Теория близкого и дальнего действия. От дальнодействия к близкодействию: теория электромагнитного поля

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Уже в античном мире мыслители задумывались над природой и сущностью простран-ства и времени. Одни из философов отрицали возможность существования пустого прос-транства или, по их выражению, небытия. Это были представители элейской школы в Древней Греции - Парменид и Зенон. Другие философы, в том числе Демокрит, утвер-ждали, что пустота существует, как и атомы, и необходима для их перемещений и соеди-нений.

В естествознании до XVI века господствовала геоцентрическая система Птоло-мея. Она представляла собой первую универсальную математическую модель мира, в которой время было бесконечным, а пространство конечным, включающим в себя равно-мерное круговое движение небесных тел вокруг неподвижной Земли. Коренное изменение пространственной и всей физической картины произошло в гелиоцентрической системе мира, представленной Коперником. Признав подвижность Земли, он отверг все ранее существовавшие представления о ее уникальности как центра Вселенной и тем самым направил движение научной мысли к признанию безграничности и бесконечности прос-транства. Эта мысль получила развитие в философии Джордано Бруно, который сделал вывод о бесконечности Вселенной и отсутствии у нее центра.

Важную роль в развитии представлений о пространстве сыграл открытый Галилеем принцип инерции. Согласно этому принципу все физические (механические) явления происходят одинаково во всех системах, движущихся равномерно и прямолинейно с постоянной по величине и направлению скорости.

Дальнейшее развитие представления о пространстве и времени связано с физико- космической картиной мира Р. Декарта. В ее основу он положил идею о том, что все явления природы объясняются механическим воздействием элементарных материальных частиц. Само же воздействие Декарт представлял в виде давления или удара при сопри-косновении частиц друг с другом и ввел таким образом в физику идею близкодействия.

Новая физическая картина мира была представлена в классической механике И. Ньютона. Он нарисовал стройную картину планетной системы, дал строгую количествен-ную теорию движения планет. Вершиной его механики стала теория тяготения, провозгла-сившая универсальный закон природы - закон всемирного тяготения . Согласно этому закону, любые два тела притягивают друг друга с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.

Этот закон выражается следующей формулой:

где: k - гравитационная постоянная;

m1, m2 - тяготеющие массы;

r - расстояние между ними.

Данный закон ничего не говорит о зависимости силы тяготения от времени. Сила тяготения чисто математически может быть названа дальнодействующей, она мгновенно связывает взаимодействующие тела и для ее вычисления не требуется никаких допущений о среде, передающей взаимодействие.

Распространив на всю Вселенную закон тяготения, Ньютон рассмотрел и возможную ее структуру. Он пришел к выводу, что Вселенная - бесконечна. Лишь в этом случае в ней может существовать множество космических объектов - центров гравитации. В рамках ньютоновской модели Вселенной утвердилось представление о бесконечном пространстве, в котором находятся космические объекты, связанные между собой силой тяготения. Последовавшее во второй половине XVIII века открытие основных законов электро - и магнитостатики, аналогичных по математической форме закону всемирного тяготения еще более утвердило в сознании ученых идею дальнодействующих сил, зависящих только от расстояния, но не от времени.

Поворот в сторону идей близкодействия связан с идеями Фарадея и Масквелла, которые разработали концепцию электромагнитного поля как самостоятельной физической реальности. Исходным при этом было признание близкодействия и конечной скорости передачи любых взаимодействий.

Вывод о том, что волновое электромагнитное поле отрывается от разряда и может самостоятельно существовать и распространяться в пространстве, казался абсурдным. Сам Максвелл упорно стремился вывести свои уравнения из механических свойств эфира. Но когда Герц экспериментально обнаружил существование электромагнитных волн, это бы-ло воспринято как решающее доказательство справедливости теории Максвелла. Место мгновенного дальнодействия заняло передающееся с конечной скоростью близкодей-ствие.

2.7. Взаимодействие, близкодействие, дальнодействие

2.7.1. Концепции близкодействия и дальнодействия

Дальнодействие . После открытия закона всемирного тяготения И. Ньютоном, а затем закона Кулона, описывающего взаимодействие электрических заряженных тел, возник , почему физические тела, обладающие массой, действуют друг на друга на больших расстояниях через пустое пространство и почему заряженные тела взаимодействуют между собой даже через электрически нейтральную среду?

До введения понятия «поле» на этот вопрос не было удовлетворительного ответа. Долгое время считалось, что взаимодействие между телами может непосредственно осуществляться через пустое пространство, которое не принимает участия в передаче взаимодействий, а передача взаимодействия от тела к телу передается мгновенно, т.е. с бесконечной скоростью. Такое предположение составляет сущность концепции дальнодействия, которую обосновал Р. Декарт. Большинство ученых придерживалось этой концепции вплоть до конца XIX в.

Принцип дальнодействия утвердился в физике еще и потому, что гравитационное взаимодействие макроскопических тел в соответствии с законом всемирного тяготения И. Ньютона малозаметно, – притяжение слишком слабо, чтобы его ощутить. Поэтому экспериментально это было трудно подтвердить или опровергнуть. Только известные опыты Г. Кавендиша были первыми лабораторными наблюдениями гравитационного притяжения.

Близкодействие . Напротив, законы взаимодействия электрически заряженных тел допускали возможность их относительно простой проверки. Вскоре было установлено, что взаимодействие электрических зарядов происходит не мгновенно. Каждая электрически заряженная частица создает электрическое поле, действующее на другие частицы не в тот же момент, а спустя некоторое время.

Иными словами, взаимодействие передается через посредника – электромагнитное поле, а скорость распространения электромагнитного поля равна скорости света. Это составляет суть концепции близкодействия.

2.7.2. Фундаментальные типы взаимодействий

Согласно концепции близкодействия все взаимодействия между юлами (помимо прямого контакта между ними) осуществляются с помощью тех или иных полей (например, взаимодействие в теории тяготения – с помощью гравитационного поля, электромагнитные взаимодействия – с помощью электромагнитных полей). Вплоть до ХХ в. были известны лишь два типа взаимодействий: гравитационное и электромагнитное.

В настоящее время, помимо гравитационного и электромагнитного взаимодействий, известны еще два – так называемые слабые и сильные взаимодействия. Указанные типы взаимодействий в современной физике являются фундаментальными.

Слабое взаимодействие отвечает за внутриядерное взаимодействие, приводящее, например, к распаду нейтрона с испусканием электронов (β -излучение), сильное взаимодействие – за внутринуклонные взаимодействия, оно удерживает кварки внутри нуклонов.

Пространственно четырех взаимодействий различно. Так, гравитационные и электромагнитные взаимодействия описываются законами «обратных квадратов расстояний» и проявляются во всем пространстве формально до бесконечности. Сильные взаимодействия проявляются только в пределах размера ядра ~10 –13 см, а слабые взаимодействия - на расстояниях в несколько порядков раз меньших размеров ядер.

Относительная сила взаимодействий различна. Если сильное взаимодействие условно принять за единицу, то электромагнитное взаимодействие будет в 10 2 раз меньше, слабое – в 10 10 , а гравитационное – в 10 38 раз меньше сильного взаимодействия.

И хотя сила взаимодействий существенно различна, ни одним из них пренебрегать нельзя. Каждое взаимодействие может оказывать решающее влияние на процессы в том или ином конкретном случае. Даже такое взаимодействие, как гравитационное, несмотря на свою кажущуюся малость (в 10 38 раз меньше сильного взаимодействия) играет, например, доминирующую роль в процессах космического порядка, где присутствуют объекты с огромной массой и большие пространственные масштабы явлений.

Во второй половине XX в. велись интенсивные работы по возможному объединению электромагнитного, слабого и сильного взаимодействий.

Пока что С. Вайнбергу , Ш. Глэшоу и А. Саламу удалось создать единую теорию электрослабого взаимодействия. В соответствии с этой теорией за электрослабые взаимодействия отвечают частицы – кванты электрослабого поля - бозоны W~ и Z 0 . Вскоре такие частицы были обнаружены экспериментально К. Руббиа и С. ван дер Меером .

Как отмечалось выше, сильное фундаментальное взаимодействие отвечает за связь частиц в ядре, и поэтому часто называется ядерным. Вначале это взаимодействие изучалось в рамках квантовой мезонодинамики. Японский ученый Х Юкава выдвинул идею, что взаимодействие между нуклонами (протонами и нейтронами) в атомных ядрах обусловлено специальными частицами – квантами ядерного поля, названными мезонами. В дальнейшем такие частицы были открыты и получили название π
– мезонов.

Следующим этапом развития теории сильных взаимодействий было создание квантовой хромодинамики. Необходимость в создании новой теории объясняется следующим: в дальнейшем было выяснено, что отдельные единицы ядра – нейтроны и протоны – сами состоят из более мелких единиц – кварков, поэтому исследования переместились в область изучения взаимодействий между кварками в нуклонах. По современным представлениям, в соответствии с квантовой хромодинамикой, сильное вздимодействие связано с существованием квантов внутринуклонного поля глюонами. Таким образом, теория сильных взаимодействий – квантовая хромодинамика – описывает взаимодействие кварков и глюонов.

Теорию электрослабых и сильных взаимодействий называют Стандартной моделью макромира.

После того, как была создана единая теория электрослабых взаимодействий, появилась реальная перспектива построения ядерной теории всех трех форм взаимодействий элементарных частиц (программа «Великого объединения»).

А в самое последнее время появились новые идеи, которые открывают, может быть, далекие, но все же реальные перспективы объединения всех известных четырех взаимодействий, включая и гравитационное. Решение этой задачи ознаменовало бы грандиозную научную революцию, которую трудно измерить масштабами всех предшествующих научных революций.

Иными словами, на сегодняшний день мы имеем очень продуктивную исследовательскую программу, дающую направление ее развития, которое ориентированно ведет к единству всех фундаментальных теорий.

Если такая программа будет реализована, то это будет означать что природа, в конечном счете, подчинена действию некой суперсилы проявляющейся в некоторых частных взаимодействиях. Эта суперсила достаточно мощна, чтобы создать нашу Вселенную, наделить ее энергией в соответствующих формах и материей с определенной структурой.

Но суперсила – нечто большее, чем просто сила. В ней материя, пространство-время и взаимодействие слиты в нераздельное гармоническое целое, порождающее такое единство Вселенной, о котором раньше никто и не предполагал. Современная наука в поиске такого единства.

С концепциями взаимодействия в физике тесно связана концепция физического вакуума. По современным представлениям, вакуум – это не «абсолютная пустота», а реальная физическая система, например электромагнитное поле в одном из своих состояний. Более того, согласно квантовой теории поля, из состояния вакуума можно получить все другие состояния поля. Вакуум можно определить как поле с минимальной энергией. В вакууме постоянно протекают сложнейшие физические превращения, например особого рода вакуумные колебания электромагнитного поля, не вырывающиеся из него и не распространяющиеся, однако отчетливо проявляющиеся в физическом эксперименте.

Близкоде́йствие - представление, согласно которому взаимодействие между удаленными друг от друга телами осуществляется с помощью промежуточной среды (поля) и осуществляется с конечной скоростью. В начале 18 века одновременно с теорией близкодействия зародилась противоположная ей теория дальнодействия , согласно которой тела действуют друг на друга без посредников, через пустоту, на любом расстоянии, и такое взаимодействие осуществляется с бесконечно большой скоростью (но подчиняется определенным законам). Примером дальнодействия можно считать силу всемирного тяготения в классической теории гравитации И. Ньютона .

Одним из родоначальников теории близкодействия считается М. В. Ломоносов . Ломоносов был противником теории дальнодействия, считая, что тело не может воздействовать на другие тела мгновенно. Он полагал, что электрическое взаимодействие передается от тела к телу через особую среду «эфир», заполняющую все пустое пространство, в частности и пространство между частицами, из которых состоит «весомая материя», т. е. вещество. Электрические явления, по Ломоносову, следует рассматривать как определенные микроскопические движения, происходящие в эфире. То же самое относится и к магнитным явлениям.

Однако теоретические представления Ломоносова и Л. Эйлера в то время не могли получить развития. После открытия закона Кулона , который по своей форме был таким же, как и закон всемирного тяготения, теория дальнодействия совсем вытесняет теорию близкодействия. И только в начале 19 века М. Фарадей возрождает теорию близкодействия. Согласно Фарадею, электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое и магнитное (если он движется) поля. Поля одного заряда действуют на другой и наоборот. Всеобщее признание теории близкодействия начинается со второй половины 19 века, после экспериментального доказательства теории Дж. Максвелла , сумевшего придать идеям Фарадея точную количественную форму, столь необходимую в физике - систему уравнений электромагнитного поля.

Важным отличием теории близкодействия от теории дальнодействия является наличие максимальной скорости распространения взаимодействий (полей, частиц) - скорости света. В современной физике проводится четкое разделение материи на частицы-участники (или источники) взаимодействий (называемые веществом) и частицы-переносчики взаимодействий (называемые полем). Из четырех видов фундаментальных взаимодействий надежную экспериментальную проверку существования частиц-переносчиков получили три: сильное, слабое и электромагнитное взаимодействия. В настоящее время предпринимаются попытки по обнаружению переносчиков гравитационного взаимодействия - так называемого

Дальнодействие . После открытия закона всемирного тяготения И. Ньютоном, а затем закона Кулона, описывающего взаимодействие электрических заряженных тел, возник вопрос, почему физические тела, обладающие массой, действуют друг на друга на больших расстояниях через пустое пространство и почему заряженные тела взаимодействуют между собой даже через электрически нейтральную среду?

До введения понятия «поле» на этот вопрос не было удовлетворительного ответа. Долгое время считалось, что взаимодействие между телами может непосредственно осуществляться через пустое пространство, которое не принимает участия в передаче взаимодействий, а передача взаимодействия от тела к телу передается мгновенно, т.е. с бесконечной скоростью. Такое предположение составляет сущность концепции дальнодействия, которую обосновал Р. Декарт. Большинство ученых придерживалось этой концепции вплоть до конца XIX в.

Принцип дальнодействия утвердился в физике еще и потому, что гравитационное взаимодействие макроскопических тел в соответствии с законом всемирного тяготения И. Ньютона малозаметно, – притяжение слишком слабо, чтобы его ощутить. Поэтому экспериментально это было трудно подтвердить или опровергнуть. Только известные опыты Г. Кавендиша были первыми лабораторными наблюдениями гравитационного притяжения.

Близкодействие . Напротив, законы взаимодействия электрически заряженных тел допускали возможность их относительно простой проверки. Вскоре было установлено, что взаимодействие электрических зарядов происходит не мгновенно. Каждая электрически заряженная частица создает электрическое поле, действующее на другие частицы не в тот же момент, а спустя некоторое время.

Иными словами, взаимодействие передается через посредника – электромагнитное поле, а скорость распространения электромагнитного поля равна скорости света. Это составляет суть концепции близкодействия.

Близкодействие и дальнодействие -это взаимно противоположные взгляды для объяснения взаимодействия материальных структур. По концепцииблизко действия любое взаимодействие на материальные объекты может быть передано только между соседними точками пространства за конечный промежуток времени. Дальнодействие допускает действие на расстоянии мгновенно с бесконечной скоростью, т. е. фактически вне времени и пространства. После Ньютона эта концепция получает широкое распространение в физике, хотя он сам понимал, что введенные им силы дальнодействия (например, силы тяготения) являются лишь формальным приближенным приемом, позволяющим дать верное в некоторых пределах описание наблюдаемых явлений. Окончательное утверждение принципа близкодействия пришло с выработкой концепции физического поля как материальной среды. Уравнения поля описывают состояние системы в данной точке в данный момент времени как зависящее от состояния в ближайший предшествующий момент в ближайшей соседней точке. Если электромагнитное поле может существовать независимо от материального носителя, то электрическое взаимодействие нельзя объяснить мгновенным действием на расстоянии. Поэтому дальнодействие Ньютона уступило место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Таким образом, согласно современной науке, взаимодействия между структурами передаются посредством соответствующего поля с конечной скоростью, равной скорости света в вакууме.



Вся совокупность элементарных частиц с их взаимодействиями проявляет себя макроскопически в форме вещества и

поля. Поле в отличие от вещества обладает особыми свойствами. Физическая реальность электромагнитного поля видна хотя бы из того, что существуют радиоволны. Источником электромагнитного поля являются движущиеся заряженные частицы. Взаимодействие зарядов происходит по схеме: частица - поле - частица. Поле является переносчиком взаимодействия. В некоторых условиях поле может "оторваться" от своих источников и свободно распространяться в пространстве. Такое поле носит волновой характер.

Как получают сведения о состоянии вещества звезд? Атомные процессы, которые разыгрываются во внешних оболочках звезд, сопровождаются излучением электромагнитных волн. Одним из таких процессов является возбуждение атомов, ведущее к излучению ряда характерных "порций" энергии электромагнитного поля (спектр). У каждого химического элемента имеется свой, только ему присущий спектр излучения. Анализируя, например, солнечный свет (свет является электромагнитным излучением) с помощью оптических приборов, можно определить химический состав и процентное содержание элементов во внешних оболочках Солнца.

В современной естественно-научной картине мира как вещество, так и поле состоят из элементарных частиц, а частицы взаимодействуют друг с другом, взаимопревращаются. На уровне элементарных частиц происходит взаимопревращение поля и вещества. Так, фотоны могут превратиться в электронно-позитронные пары, а эти пары в процессе взаимодействия уничтожаются (аннигилируются) с образованием фотонов. Более того, вакуум тоже состоит из частиц (виртуальных частиц), которые взаимодействуют как друг с другом, так и с обычными частицами. Таким образом, исчезают фактически границы между веществом и полем и даже между вакуумом, с одной стороны, и веществом и полем - с другой. На фундаментальном уровне все грани в природе действительно оказываются условными. В современной естественно-научной картине мира вещество и поле взаимопревращаются. Поэтому в настоящее

время предпринимаются настойчивые попытки создать единую теорию всех видов взаимодействий.

При наличии нескольких полей для определения результирующего взаимодействия применяют принцип суперпозиции. Принцип суперпозиции в естествознании позволяет получать результирующий эффект от наложения (суперпозиции) нескольких независимых взаимодействий как сумму эффектов, вызываемых каждым взаимодействием в отдельности. Он справедлив для систем, описываемых линейными уравнениями. Принцип суперпозиции широко используется в механике, теории колебаний и волновой теории физических полей. В квантовой механике принцип суперпозиции относится к волновым функциям. Согласно этому, если физическая система может находиться в состояниях, описываемых двумя или несколькими функциями, то система может также находиться в состоянии, описываемом любой линейной комбинацией этих функций.

  • Взаимосвязь естественнонаучной и гуманитарной культур заключается в следующем:
  • 4. Характеристика знаний в древнем мире (Вавилон, Египет, Китай).
  • 5. Естествознание средневековья (мусульманский Восток, христианский Запад).
  • 6. Наука Нового времени (н. Коперник, Дж. Бруно, г. Галилей, и. Ньютон и другие).
  • 7. Классическое естествознание – характеристика.
  • 8. Неклассическое естествознание – характеристика.
  • 9. Стадии развития естествознания (синкретическая, аналитическая, синтетическая, интегрально-дифференциальная).
  • 10. Древнегреческая натурфилософия (Аристотель, Демокрит, Пифагор и др.).
  • 11. Научные методы. Эмпирический уровень (наблюдение, измерение, эксперимент) и теоретический уровень (абстрагирование, формализация, идеализация, индукция, дедукция).
  • 12. Пространство и время (классическая механика и. Ньютона и теория относительности а. Эйнштейна).
  • 13. Естественнонаучная картина мира: физическая картина мира (механическая, электромагнитная, современная – квантово-релятивистская).
  • 14. Структурные уровни организации материи (микро-, макро- и мегамир).
  • 15. Вещество и поле. Корпускулярно-волновой дуализм.
  • 16. Элементарные частицы: классификация и характеристика.
  • 17. Понятие взаимодействия. Концепция дальнодействия и близкодействия.
  • 18. Характеристика основных видов взаимодействия (гравитационное, электромагнитное, сильное и слабое).
  • 19. Основы квантовой механики: открытия м. Планка, н. Бора, э. Резерфорда, в. Паули, э. Шрёдингера и др.
  • 20. Динамические и статистические законы. Принципы современной физики (симметрии, соответствия, дополнительности и соотношения неопределённостей, суперпозиции).
  • 21. Космологические модели Вселенной (от геоцентризма, гелиоцентризма к модели Большого взрыва и расширяющейся Вселенной).
  • 5. Модель Большого взрыва.
  • 6. Модель расширяющейся Вселенной.
  • 22. Внутреннее строение Земли. Геологическая шкала времени.
  • 23. История развития концепций геосферных оболочек Земли. Экологические функции литосферы.
  • 1) От элементного и молекулярного состава вещества;
  • 2) От структуры молекул вещества;
  • 3) От термодинамических и кинетических (наличие катализаторов и ингибиторов, воздействие материала стенок сосудов и т.Д.) условий, в которых вещество находится в процессе химической реакции;
  • 4) От высоты химической организации вещества.
  • 25. Основные законы химии. Химические процессы и реакционная способность веществ.
  • 26. Биология в современном естествознании. Характеристика «образов» биологии (традиционная, физико-химическая, эволюционная).
  • 1) Метод меченых атомов.
  • 2) Методы рентгеноструктурного анализа и электронной микроскопии.
  • 3) Методы фракционирования.
  • 4) Методы прижизненного анализа.
  • 5) Использование эвм.
  • 27. Концепции происхождения жизни на Земле (креационизм, самопроизвольное (спонтанное) зарождение, теория стационарного состояния, теория панспермии и теория биохимической эволюции).
  • 1. Креационизм.
  • 2. Самопроизвольное (спонтанное) зарождение.
  • 3. Теория стационарного состояния.
  • 4. Теория панспермии.
  • 5. Теория биохимической эволюции.
  • 28. Признаки живых организмов. Характеристика форм жизни (вирусы, бактерии, грибы, растения и животные).
  • 29. Структурные уровни организации живой материи.
  • 30. Происхождение и этапы эволюции человека как биологического вида.
  • 31. Клеточная организация живых систем (структура клетки).
  • 1. Животная клетка:
  • 2. Растительная клетка:
  • 32. Химический состав клетки (элементарный, молекулярный – неорганические и органические вещества).
  • 33. Биосфера – определение. Учение в. И. Вернадского о биосфере.
  • 34. Понятие о живом веществе биосферы. Функции живого вещества в биосфере.
  • 35. Ноосфера – определение и характеристика. Этапы и условия становления ноосферы.
  • 36. Физиология человека. Характеристика физиологических систем человека (нервная, эндокринная, сердечно-сосудистая, дыхательная, выделительная и пищеварительная).
  • 37. Концепция здоровья. Условия ортобиоза. Валеология – понятие.
  • 38. Кибернетика (исходные понятия). Качественная характеристика информации.
  • 39. Концепции самоорганизации: синергетика.
  • 40. Искусственный разум: перспективы развития.
  • 17. Понятие взаимодействия. Концепция дальнодействия и близкодействия.

    Под взаимодействием в более узком смысле понимают такие процессы, в ходе которых между взаимодействующими структурами и системами происходит обмен квантами определенных полей, энергией, а иногда и информацией.

    В настоящее время принято считать, что любые взаимодействия каких угодно объектов могут быть сведены к ограниченному классу четырех основных видов фундаментальных взаимодействий: сильному, электромагнитному, слабому и гравитационному . Интенсивность взаимодействия принято характеризовать с помощью так называемой константы взаимодействия, которая представляет собой безразмерный параметр, определяющий вероятность процессов, обусловленных данным видом взаимодействия. Отношение значений констант дает относительную интенсивность соответствующих взаимодействий.

    Концепции дальнодействия и близкодействия.

    Близкодействие и дальнодействие -это взаимно противоположные взгляды для объяснения взаимодействия материальных структур. По концепцииблизкодействия любое взаимодействие на материальные объекты может быть передано только между соседними точками пространства за конечный промежуток времени.Дальнодействие допускает действие на расстоянии мгновенно с бесконечной скоростью, т. е. фактически вне времени и пространства. После Ньютона эта концепция получает широкое распространение в физике, хотя он сам понимал, что введенные им силы дальнодействия (например, силы тяготения) являются лишь формальным приближенным приемом, позволяющим дать верное в некоторых пределах описание наблюдаемых явлений. Окончательное утверждение принципа близкодействия пришло с выработкой концепции физического поля как материальной среды. Уравнения поля описывают состояние системы в данной точке в данный момент времени как зависящее от состояния в ближайший предшествующий момент в ближайшей соседней точке. Если электромагнитное поле может существовать независимо от материального носителя, то электрическое взаимодействие нельзя объяснить мгновенным действием на расстоянии. Поэтому дальнодействие Ньютона уступило место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Таким образом, согласно современной науке, взаимодействия между структурами передаются посредством соответствующего поля с конечной скоростью, равной скорости света в вакууме.

    18. Характеристика основных видов взаимодействия (гравитационное, электромагнитное, сильное и слабое).

    1. Гравитационное взаимодействие является универсальным, однако в микромире не учитывается, так как из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, время также не ограничено. Обменный характер гравитационного взаимодействия до сих пор остается под вопросом, так как гипотетическая фундаментальная частица- гравитон- пока не обнаружена.

    (И. Ньютон) – самое слабое взаимодействие.

    2. Электромагнитное взаимодействие: константа порядка 10 -2 , радиус взаимодействия не ограничен, время взаимодействия t ~ 10 -20 с. Оно реализуется между всеми заряженными частицами. Частица-переносчик – фотон (γ-квант).

    (Кулон).

    3. Слабое взаимодействие связано со всеми видами β-распада, им обусловлены многие распады элементарных частиц и взаимодействие нейтрино с веществом. Константа взаимодействия порядка 10 -13 , t ~ 10 -10 с. Это взаимодействие, как и сильное, является короткодействующим: радиус взаимодействия r~10 -18 м. Частицы-переносчики – промежуточный векторный бозон:W + , W - , Z 0 .(Ферми).

    4. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Константа взаимодействия принимается равной1, радиус действия порядка 10 -15 м, время протекания t ~10 -23 с. Сильное взаимодействие осуществляется между кварками – частицами, из которых состоят протоны и нейтроны –cпомощью т.н. глюонов. (Юкава).