Уравнение сдвига плоскости на заданное расстояние. Уравнение плоскости

Рассмотрим в пространстве плоскость Q. Положение ее вполне определяется заданием вектора N, перпендикулярного этой плоскости, и некоторой фиксированной точки лежащей в плоскости Q. Вектор N, перпендикулярный плоскости Q, называется нормальным вектором этой плоскости. Если обозначить через А, В и С проекции нормального вектора N, то

Выведем уравнение плоскости Q, проходящей через данную точку и имеющей данный нормальный вектор . Для этого рассмотрим вектор соединяющий точку с произвольной точкой плоскости Q (рис. 81).

При любом положении точки М на плоскости Q вектор МХМ перпендикулярен нормальному вектору N плоскости Q. Поэтому скалярное произведение Запишем скалярное произведение через проекции. Так как , а вектор , то

и, следовательно,

Мы показали, что координаты любой точки плоскости Q удовлетворяют уравнению (4). Нетрудно заметить, что координаты точек, не лежащих на плоскости Q, этому уравнению не удовлетворяют (в последнем случае ). Следовательно, нами получено искомое уравнение плоскости Q. Уравнение (4) называется уравнением плоскости, проходящей через данную точку. Оно первой степени относительно текущих координат

Итак, мы показали, что всякой плоскости соответствует уравнение первой степени относительно текущих координат.

Пример 1. Написать уравнение плоскости, проходящей через точку перпендикулярно вектору .

Решение. Здесь . На основании формулы (4) получим

или, после упрощения,

Придавая коэффициентам А, В и С уравнения (4) различные значения, мы можем получить уравнение любой плоскости, проходящей через точку . Совокупность плоскостей, проходящих через данную точку, называется связкой плоскостей. Уравнение (4), в котором коэффициенты А, В и С могут принимать любые значения, называются уравнением связки плоскостей.

Пример 2. Составить уравнение плоскости, проходящей через три точки , (рис. 82).

Решение. Напишем уравнение связки плоскостей, проходящих через точку

– общее уравнение плоскости в пространстве

Нормальный вектор плоскости

Нормальным вектором плоскости назовем ненулевой вектор, ортогональный каждому вектору, лежащему в плоскости.

Уравнение плоскости, проходящей через точкус заданным вектором нормали

– уравнение плоскости, проходящей через точку M0 с заданным вектором нормали

Направляющие векторы плоскости

Два неколлинеарных вектора, параллельных плоскости, назовем направляющими векторами плоскости

Параметрические уравнения плоскости

– параметрическое уравнение плоскости в векторном виде

– параметрическое уравнение плоскости в координатах

Уравнение плоскости через заданную точку и два направляющих вектора

–фиксированная точка

–просто точка лол

–компланарные, значит их смешанное произведение равно 0.

Уравнение плоскости, проходящей через три заданные точки

– уравнение плоскости через три точки

Уравнение плоскости в отрезках

– уравнение плоскости в отрезках

Доказательство

Для доказательства воспользуемся тем, что наша плоскость проходит через A,B,C, а нормальный вектор

Подставим координаты точки и вектораnв уравнение плоскости с нормальным вектором

Разделим все на и получим

Такие дела.

Нормальное уравнение плоскости

– угол междуoxи нормальным вектором к плоскости, выходящим из О.

– угол междуoyи нормальным вектором к плоскости, выходящим из О.

– угол междуozи нормальным вектором к плоскости, выходящим из О.

– расстояние от начала координат до плоскости.

Доказательство или какая-то такая хуйня

Знак противоположен D.

Аналогично для остальных косинусов. Конец.

Расстояние от точки до плоскости

Точка S, плоскость

– ориентированное расстояние от точкиSдо плоскости

Если , тоSи О лежат по разные стороны от плоскости

Если , тоSи О лежат по одну сторону

Умножаем наn

Взаимное расположение двух прямых в пространстве

Угол между плоскостями

При пересечении образуется две пары вертикальных двухгранных углов, наименьший называется углом между плоскостями

Прямая в пространстве

Прямая в пространстве может быть задана как

    Пересечение двух плоскостей:

    Параметрические уравнения прямой

– параметрическое уравнение прямой в векторном виде

– параметрическое уравнение прямой в координатах

    Каноническое уравнение

– каноническое уравнение прямой.

Уравнение прямой, проходящей через две заданные точки

– каноническое уравнение прямой в векторном виде;

Взаимное расположение двух прямых в пространстве

Взаимное расположение прямой и плоскости в пространстве

Угол между прямой и плоскостью

Расстояние от точки до прямой в пространстве

a– направляющий вектор нашей прямой.

– произвольная точка, принадлежащая данной прямой

– точка, до которой ищем расстояние.

Расстояние между двумя скрещивающимися прямыми

Расстояние между двумя параллельными прямыми

М1 – точка, принадлежащая первой прямой

М2 – точка, принадлежащая второй прямой

Кривые и поверхности второго порядка

Эллипсом назовем множество точек плоскости, сумма расстояний от которых до двух заданных точек (фокусов) есть величина постоянная.

Каноническое уравнение эллипса

Заменим на

Разделим на

Свойства эллипса

    Пересечение с осями координат

    Симметрия относительно

    1. Начала координат

    Эллипс представляет собой кривую, лежащую в ограниченной части плоскости

    Эллипс можно получить из окружности путем её растяжения или сжатия

    Параметрическое уравнение эллипса:

– директрисы

Гипербола

Гиперболой назовем множество точек плоскости, для которых модуль разности расстояний до 2х заданных точек (фокусов) есть величина постоянная(2a)

Делаем все то же самое, что и с эллипсом, получаем

Заменяем на

Делим на

Свойства гиперболы

;

– директрисы

Асимптота

Асимптота – прямая, к которой кривая неограниченно приближается, удаляясь в бесконечность.

Парабола

Свойства паработы

Родство эллипса, гиперболы и параболы.

Родство между этими кривыми имеет алгебраическое объяснение: все они задаются уравнениями второй степени. В любой системе координат уравнения этих кривых имеют вид: ax 2 +bxy+cy 2 +dx+ey+f=0, где a, b, c, d, e, f – числа

Преобразование прямоугольных декартовых систем координат

Параллельный перенос системы координат

–O’ в старой системе координат

–координаты точки в старой системе координат

–координаты точки в новой системе координат

Координаты точки в новой системе координат.

Поворот в прямоугольной декартовой системе координат

–новая система координат

Матрица перехода от старого базиса к новому

– (под первым столбцомI , под вторым –j ) матрица перехода от базисаI ,j к базисуI ,j

Общий случай

    1 вариант

    1. Поворот системы координат

    2 вариант

    1. Поворот системы координат

      Параллельный перенос начала координат

Общее уравнение линий второго порядка и его приведение к каноническому виду

– общий вид уравнений кривой второго порядка

Классификация кривых второго порядка

Эллипсоид

Сечения эллипсоида

– эллипс

– эллипс

Эллипсоиды вращения

Эллипсоидами вращения являются либо сплющенные, либо вытянутые сфероиды, в зависимости от того, вокруг чего вращаем.

Однополосный гиперболоид

Сечения однополосного гиперболоида

– гипербола с действительной осьюoy

– гипербола с действительной осью ох

Получается эллипс при любых h. Такие дела.

Однополосные гиперболоиды вращения

Однополостный гиперболоид вращения может быть получен вращением гиперболы вокруг её мнимой оси.

Двуполостный гиперболоид

Сечения двуполостного гиперболоида

– гипербола с действ. Осьюoz

– гипербола с действительной осьюoz

Конус

– пара пересекающихся прямых

– пара пересекающихся прямых

Эллиптический параболоид

- парабола

– парабола

Вращения

Если , то эллиптический параболоид представляет собой поверхность вращения, образованную вращением параболы вокруг её оси симметрии.

Гиперболический параболоид

Парабола

– парабола

      h>0 гипербола с действительной осью параллельной ох

      h<0 гипербола с действительной осью паралльной оу и мнимой ох

Под цилиндром будем понимать поверхность, которая будет получаться при движении прямой в пространстве, не меняющая своего направления, если прямая движется относительно oz, то уравнение цилиндра есть уравнение сечения плоскостьюxoy.

Эллиптический цилиндр

Гиперболический цилиндр

Параболический цилиндр

Прямолинейные образующие поверхностей второго порядка

Прямые, полностью лежащие на поверхности, называются прямолинейными образующими поверхности.

Поверхности вращения

Ебать ты лох

Отображение

Отображением назовем правило, по которому каждому элементу множества А ставится в соответствие один или несколько элементов множестваB. Если каждому ставится единственный элемент множества В, то отображение называетсяоднозначным , иначемногозначным .

Преобразованием множества называется взаимнооднозначное отображение множества на себя

Инъекция

Инъекция или взаимно-однозначное отображение множества А на множество В

(разным элементам а соответствуют разные элементы В) например y=x^2

Сюръекция

Сюръекция или отображение множества А на множество В

Для каждого В существует хотя бы одно А(например синус)

Каждому элементу множества В соответствует только один элемент множества А.(например y=x)

В данной статье мы рассмотрим нормальное уравнение плоскости. Приведем примеры построения нормального уравнения плоскости по углу наклона нормального вектора плоскости от осей Ox, Oy, Oz и по расстоянию r от начала координат до плоскости. Представим метод приведения общего уравнения прямой к нормальному виду. Рассмотрим численные примеры.

Пусть в пространстве задана декартова прямоугольная система координат. Тогда нормальное уравнение плоскости Ω представляется следующей формулой:

xcosα+ycosβ+zcosγ−r =0, (1)

где r − расстояние от начала координат до плоскости Ω , а α,β,γ − это углы между единичным вектором n , ортогональным плоскости Ω и координатными осьями Ox, Oy, Oz , соответственно (Рис.1). (Если r >0, то вектор n направлен в сторону плоскости Ω , если же плоскость проходит через начало координат, то направление вектора n выбирается произвольной).

Выведем формулу (1). Пусть в пространстве задана декартова прямоугольная система координат и плоскость Ω (Рис.1). Проведем через начало координат прямую Q , перпендикулярную плоскости Ω , и точку пересечения обозначим через R . На этой прямой выделим единичный вектор n , с направлением, совпадающим с вектором . (Если точки O и R совпадают, то направление n можно взять произвольным).

Выразим уравнение плоскости Ω через следующие параметры: длину отрезка и углы наклона α, β, γ между вектором n и осьями Ox, Oy, Oz , соответственно.

Так как вектор n является единичным вектором, то его проекции на Ox, Oy, Oz будут иметь следующие координаты:

Скалярное произведение векторов n и имеет следующий вид:

Учитывая, что n= {cosα, cosβ, cosγ }, , мы получим:

xcosα+ycosβ+zcosγ−r =0. (7)

Мы получили нормальное уравнение плоскости Ω . Уравнение (7) (или (1)) называется также нормированным уравнением плоскости . Вектор n называется нормальным вектором плоскости .

Как было отмечено выше, число r в уравнении (1) показывает расстояние плоскости от начала координат. Поэтому, имея нормальное уравнение плоскости легко определить расстояние плоскости от начала координат. Для проверки, является ли данное уравнение плоскости уравнением в нормальном виде, нужно проверить длину нормального вектора этой плоскости и знак числа r , т.е. если |n |=1 и r >0, то данное уравнение является нормальным (нормированным) уравнением плоскости.

Пример 1. Задано следующее уравнение плоскости:

Определим длину вектора n :

Так как уравнения (1) и (8) должны определять одну и ту же прямую (Утрерждение 2 статьи "Общее уравнение плоскости"), то существует такое число t , что

Упростим выражение и найдем t :

t 2 A 2 +t 2 B 2 +t 2 C 2 =t 2 (A 2 +B 2 +C 2)=1,
. (11)

Знаменатель в (11) отличен от нуля, т.к. хотя бы один из коэффициентов A, B, C не равен нулю (в противном случае (8) не представлял бы уравнение прямой).

Выясним, какой знак имеет t . Обратим внимание на четвертое равенство в (9). Так как r −это расстояние от начала координат до плоскости, то r ≥0. Тогда произведение tD должна иметь отрицательный знак. Т.е. знак t в (11) должен быть противоположным знаку D .

Подставляя в (1) вместо cosα, cosβ, cosγ и −r значения из (9), получим tAx+tBy+tCz+tD =0. Т.е. для приведения общего уравенения плоскости к нормальному виду, нужно заданное уравнение умножить на множитель (11). Множитель (11) называется нормирующим множителем .

Пример 2. Задано общее уравнение плоскости

Так как D >0, то знак t отрицательный:

Отметим, что число является расстоянием от начала координат до прямой (12).

Положение плоскости в пространстве будет вполне определено, если зададим ее расстояние от начала О, т. е. длину перпендикуляра ОТ, опущенного из точки О на плоскость, и единичный вектор п°, перпендикулярный к плоскости и направленный от начала О к плоскости (рис. 110).

Когда точка М движется по плоскости, то ее радиус-вектор меняется так, что все время связан некоторым условием. Посмотрим, каково это условие. Очевидно, для любой точки лежащей на плоскости, имеем:

Это условие имеет место лишь для точек плоскости; оно нарушается, если точка М лежит вне плоскости. Таким образом, равенство (1) выражает свойство, общее всем точкам плоскости и только им. Согласно § 7 гл. 11 имеем:

и, значит, уравнение (1) может быть переписано в виде:

Уравнение (Г) выражает собой условие, при котором точка ) лежит на данной плоскости, и называется нормальным уравнением этой плоскости. Радиус-вектор произвольной точки М плоскости называется текущим радиусом-вектором.

Уравнение (1) плоскости записано в векторной форме. Переходя к координатам и помещая начало координат в начале векторов - точке О, заметим, что проекциями единичного вектора на оси координат служат косинусы углов , составленных осями с этим вектором, а проекциями радиуса-вектора точки М

служат координаты точки , т. е. имеем:

Уравнение (Г) переходит в координатное:

При переводе векторного уравнения (Г) плоскости в координатное уравнение (2) мы воспользовались формулой (15) § 9 гл. 11, выражающей скалярное произведение через проекции векторов. Уравнение (2) выражает собой условие, при котором точка М(х,у, z) лежит на данной плоскости, и называется нормальным уравнением этой плоскости в координатной форме. Полученное уравнение (2) - первой степени относительно , т. е. всякая плоскость может быть представлена уравнением первой степени относительно текущих координат.

Заметим, что выведенные уравнения (1") и (2) остаются в силе и тогда, когда , т. е. данная плоскость проходит через начало координат. В этом случае за можно принять любой из двух единичных векторов, перпендикулярных к плоскости и отличающихся один от другого направлением.

Замечание. Нормальное уравнение плоскости (2) можно вывести, не пользуясь векторным методом.

Возьмем произвольную плоскость и проведем через начало координат перпендикулярно к ней прямую I. Установим на этой прямой положительное направление от начала координат к плоскости (если бы выбранная плоскость проходила через начало координат, то направление на прямой можно было бы взять любое).

Положение этой плоскости в пространстве вполне определяется расстоянием ее от начала координат, т. е. длиной отрезка оси l от начала координат до точки пересечения ее с плоскостью (на рис. 111 - отрезок ) и углами между осью и координатными осями. Когда точка координатами движется по плоскости, то ее координаты меняются так, что все время связаны некоторым условием. Посмотрим, каково это условие.

Построим на рис. 111 координатную ломаную линию OPSM произвольной точки М плоскости. Возьмем проекцию этой ломаной на ось l. Заметив, что проекция ломаной равна проекции ее замыкающею отрезка (гл. I, § 3), будем иметь.

Уравнение плоскости. Как составить уравнение плоскости?
Взаимное расположение плоскостей. Задачи

Пространственная геометрия не намного сложнее «плоской» геометрии, и наши полёты в пространстве начинаются с данной статьи. Для усвоения темы необходимо хорошо разобраться в векторах , кроме того, желательно быть знакомым с геометрией плоскости – будет много похожего, много аналогий, поэтому информация переварится значительно лучше. В серии моих уроков 2D-мир открывается статьёй Уравнение прямой на плоскости . Но сейчас Бэтмен сошёл с плоского экрана телевизора и стартует с космодрома Байконур.

Начнём с чертежей и обозначений. Схематически плоскость можно нарисовать в виде параллелограмма, что создаёт впечатление пространства:

Плоскость бесконечна, но у нас есть возможность изобразить лишь её кусочек. На практике помимо параллелограмма также прорисовывают овал или даже облачко. Мне по техническим причинам удобнее изображать плоскость именно так и именно в таком положении. Реальные плоскости, которые мы рассмотрим в практических примерах, могут располагаться как угодно – мысленно возьмите чертёж в руки и покрутите его в пространстве, придав плоскости любой наклон, любой угол.

Обозначения : плоскости принято обозначать маленькими греческими буквами , видимо, чтобы не путать их с прямой на плоскости или с прямой в пространстве . Я привык использовать букву . На чертеже именно буква «сигма», а вовсе не дырочка. Хотя, дырявая плоскость, это, безусловно, весьма забавно.

В ряде случаев для обозначения плоскостей удобно использовать те же греческие буквы с нижними подстрочными индексами, например, .

Очевидно, что плоскость однозначно определяется тремя различными точками, не лежащими на одной прямой. Поэтому достаточно популярны трёхбуквенные обозначения плоскостей – по принадлежащим им точкам, например, и т.д. Нередко буквы заключают в круглые скобки: , чтобы не перепутать плоскость с другой геометрической фигурой.

Для опытных читателей приведу меню быстрого доступа :

  • Как составить уравнение плоскости по точке и двум векторам?
  • Как составить уравнение плоскости по точке и вектору нормали?

и мы не будем томиться долгими ожиданиями:

Общее уравнение плоскости

Общее уравнение плоскости имеет вид , где коэффициенты одновременно не равны нулю.

Ряд теоретических выкладок и практических задач справедливы как для привычного ортонормированного базиса, так и для аффинного базиса пространства (если масло - масляное, вернитесь к уроку Линейная (не) зависимость векторов. Базис векторов ). Для простоты будем полагать, что все события происходят в ортонормированном базисе и декартовой прямоугольной системе координат.

А теперь немного потренируем пространственное воображение. Ничего страшного, если у вас оно плохое, сейчас немного разовьём. Даже для игры на нервах нужны тренировки.

В самом общем случае, когда числа не равны нулю, плоскость пересекает все три координатные оси. Например, так:

Ещё раз повторю, что плоскость бесконечно продолжается во все стороны, и у нас есть возможность изобразить только её часть.

Рассмотрим простейшие уравнения плоскостей:

Как понимать данное уравнение? Вдумайтесь: «зет» ВСЕГДА, при любых значениях «икс» и «игрек» равно нулю. Это уравнение «родной» координатной плоскости . Действительно, формально уравнение можно переписать так: , откуда хорошо видно, что нам по барабану, какие значения принимают «икс» и «игрек», важно, что «зет» равно нулю.

Аналогично:
– уравнение координатной плоскости ;
– уравнение координатной плоскости .

Немного усложним задачу, рассмотрим плоскость (здесь и далее в параграфе предполагаем, что числовые коэффициенты не равны нулю). Перепишем уравнение в виде: . Как его понимать? «Икс» ВСЕГДА, при любых значениях «игрек» и «зет» равно некоторому числу . Эта плоскость параллельна координатной плоскости . Например, плоскость параллельна плоскости и проходит через точку .

Аналогично:
– уравнение плоскости, которая параллельна координатной плоскости ;
– уравнение плоскости, которая параллельна координатной плоскости .

Добавим членов: . Уравнение можно переписать так: , то есть «зет» может быть любым. Что это значит? «Икс» и «игрек» связаны соотношением , которое прочерчивает в плоскости некоторую прямую (узнаёте уравнение прямой на плоскости ?). Поскольку «зет» может быть любым, то эта прямая «тиражируется» на любой высоте. Таким образом, уравнение определяет плоскость, параллельную координатной оси

Аналогично:
– уравнение плоскости, которая параллельна координатной оси ;
– уравнение плоскости, которая параллельна координатной оси .

Если свободные члены нулевые, то плоскости будут непосредственно проходить через соответствующие оси. Например, классическая «прямая пропорциональность»: . Начертите в плоскости прямую и мысленно размножьте её вверх и вниз (так как «зет» любое). Вывод: плоскость, заданная уравнением , проходит через координатную ось .

Завершаем обзор: уравнение плоскости проходит через начало координат. Ну, здесь совершенно очевидно, что точка удовлетворяет данному уравнению.

И, наконец, случай, который изображён на чертеже: – плоскость дружит со всеми координатными осями, при этом она всегда «отсекает» треугольник, который может располагаться в любом из восьми октантов.

Линейные неравенства в пространстве

Для понимания информации необходимо хорошо изучить линейные неравенства на плоскости , поскольку многие вещи буду похожи. Параграф будет носить краткий обзорный характер с несколькими примерами, так как материал на практике встречается довольно редко.

Если уравнение задаёт плоскость, то неравенства
задают полупространства . Если неравенство нестрогое (два последних в списке), то в решение неравенства кроме полупространства входит и сама плоскость.

Пример 5

Найти единичный нормальный вектор плоскости .

Решение : Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через . Совершенно понятно, что векторы коллинеарны:

Сначала из уравнения плоскости снимем вектор нормали: .

Как найти единичный вектор? Для того чтобы найти единичный вектор , нужно каждую координату вектора разделить на длину вектора .

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ :

Проверка: , что и требовалось проверить.

Читатели, которые внимательно изучили последний параграф урока , наверное, заметили, что координаты единичного вектора – это в точности направляющие косинусы вектора :

Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор , и по условию требуется найти его направляющие косинусы (см. последние задачи урока Скалярное произведение векторов ), то вы, по сути, находите и единичный вектор, коллинеарный данному. Фактически два задания в одном флаконе.

Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.

С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос:

Как составить уравнение плоскости по точке и вектору нормали?

Эту жёсткую конструкцию вектора нормали и точки хорошо знает мишень для игры в дартс. Пожалуйста, вытяните руку вперёд и мысленно выберите произвольную точку пространства, например, маленькую кошечку в серванте. Очевидно, что через данную точку можно провести единственную плоскость, перпендикулярную вашей руке.

Уравнение плоскости, проходящей через точку перпендикулярно вектору , выражается формулой: