четко сформулированным понятием предела последовательностей, они интуитивно поняли, что величина дифференциала стремится к производной функции при Δх→0 - Δу/Δх→ y"(x).

В отличие от Ньютона, который был прежде всего физиком, и рассматривал математический аппарат как вспомогательный инструмент исследования физических задач, Лейбниц уделял большее внимание самому этому инструментарию, включая и систему наглядных и понятных обозначений математических величин. Именно он предложил общепринятые обозначения дифференциалов функции dy = y"(x)dx, аргумента dx и производной функции в виде их отношения y"(x) = dy/dx.

Современное определение

Что такое дифференциал с точки зрения современной математики? Он тесно связан с понятием приращения переменной величины. Если переменная y принимает сначала значение y = y 1 , а затем y = y 2 , то разность y 2 ─ y 1 называется приращением величины y.

Приращение может быть положительным. отрицательным и равным нулю. Слово «приращение» обозначается Δ, запись Δу (читается «дельта игрек») обозначает приращение величины y. так что Δу = y 2 ─ y 1 .

Если величину Δу произвольной функции y = f (x) возможно представить в виде Δу = A Δх + α, где у A нет зависимости от Δх, т. е. A = const при данном х, а слагаемое α при Δх→0 стремится к нему же еще быстрее, чем само Δх, тогда первый («главный») член, пропорциональный Δх, и является для y = f (x) дифференциалом, обозначаемымdy или df(x) (читается «дэ игрек», «дэ эф от икс»). Поэтому дифференциалы - это «главные» линейные относительно Δх составляющие приращений функций.

Механическое истолкование

Пусть s = f (t) - расстояние прямолинейно движущейся от начального положения (t - время пребывания в пути). Приращение Δs - это путь точки за интервал времени Δt, а дифференциал ds = f" (t) Δt - это путь, который точка прошла бы за то же время Δt, если бы она сохранила скорость f"(t), достигнутую к моменту t. При бесконечно малом Δt воображаемый путь ds отличается от истинного Δs на бесконечно малую величину, имеющую высший порядок относительно Δt. Если скорость в момент t не равна нулю, то ds дает приближенную величину малого смещения точки.

Геометрическая интерпретация

Пусть линия L является графиком y = f (x). Тогда Δ х= MQ, Δу = QM" (см. рисунок ниже). Касательная MN разбивает отрезок Δу на две части, QN и NM". Первая пропорциональна Δх и равна QN = MQ∙tg (угла QMN) = Δх f "(x), т. е QN есть дифференциал dy.

Вторая часть NM"дает разность Δу ─ dy, при Δх→0 длина NM" уменьшается еще быстрее, чем приращение аргумента, т.е у нее порядок малости выше, чем у Δх. В рассматриваемом случае, при f "(x) ≠ 0 (касательная не параллельна ОХ), отрезки QM"и QN эквивалентны; иными словами NM" уменьшается быстрее (порядок малости ее выше), чем полное приращение Δу = QM". Это видно на рисунке (с приближением M"к М отрезок NM"составляет все меньший процент отрезка QM").

Итак, графически дифференциал произвольной функции равен величине приращения ординаты ее касательной.

Производная и дифференциал

Коэффициент A в первом слагаемом выражения приращения функции равен величине ее производной f "(x). Таким образом, имеет место следующее соотношение - dy = f "(x)Δх, или же df (x) = f "(x)Δх.

Известно, что приращение независимого аргумента равно его дифференциалу Δх = dx. Соответственно, можно написать: f "(x) dx = dy.

Нахождение (иногда говорят, «решение») дифференциалов выполняется по тем же правилам, что и для производных. Перечень их приведен ниже.

Что более универсально: приращение аргумента или его дифференциал

Здесь необходимо сделать некоторые пояснения. Представление величиной f "(x)Δх дифференциала возможно при рассмотрении х в качестве аргумента. Но функция может быть сложной, в которой х может быть функцией некоторого аргумента t. Тогда представление дифференциала выражением f "(x)Δх, как правило, невозможно; кроме случая линейной зависимости х = at + b.

Что же касается формулы f "(x)dx= dy, то и в случае независимого аргумента х (тогда dx = Δх), и в случае параметрической зависимости х от t, она представляет дифференциал.

Например, выражение 2 x Δх представляет для y = x 2 ее дифференциал, когда х есть аргумент. Положим теперь х= t 2 и будем считать t аргументом. Тогда y = x 2 = t 4 .

Это выражение не пропорционально Δt и потому теперь 2xΔх не является дифференциалом. Его можно найти из уравнения y = x 2 = t 4 . Он оказывается равен dy=4t 3 Δt.

Если же взять выражение 2xdx, то оно представляет дифференциал y = x 2 при любом аргументе t. Действительно, при х= t 2 получим dx = 2tΔt.

Значит 2xdx = 2t 2 2tΔt = 4t 3 Δt, т. е. выражения дифференциалов, записанные через две разные переменные, совпали.

Замена приращений дифференциалами

Если f "(x) ≠ 0, то Δу и dy эквивалентны (при Δх→0); при f "(x) = 0 (что означает и dy = 0), они не эквивалентны.

Например, если y = x 2 , то Δу = (x + Δх) 2 ─ x 2 = 2xΔх + Δх 2 , а dy=2xΔх. Если х=3, то имеем Δу = 6Δх + Δх 2 и dy = 6Δх, которые эквивалентны вследствие Δх 2 →0, при х=0 величины Δу = Δх 2 и dy=0 не эквивалентны.

Этот факт, вместе с простой структурой дифференциала (т. е. линейности по отношению к Δх), часто используется в приближенных вычислениях, в предположении, что Δу ≈ dy для малых Δх. Найти дифференциал функции, как правило, легче, чем вычислить точное значение приращения.

Например, имеем металлический куб с ребром х=10,00 см. При нагревании ребро удлинилось на Δх = 0,001 см. Насколько увеличился объем V куба? Имеем V = х 2 , так что dV = 3x 2 Δх = 3∙10 2 ∙0/01 = 3 (см 3). Увеличение объема ΔV эквивалентно дифференциалу dV, так что ΔV = 3 см 3 . Полное вычисление дало бы ΔV =10,01 3 ─ 10 3 = 3,003001. Но в этом результате все цифры, кроме первой ненадежны; значит, все равно, нужно округлить его до 3 см 3 .

Очевидно, что такой подход является полезным, только если возможно оценить величину привносимой при этом ошибки.

Дифференциал функции: примеры

Попробуем найти дифференциал функции y = x 3 , не находя производной. Дадим аргументу приращение и определим Δу.

Δу = (Δх + x) 3 ─ x 3 = 3x 2 Δх + (3xΔх 2 + Δх 3).

Здесь коэффициент A= 3x 2 не зависит от Δх, так что первый член пропорционален Δх, другой же член 3xΔх 2 + Δх 3 при Δх→0 уменьшается быстрее, чем приращение аргумента. Стало быть, член 3x 2 Δх есть дифференциал y = x 3:

dy=3x 2 Δх=3x 2 dx или же d(x 3) = 3x 2 dx.

При этом d(x 3) / dx = 3x 2 .

Найдем теперь dy функции y = 1/x через ее производную. Тогда d(1/x) / dx = ─1/х 2 . Поэтому dy = ─ Δх/х 2 .

Дифференциалы основных алгебраических функций приведены ниже.

Приближенные вычисления с применением дифференциала

Вычислить функцию f (x), а также ее производную f "(x) при x=a часто нетрудно, а вот сделать то же самое в окрестности точки x=a бывает нелегко. Тогда на помощь приходит приближенное выражение

f(a + Δх) ≈ f "(a)Δх + f(a).

Оно дает приближенное значение функции при малых приращениях Δх через ее дифференциал f "(a)Δх.

Следовательно, данная формула дает приближенное выражение для функции в конечной точке некоторого участка длиной Δх в виде суммы ее значения в начальной точке этого участка (x=a) и дифференциала в той же начальной точке. Погрешность такого способа определения значения функции иллюстрирует рисунок ниже.

Однако известно и точное выражение значения функции для x=a+Δх, даваемое формулой конечных приращений (или, иначе, формулой Лагранжа)

f(a+ Δх) ≈ f "(ξ) Δх + f(a),

где точка x = a+ ξ находится на отрезке от x = a до x = a + Δх, хотя точное положение ее неизвестно. Точная формула позволяет оценивать погрешность приближенной формулы. Если же в формуле Лагранжа положить ξ = Δх /2, то хотя она и перестает быть точной, но дает, как правило, гораздо лучшее приближение, чем исходное выражение через дифференциал.

Оценка погрешности формул при помощи применения дифференциала

В принципе неточны, и привносят в данные измерений, соответствующие ошибки. Их характеризуют предельной или, короче, предельной погрешностью - положительным числом, заведомо превышающим эту ошибку по абсолютной величине (или в крайнем случае равным ей). Предельной называют частное от ее деления на абсолютное значение измеренной величины.

Пусть точная формула y= f (x) использована для вычисляения функции y, но значение x есть результат измерения и поэтому привносит в y ошибку. Тогда, чтобы найти предельную абсолютную погрешность │‌‌Δу│функции y, используют формулу

│‌‌Δу│≈│‌‌dy│=│ f "(x)││Δх│,

где │Δх│является предельной погрешностью аргумента. Величину │‌‌Δу│ следует округлить в сторону увеличения, т.к. неточной является сама замена вычисления приращения на вычисление дифференциала.

Дифференциал… Для одних это прекрасное далёкое, а для других – непонятное слово, связанное с математикой. Но если это ваше суровое настоящее, наша статья поможет узнать, как правильно “приготовить” дифференциал и с чем его “подавать”.

Под дифференциалом в математике понимают линейную часть приращения функции. Понятие дифференциала неразрывно связано с записью производной согласно Лейбница f′(x 0) = df/dx·x 0 . Исходя из этого, дифференциал первого порядка для функции f, заданной на множестве X, имеет такой вид: d x0 f = f′(x 0)·d x0 x. Как видите, для получения дифференциала нужно уметь свободно находить производные. Поэтому нелишним будет повторить правила вычисления производных, дабы понимать, что будет происходить в дальнейшем. Итак, рассмотрим дифференцирование поближе на примерах. Нужно найти дифференциал функции, заданной в таком виде: y = x 3 -x 4 . Сначала найдём производную от функции: y′= (x 3 -x 4)′ = (x 3)′-(x 4)′ = 3x 2 -4x 3 . Ну, а теперь получить дифференциал проще простого: df = (3x 3 -4x 3)·dx. Сейчас мы получили дифференциал в виде формулы, на практике зачастую также интересует цифровое значение дифференциала при заданных конкретных параметрах х и ∆х. Бывают случаи, когда функция выражена неявно через х. Например, y = x²-y x . Производная функции имеет такой вид: 2x-(y x)′. Но как получить (y x)′? Такая функция называется сложной и дифференцируется согласно соответствующего правила: df/dx = df/dy·dy/dx. В данном случае: df/dy = x·y x-1 , а dy/dx = y′. Теперь собираем всё воедино: y′ = 2x-(x·y x-1 ·y′). Группируем все игреки в одной стороне: (1+x·y x-1)·y′ = 2x, и в итоге получаем: y′ = 2x/(1+x·y x-1) = dy/dx. Исходя из этого, dy = 2x·dx/(1+x·y x-1). Конечно, хорошо, что такие задания встречаются нечасто. Но теперь вы готовы и к ним. Кроме рассмотренных дифференциалов первого порядка, ещё существуют дифференциалы высшего порядка. Попробуем найти дифференциал для функции d/d (x 3 (x 3 2 x 6 x 9 ), который и будет дифференциалом второго порядка для f(x) . Исходя из формулы f′(u) = d/du·f(u), где u = f(x), примем u = x 3 . Получаем: d/d(u)·(u-2u 2 -u 3) = (u-2u 2 -u 3)′ = 1-4u-3u 2 . Возвращаем замену и получаем ответ – 1x 3 x 6 , x≠0. Помощником в нахождении дифференциала также может стать онлайн-сервис . Естественно, что на контрольной или экзамене им не воспользуешься. Но при самостоятельной проверке правильности решения его роль сложно переоценить. Кроме самого результата, он также показывает промежуточные решения, графики и неопределённый интеграл дифференциальной функции, а также корни дифференциального уравнения. Единственный недостаток – это запись в одну строку функции при вводе, но со временем можно привыкнуть и к этому. Ну, и естественно, такой сервис не справляется со сложными функциями, но всё, что попроще, ему по зубам. Практическое применение дифференциал находит в первую очередь в физике и экономике. Так, в физике зачастую дифференцированием решаются задачи, связанные с определением скорости и её производной – ускорения. А в экономике дифференциал является неотъемлемой частью расчёта эффективности деятельности предприятия и фискальной политики государства, например, эффекта финансового рычага.

В этой статье рассмотрены типовые задачи дифференцирования. Курс высшей математики учащихся ВУЗов зачастую содержит ещё задания на использование дифференциала в приближенных вычислениях, а также поиск решений дифференциальных уравнений. Но главное – при чётком понимании азов вы с лёгкостью расправитесь со всеми новыми задачами.

Можно доказать, что если функция имеет при некоторой базе предел, равный конечному числу, то ее можно представить в виде суммы этого числа и бесконечно малой величины при той же базе (и наоборот): .

Применим это теорему к дифференцируемой функции: .

Таким образом, приращение функции у состоит из двух слагаемых: 1) линейного относительнох, т.е.f`(x)х; 2) нелинейного относительнох, т.е.(x)х. При этом, так как
, это второе слагаемое представляет собой бесконечно малую более высокого порядка, чемх (при стремлениих к нулю оно стремится к нулю еще быстрее).

Дифференциалом функции называется главная, линейная относительнох часть приращения функции, равная произведению производной на приращение независимой переменнойdy=f`(x)х.

Найдем дифференциал функции у = х.

Так как dy=f`(x)х =x`х =х, тоdx=х, т.е. дифференциал независимой переменной равен приращению этой переменной.

Поэтому формулу для дифференциала функции можно записать в виде dy=f`(x)dх. Именно поэтому одно из обозначений производной представляет собой дробьdy/dх.

Геометрический смысл дифференциала проиллюстрирован рисунком 3.11. Возьмем на графике функции y = f(x) произвольную точку М(х, у). Дадим аргументу х приращение х. Тогда функция y = f(x) получит приращениеy = f(x +х) - f(x). Проведем касательную к графику функции в точке М, которая образует уголс положительным направлением оси абсцисс, т.е.f`(x) = tg. Из прямоугольного треугольника MKNKN=MN*tg=х*tg=f`(x)х =dy.

Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции в данной точке, когда х получает приращение х.

Свойства дифференциала в основном аналогичны свойствам производной:

3. d(u ± v) = du ± dv.

4. d(uv) = v du + u dv.

5. d(u/v) = (v du - u dv)/v 2 .

Однако, существует важное свойство дифференциала функции, которым не обладает ее производная – это инвариантность формы дифференциала .

Из определения дифференциала для функции y= f(x) дифференциалdy=f`(x)dх. Если эта функцияyявляется сложной, т.е.y= f(u), гдеu=(х), тоy= f[(х)] иf`(x) = f `(u)*u`. Тогдаdy= f `(u)*u`dх. Но для функцииu=(х) дифференциалdu=u`dх. Отсюдаdy= f `(u)*du.

Сравнивая между собой равенства dy=f`(x)dх иdy= f `(u)*du, убедимся, что формула дифференциала не изменяется, если вместо функции от независимой переменной х рассматривать функцию от зависимой переменнойu. Это свойство дифференциала и получило название инвариантности (т.е. неизменности) формы (или формулы) дифференциала.

Однако в этих двух формулах все же есть различие: в первой из них дифференциал независимой переменной равен приращению этой переменной, т.е. dx = x, а во в торой дифференциал функции du есть лишь линейная часть приращения этой функцииuи только при малыхх duu.

Применение дифференциала в приближенных вычислениях

Выше было показано, что , т.е. приращение функцииу отличается от ее дифференциала dy на бесконечно малую величину более высокого порядка, чемх.

Поэтому при достаточно малых значениях хуdy или f(x +х) - f(x)f`(x)х, откуда f(x +х)f(x) +f`(x)х. Полученная формула будет тем точнее, чем меньшех.

Например, найдем

Итак, y=f(x) =x 1/3 . Возьмемx= 125,х = 0,27.

f`(x) = (x 1/3)`= 1/(3x 2/3)

f(125,27) =f(125 + 0,27)f(125) +f`(125)*(0,27) =
= 5 + 0,27/(3*25) = 5,0036

Например, найдем tg 46 о.

Итак, y=f(x) =tgx. Возьмемx= 45 o =/4,х = 1 o =/180.

f`(x) = (tgx)`= 1/cos 2 x

f(46 o) = f(/4 + /180)  f(/4) + f `(/4)*(/180) = tg(/4) + + (1/ cos 2 (/4))*(/180) = 1 + (1/(2/2) 2)*(/180) = 1 + /90 ( 1,035)

Кроме того, с помощью дифференциала может быть решена задача определения абсолютной и относительной погрешностей функции по заданной погрешности нахождения (измерения) аргумента.

Пусть необходимо вычислить значение данной функции у = f(x) при некотором значении аргумента х 1 , истинная величина которого неизвестна, а известно лишь его приближенное значение х с абсолютной погрешностью |х| = |х - х 1 |. Если вместо истинного значенияf(x 1) взять величинуf(x), то абсолютная ошибка функции будет равна |f(x 1) -f(x)| = |y|dy=f`(x)х.

При этом относительная погрешность функции  y = |y/y| при достаточно малыхх будет равна, где Е х (y) – эластичность функции, а х = |x/x| - относительная погрешность аргумента.

Формула дифференциала функции имеет вид

где - дифференциал независимой переменной.

Пусть теперь дана сложная (дифференцируемая) функция , где,.Тогда по формуле производной сложной функции находим

так как .

Итак, , т.е. формула дифференциала имеет один и тот же вид для независимой переменнойи для промежуточного аргумента, представляющего собой дифференцируемую функцию от.

Это свойство принято называть свойством инвариантности формулы или формы дифференциала . Заметим, что производная этим свойством не обладает.

    Связь между непрерывностью и дифференцируемостью.

Теорема (необходимое условие дифференцируемости функции). Если функция дифференцируема в точке, то она непрерывна в этой точке.

Доказательство. Пусть функция у= f (x ) дифференцируема в точке х 0 . Дадим в этой точке аргументу приращениех . Функция получит приращение у . Найдем .

Следовательно, у= f (x ) непрерывна в точке х 0 .

Следствие. Если х 0 – точка разрыва функции, то в ней функция не дифференцируема.

Утверждение, обратное теореме, не верно. Из непрерывности не следует дифференцируемость.

    Дифференциал. Геометрический смысл. Применение дифференциала к приближенным вычислениям.

Определение

Дифференциалом функции называется линейная относительно часть приращения функции. Она обозначается какили. Таким образом:

Замечание

Дифференциал функции составляет основную часть ее приращения.

Замечание

Наряду с понятием дифференциала функции вводится понятие дифференциала аргумента. По определению дифференциал аргумента есть приращение аргумента:

Замечание

Формулу для дифференциала функции можно записать в виде:

Отсюда получаем, что

Итак, это означает, что производная может быть представлена как обыкновенная дробь - отношение дифференциалов функции и аргумента.

Геометрический смысл дифференциала

Дифференциал функции в точке равен приращению ординаты касательной, проведенной к графику функции в этой точке, соответствующему приращению аргумента.

    Основные правила дифференцирования. Производная постоянной, производная суммы.

Пусть функции иимеют производные в точке. Тогда

1. Константу можно выносить за знак производной.

5. Дифференциал константы равен нулю.

2. Производная суммы/разности .

Производная суммы/разности двух функций равна сумме/разности производных от каждой из функций.

    Основные правила дифференцирования. Производная произведения.

3. Производная произведения .

    Основные правила дифференцирования. Производная сложной и обратной функции.

5. Производная сложной функции .

Производная сложной функции равна производной этой функции по промежуточному аргументу , умноженной на производную от промежуточного аргументапо основному аргументу.