Взаимное расположение прямой и плоскости в координатах. Взаимное расположение точки, прямой и плоскости

Выносной элемент.

выносным элементом.



  • а) не иметь общих точек;

Теорема.

Обозначение разрезов

В ГОСТ 2.305-2008 предусмотрены следующие требования к обозначению разреза:

1. Положение секущей плоскости указывают на чертеже линией сечения.

2. Для линии сечения должна применяться разомкнутая линия (толщина от S до 1,5S длина линии 8-20 мм).

3. При сложном разрезе штрихи проводят также у мест пересечения секущих плоскостей между собой.

4. На начальном и конечном штрихах следует ставить стрелки, указывающие направление взгляда, стрелки должны наноситься на расстоянии 2-3 мм от внешнего конца штриха.

5. Размеры стрелок должны соответствовать приведенным на рисунке 14.

6. Начальный и конечный штрихи не должны пересекать контур соответствующего изображения.

7. У начала и конца линии сечения, а при необходимости и у мест пересечения секущих плоскостей ставят одну и ту же прописную букву русского алфавита. Буквы наносят около стрелок, указывающих направление взгляда, и в местах пересечения со стороны внешнего угла (рисунок 24).

Рисунок 24 - Примеры обозначения разреза

8. Разрез должен быть отмечен надписью по типу «А-А» (всегда двумя буквами через тире).

9. Когда секущая плоскость совпадает с плоскостью симметрии предмета в целом, а соответствующие изображения расположены на одном и том же листе в непосредственной проекционной связи и не разделены какими – либо другими изображениями, для горизонтальных, фронтальных и профильных разрезов не отмечают положение секущей плоскости, и разрез надписью не сопровождают.

10. Фронтальным и профильным разрезам, как правило, придают положение, соответствующее принятому для данного предмета на главном изображении чертежа.

11. Горизонтальные, фронтальные и профильные разрезы могут быть расположены на месте соответствующих основных видов.

12. Допускается располагать разрез на любом месте поля чертежа, а также с поворотом с добавлением условного графического обозначения - значка «Повернуто» (рисунок 25).

Рисунок 25 - Условное графическое обозначение – значок «Повернуто»

Обозначение сечений подобно обозначению разрезов и состоит из следов секущей плоскости и стрелки, указывающей направление взгляда, а также буквы, проставляемой с наружной стороны стрелки (рисунок1в, рисунок3). Вынесенное сечение не надписывают и секущую плоскость не показывают, если линия сечения совпадает с осью симметрии сечения, а само сечение расположено на продолжении следа секущей плоскости или в разрыве между частями вида. Для симметричного наложенного сечения секущую плоскость также не показывают. Если сечение несимметричное и расположено в разрыве или является наложенным (рисунок 2 б), линию сечения проводят со стрелками, но буквами не обозначают.

Сечение допускается располагать с поворотом, снабжая надпись над сечением словом «повернуто». Для нескольких одинаковых сечений, относящихся к одному предмету, линии сечений обозначают одной и той же буквой и вычерчивают одно сечение. В случаях, если сечение получается состоящим из отдельных частей, следует применять разрезы.

Прямая общего положения

Прямой общего положения (рис.2.2) называют прямую, не параллельную ни одной из данных плоскостей проекций. Любой отрезок такой прямой проецируется в данной системе плоскостей проекций искаженно. Искаженно проецируются и углы наклона этой прямой к плоскостям проекций.

Рис. 2.2.

Прямые частного положения
К прямым частного положения относятся прямые, параллельные одной или двум плоскостям проекций.
Любую линию (прямую или кривую), параллельную плоскости проекций, называют линией уровня. В инженерной графике различают три основные линии уровня: горизонталь, фронталь и профильную линии.

Рис. 2.3-а

Горизонталью называют любую линию, параллельную горизонтальной плоскости проекций (рис.2.З-а). Фронтальная проекция горизонтали всегда перпендикулярна линиям связи. Любой отрезок горизонтали на горизонтальную плоскость проекций проецируется в истинную величину. В истинную величину проецируется на эту плоскость и угол наклона горизонтали (прямой) к фронтальной плоскости проекций. В качестве примера на рис.2.З-а дано наглядное изображение и комплексный чертеж горизонтали h , наклоненной к плоскости П 2 под углом b .
Рис. 2.3-б

Фронталью называют линию, параллельную фронтальной плоскости проекций (рис.2.3-б). Горизонтальная проекция фронтали всегда перпендикулярна линиям связи. Любой отрезок фронтали на фронтальную плоскость проекций проецируется в истинную величину. В истинную величину проецируется на эту плоскость и угол наклона фронтали (прямой) к горизонтальной плоскости проекций (угол a ).
Рис. 2.3-в

Профильной линией называют линию, параллельную профильной плоскости проекций (рис.2.З-в). Горизонтальная и фронтальная проекции профильной линии параллельны линиям связи этих проекций. Любой отрезок профильной линии (прямой) проецируется на профильную плоскость в истинную величину. На эту же плоскость проецируются в истинную величину и углы наклона профильной прямой к плоскостям проекций П 1 и П 2 . При задании профильной прямой на комплексном чертеже нужно обязательно указать две точки этой прямой.

Прямые уровня, параллельные двум плоскостям проекций, будут перпендикулярны третьей плоскости проекций. Такие прямые называют проецирующими. Различают три основные проецирующие прямые: горизонтально, фронтально и профильно проецирующие прямые.
Рис. 2.3-г Рис. 2.3-д Рис. 2.3-е

Горизонтально проецирующей прямой (рис.2.З-г) называют прямую, перпендикулярную плоскости П 1 . Любой отрезок этой прямой проецируется на плоскость П П 1 - в точку.

Фронтально проецирующей прямой (рис.2.З-д) называют прямую, перпендикулярную плоскости П 2 . Любой отрезок этой прямой проецируется на плоскость П 1 без искажения, а на плоскость П 2 - в точку.

Профильно проецирующей прямой (рис.2.З-е) называют прямую, перпендикулярную плоскости П 3 , т.е. прямую, параллельную плоскостям проекций П 1 и П 2 . Любой отрезок этой прямой проецируется на плоскости П 1 и П 2 без искажения, а на плоскость П 3 - в точку.

Главные линии в плоскости

Среди прямых линий, принадлежащих плоскости, особое место занимают прямые, занимающие частное положение в пространстве:

1. Горизонтали h - прямые, лежащие в данной плоскости и параллельные горизонтальной плоскости проекций (h//П1)(рис.6.4).

Рисунок 6.4 Горизонталь

2. Фронтали f - прямые, расположенные в плоскости и параллельные фронтальной плоскости проекций (f//П2)(рис.6.5).

Рисунок 6.5 Фронталь

3. Профильные прямые р - прямые, которые находятся в данной плоскости и параллельны профильной плоскости проекций (р//П3) (рис.6.6). Следует заметить, что следы плоскости можно отнести тоже к главным линиям. Горизонтальный след - это горизонталь плоскости, фронтальный - фронталь и профильный - профильная линия плоскости.

Рисунок 6.6 Профильная прямая

4. Линия наибольшего ската и её горизонтальная проекция образуют линейный угол j , которым измеряется двугранный угол, составленный данной плоскостью и горизонтальной плоскостью проекций (рис.6.7). Очевидно, что если прямая не имеет двух общих точек с плоскостью, то она или параллельна плоскости, или пересекает ее.

Рисунок 6.7 Линия наибольшего ската

Кинематический способ образования поверхностей. Задание поверхности на чертеже.

В инженерной графике поверхность рассматривают как множество последовательных положений линии, перемещающейся в пространстве по определенному закону. В процессе образования поверхности линия 1 может оставаться неизменной или менять свою форму.
Для наглядности изображения поверхности на комплексном чертеже закон перемещения целесообразно задавать графически в виде семейства линий (а, b, с). Закон перемещения линии 1 может быть задан двумя (а и b) или одной (а) линией и дополнительными условиями, уточняющими закон перемещения 1.
Перемещающаяся линия 1 называется образующей, неподвижные линии a, b, c - направляющими.
Процесс образования поверхности рассмотрим на примере, приведенном на рис.3.1.
Здесь в качестве образующей взята прямая 1. Закон перемещения образующей задан направляющей а и прямой b. При этом имеется в виду, что образующая 1 скользит по направляющей а, все время оставаясь параллельной прямой b.
Такой способ образования поверхностей называют кинематическим. С его помощью можно образовывать и задавать на чертеже различные поверхности. В частности, на рис.3.1 изображен самый общий случай цилиндрической поверхности.

Рис. 3.1.

Другим способом образования поверхности и ее изображения на чертеже является задание поверхности множеством принадлежащих ей точек или линий. При этом точки и линии выбирают так, чтобы они давали возможность с достаточной степенью точности определять форму поверхности и решать на ней различные задачи.
Множество точек или линий, определяющих поверхность, называют ее каркасом.
В зависимости от того, чем задается каркас поверхности, точками или линиями, каркасы подразделяют на точечные и линейные.
На рис.3.2 показан каркас поверхности, состоящий из двух ортогонально расположенных семейств линий a1, a2, a3, ..., an и b1, b2, b3, ..., bn.

Рис. 3.2.

Конические сечения.

КОНИЧЕСКИЕ СЕЧЕНИЯ, плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину (рис. 1). С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев, рассматриваемых в последнем разделе, коническими сечениями являются эллипсы, гиперболы или параболы.

Конические сечения часто встречаются в природе и технике. Например, орбиты планет, обращающихся вокруг Солнца, имеют форму эллипсов. Окружность представляет собой частный случай эллипса, у которого большая ось равна малой. Параболическое зеркало обладает тем свойством, что все падающие лучи, параллельные его оси, сходятся в одной точке (фокусе). Это используется в большинстве телескопов-рефлекторов, где применяются параболические зеркала, а также в антеннах радаров и специальных микрофонах с параболическими отражателями. От источника света, помещенного в фокусе параболического отражателя, исходит пучок параллельных лучей. Поэтому в мощных прожекторах и автомобильных фарах используются параболические зеркала. Гипербола является графиком многих важных физических соотношений, например, закона Бойля (связывающего давление и объем идеального газа) и закона Ома, задающего электрический ток как функцию сопротивления при постоянном напряжении.

РАННЯЯ ИСТОРИЯ

Открывателем конических сечений предположительно считается Менехм (4 в. до н.э.), ученик Платона и учитель Александра Македонского. Менехм использовал параболу и равнобочную гиперболу для решения задачи об удвоении куба.

Трактаты о конических сечениях, написанные Аристеем и Евклидом в конце 4 в. до н.э., были утеряны, но материалы из них вошли в знаменитые Конические сечения Аполлония Пергского (ок. 260–170 до н.э.), которые сохранились до нашего времени. Аполлоний отказался от требования перпендикулярности секущей плоскости образующей конуса и, варьируя угол ее наклона, получил все конические сечения из одного кругового конуса, прямого или наклонного. Аполлонию мы обязаны и современными названиями кривых – эллипс, парабола и гипербола.

В своих построениях Аполлоний использовал двухполостной круговой конус (как на рис. 1), поэтому впервые стало ясно, что гипербола – кривая с двумя ветвями. Со времен Аполлония конические сечения делятся на три типа в зависимости от наклона секущей плоскости к образующей конуса. Эллипс (рис. 1,а) образуется, когда секущая плоскость пересекает все образующие конуса в точках одной его полости; парабола (рис. 1,б) – когда секущая плоскость параллельна одной из касательных плоскостей конуса; гипербола (рис. 1,в) – когда секущая плоскость пересекает обе полости конуса.

ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ

Изучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.

Эти определения конических сечений как плоских кривых подсказывают и способ их построения с помощью натянутой нити.

Эллипс.

Если концы нити заданной длины закреплены в точках F1 и F2 (рис. 2), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F1 и F2 называются фокусами эллипса, а отрезки V1V2 и v1v2 между точками пересечения эллипса с осями координат – большей и малой осями. Если точки F1 и F2 совпадают, то эллипс превращается в окружность.

рис. 2 Эллипсис

Гипербола.

При построении гиперболы точка P, острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F1 и F2, как показано на рис. 3,а. Расстояния подобраны так, что отрезок PF2 превосходит по длине отрезок PF1 на фиксированную величину, меньшую расстояния F1F2. При этом один конец нити проходит под шпеньком F1 и оба конца нити проходят поверх шпенька F2. (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV1Q) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и потягивая оба конца нити вниз за точку F2, а когда точка P окажется ниже отрезка F1F2, придерживая нить за оба конца и осторожно потравливая (т.е. отпуская) ее. Вторую ветвь гиперболы (PўV2Qў) мы вычерчиваем, предварительно поменяв ролями шпеньки F1 и F2.

рис. 3 гипербола

Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Эти прямые, называемые асимптотами гиперболы, строятся как показано на рис. 3,б. Угловые коэффициенты этих прямых равны ± (v1v2)/(V1V2), где v1v2 – отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F1F2; отрезок v1v2 называется сопряженной осью гиперболы, а отрезок V1V2 – ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v1, v2, V1, V2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек v1 и v2. Они находятся на одинаковом расстоянии, равном

от точки пересечения осей O. Эта формула предполагает построение прямоугольного треугольника с катетами Ov1 и V2O и гипотенузой F2O.

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной. Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными.

Парабола.

Фокусы эллипса и гиперболы были известны еще Аполлонию, но фокус параболы, по-видимому, впервые установил Папп (2-я пол. 3 в.), определивший эту кривую как геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой, которая называется директрисой. Построение параболы с помощью натянутой нити, основанное на определении Паппа, было предложено Исидором Милетским (6 в.). Расположим линейку так, чтобы ее край совпал с директрисой LLў (рис. 4), и приложим к этому краю катет AC чертежного треугольника ABC. Закрепим один конец нити длиной AB в вершине B треугольника, а другой – в фокусе параболы F. Натянув острием карандаша нить, прижмем острие в переменной точке P к свободному катету AB чертежного треугольника. По мере того, как треугольник будет перемещаться вдоль линейки, точка P будет описывать дугу параболы с фокусом F и директрисой LLў, так как общая длина нити равна AB, отрезок нити прилегает к свободному катету треугольника, и поэтому оставшийся отрезок нити PF должен быть равен оставшейся части катета AB, т.е. PA. Точка пересечения V параболы с осью называется вершиной параболы, прямая, проходящая через F и V, – осью параболы. Если через фокус провести прямую, перпендикулярную оси, то отрезок этой прямой, отсекаемый параболой, называется фокальным параметром. Для эллипса и гиперболы фокальный параметр определяется аналогично.

ОТВЕТЫ НА БИЛЕТЫ: № 1 (не полностью), 2 (не полностью), 3 (не полностью), 4, 5, 6, 7, 12, 13, 14 (не полностью), 16, 17, 18, 20, 21, 22, 23, 26,

Выносной элемент.

При выполнении чертежей в некоторых случаях появляется необходимость в построении дополнительного отдельного изображения какой-либо части предмета, требующей пояснений в отношении формы, размеров или других данных. Такое изображение называется выносным элементом. Его выполняют обычно увеличенным. Выносной элемент может быть выложен как вид или как разрез.

При построении выносного элемента соответствующее место основного изображения отмечают замкнутой сплошной тонкой линией, обычно овалом или окружностью, и обозначают заглавной буквой русского алфавита на полке линии-выноски. У выносного элемента делается запись по типу А (5: 1). На рис. 191 приведен пример выполнения выносного элемента. Его располагают возможно ближе к соответствующему месту на изображении предмета.

1. Метод прямоугольного (ортогонального) проецирования. Основные инвариантные свойства прямоугольного проецирования. Эпюр Монжа.

Ортогональное (прямоугольное) проецирование есть частный случай проецирования параллельного, когда все проецирующие лучи перпендикулярны плоскости проекций. Ортогональным проекциям присущи все свойства параллельных проекций, но при прямоугольном проецировании проекция отрезка, если он не параллелен плоскости проекций, всегда меньше самого отрезка (рис. 58). Это объясняется тем, что сам отрезок в пространстве является гипотенузой прямоугольного треугольника, а его проекция - катетом: А"В" = ABcos a.

При прямоугольном проецировании прямой угол проецируется в натуральную величину, когда обе стороны его параллельны плоскости проекций, и тогда, когда лишь одна из его сторон параллельна плоскости проекций, а вторая сторона не перпендикулярна этой плоскости проекций.

Взаимное расположение прямой и плоскости.

Прямая и плоскость в пространстве могут :

  • а) не иметь общих точек;
  • б) иметь ровно одну общую точку;
  • в) иметь хотя бы две общие точки.

На рис. 30 изображены все эти возможности.

В случае а) прямая b параллельна плоскости : b || .

В случае б) прямая l пересекает плоскость в одной точке О; l = О.

В случае в) прямая а принадлежит плоскости : а или а .

Теорема. Если прямая b параллельна хотя бы одной прямой а, принадлежащей плоскости , то прямая параллельна плоскости .

Предположим, что прямая m пересекает плоскость в точке Q.Если m перпендикулярна каждой прямой плоскости , проходящей через точку Q, то прямая m называется перпендикулярной к плоскости .

Трамвайные рельсы иллюстрируют принадлежность прямых плоскости земли. Линии электропередачи параллельны плоскости земли, а стволы деревьев могут служить примерами прямых, пересекающих поверхность земли, некоторые перпендикулярные плоскости земли, другие - не перпендикулярные (наклонные).

Взаимное положение прямой и плоскости определяется количествомобщих точек:

1) если прямая имеет две общие точки с плоскостью, то она принадлежит этой плоскости,

2) если прямая имеет одну общую точку с плоскостью, то прямая пересекает плоскость,

3) если точка пересечения прямой с плоскостью удалена в бесконечность, то прямая и плоскость параллельны.

Задачи, в которых определяется взаимное расположение различных геометрических фигур относительно друг друга, называются позиционными задачами.

Прямая принадлежащая плоскости рассматривалась ранее.

Прямая параллельна плоскости , если она параллельна какой-нибудь прямой, лежащей в этой плоскости. Чтобы построить такую прямую, необходимо в плоскости задать любую прямую и параллельно ей провести требуемую.

Рис. 1.53 Рис. 1.54 Рис.1.55

Пусть через точку А (рис. 1.53) необходимо провести прямую АВ , параллельную плоскости Q , заданную треугольником CDF. Для этого через фронтальную проекцию точки а / точки А проведем фронтальную проекцию а / в / искомой прямой параллельно фронтальной проекции любой прямой, лежащей в плоскости Р, например, прямой CD (а / в / !! с / д / ). Через горизонтальную проекцию а точки А параллельно сд проводим горизонтальную проекцию ав искомой прямой АВ (ав11 сд). Прямая АВ параллельна плоскости Р, заданной треугольником CDF.


Из всех возможных положений прямой, пересекающей плоскость, отметим случай, когда прямая перпендикулярна плоскости. Рассмотрим свойства проекций такой прямой.

Рис. 1.56 Рис. 1.57

Прямая перпендикулярна плоскости (частный случай пересечения прямой с плоскостью) если она перпендикулярна какой-либо прямой, лежащей в плоскости. Для построения проекций перпендикуляра к плоскости, находящейся в общем положении, этого недостаточно без преобразования проекций. Поэтому вводят дополнительное условие: прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся главным линиям (для построения проекций используется условие проецирования прямого угла). В этом случае: горизонтальная и фронтальная проекции перпендикуляра перпендикулярны соответственно горизонтальной проекции горизонтали и фронтальной проекции фронтали данной плоскости общего положения (рис. 1.54). При задании плоскости следами проекции перпендикуляра перпендикулярны соответственно фронтальная – фронтальному следу, горизонтальная – горизонтальному следу плоскости (рис. 1.55).

Пересечение прямой с проецирующей плоскостью. Рассмотрим прямую, пересекающую плоскость , когда плоскость находится в частном положении.

Плоскость, перпендикулярная плоскости проекций (проецирующая плоскость), проецируется на нее в виде прямой линии. На этой прямой (проекции плоскости) должна находиться соответствующая проекция точки, в которой некоторая прямая пересекает эту плоскость (рис.1.56).



На рисунке 1.56 фронтальная проекция точки К пересечения прямой АВ с треугольником СDE определяется в пересечении их фронтальных проекций, т.к. треугольник СDE проецируется на фронтальную плоскость в виде прямой линии. Находим горизонтальную проекцию точки пересечения прямой с плоскостью (она лежит на горизонтальной проекции прямой). Способом конкурирующих точек, определяем видимость прямой АВ относительно плоскости треугольника СDE на горизонтальной плоскости проекций.

На рисунке 1.59 изображена горизонтально-проецирующая плоскость P и прямая общего положения АВ . Т.к. плоскость Р перпендикулярна горизонтальной плоскости проекций, то все, что в ней находится, на горизонтальную плоскость проекций проецируется на ее след, в том числе и точка ее пересечения с прямой АВ . Следовательно, на комплексном чертеже имеем горизонтальную проекцию точки пересечения прямой с плоскостью Р . По принадлежности точки прямой, находим фронтальную проекцию точки пересечения прямой АВ с плоскость Р . Определяем видимость прямой на фронтальной плоскости проекций.

Рис. 1.58 Рис. 1.59


На рисунке 1.58 дан комплексный чертеж построения проекций точки пересечения прямой АВ с плоскостью горизонтального уровня G . Фронтальный след плоскости G является ее фронтальной проекцией. Фронтальная проекция точки пересечения плоскости G с прямой АВ определятся в пересечении фронтальной проекции прямой и фронтального следа плоскости. Имея фронтальную проекцию точки пересечения, находим горизонтальную проекцию точки пересечения прямой АВ с плоскостью G .

На рисунке 1.57 изображена плоскость общего положения, заданная треугольником CDE и фронтально-проецирующая прямая АВ ? пересекающая плоскость в точке K. Фронтальная проекция точки – k / совпадает с точками a / и b / . Для построения горизонтальной проекции точки пересечения проведем через точку K в плоскости CDE прямую (например, 1-2 ). Построим ее фронтальную проекцию, а затем горизонтальную. Точка K является точкой пересечения прямых AB и 1-2. То есть точка K одновременно принадлежит прямой AB и плоскости треугольника и, следовательно, является точкой их пересечения.

Пересечение двух плоскостей. Прямая линия пересечения двух плоскостей определяется двумя точками, каждая из которых принадлежит обеим плоскостям, или одной точкой, принадлежащей двум плоскостям, и известным направлением линии. В обоих случаях задача заключается в нахождении точки, общей для двух плоскостей.

Пересечение проецирующих плоскостей. Две плоскости могут быть параллельны между собой или пересекаться. Рассмотрим случаи взаимного пересечения плоскостей.

Прямая линия, получаемая при взаимном пересечении двух плоскостей, вполне определяется двумя точками, из которых каждая принадлежит обеим плоскостям, следовательно, необходимо и достаточно найти эти две точки, принадлежащей линии пересечения двух заданных плоскостей.

Следовательно, в общем случае для построения линии пересечения двух плоскостей необходимо найти какие-либо две точки, каждая из которых принадлежит обеим плоскостям. Эти точки и определяют линию пересечения плоскостей. Для нахождения каждой из этих двух точек обычно приходится выполнять специальные построения. Но если хотя бы одна из пересекающихся плоскостей перпендикулярна (или параллельна) к какой-либо плоскости проекций, то построение проекции линии их пересечения упрощается.

Рис. 1.60 Рис. 1.61

Если плоскости, заданны следами, то естественно искать точки, определяющие прямую пересечения плоскостей, в точках пересечения одноименных следов плоскостей попарно: прямая, проходящая через эти точки, является общей для обеих плоскостей, т.е. их линией пересечения.

Рассмотрим частные случаи расположения одной (или обеих) из пересекающихся плоскостей.

На комплексном чертеже (рис.1.60) изображены горизонтально-проецирующие плоскости P и Q. Тогда горизонтальная проекция их линии пересечения вырождается в точку, а фронтальная проекция – в прямую, перпендикулярную оси оx.

На комплексном чертеже (рис. 1.61) изображены плоскости частного положения: плоскость Р перпендикулярна горизонтальной плоскости проекций (горизонтально-проецирующая плоскость) и плоскость Q - плоскость горизонтального уровня. В этом случая, горизонтальная проекция их линии пересечения совпадет с горизонтальным следом плоскости Р , а фронтальная – с фронтальным следом плоскости Q .

В случае задания плоскостей следами легко установить, что эти плоскости пересекаются: если хотя бы одна пара одноименных следов пересекается, то плоскости пересекаются между собой.


Изложенное относится к плоскостям, заданных пересекающимися следами. Если же обе плоскости имеют на горизонтальной и фронтальной плоскостях следы, параллельные друг другу, то эти плоскости могут быть параллельны либо пересекаться. О взаимном положении таких плоскостей можно судить, построив третью проекцию (третий след). Если следы обеих плоскостей на третьей проекции так же параллельны, то плоскости параллельны между собой. Если следы на третьей плоскости пересекаются, то заданные в пространстве плоскости пересекаются.

На комплексном чертеже (рис.1.62) изображены фронтально-проецирующие плоскости, заданные треугольником АВС и DEF . Проекция линии пересечения на фронтальной плоскости проекций – точка, т.е. так как треугольники перпендикулярны фронтальной плоскости проекций, то и их линия пересечения так же перпендикулярна фронтальной плоскости проекций. Следовательно горизонтальная проекции линии пересечения треугольников (12 ) перпендикулярна оси оx. Видимость элементов треугольников на горизонтальной плоскости проекции определяется с помощью конкурирующих точек (3,4).

На комплексном чертеже (рис. 1.63) заданы две плоскости: одна из которых треугольником АВС общего положения, другая – треугольником DEF перпендикулярна фронтальной плоскости проекций, т.е. находящийся в частном положении (фронтально-проецирующий). Фронтальная проекция линии пересечения треугольников (1 / 2 / ) находится исходя из общих точек, одновременно принадлежащих обоим треугольникам (все, что находится во фронтально- проецирующем треугольнике DEF на фронтальной проекции выльется в линию – проекцию его на фронтальную плоскость, в том числе и линия его пересечения с треугольником АВС. По принадлежности точек пересечения сторонам треугольника АВС , находим горизонтальную проекцию линии пересечения треугольников. Способом конкурирующих точек определяем видимость элементов треугольников на горизонтальной плоскости проекций.

Рис. 1.63 Рис. 1.64

На рисунке 1.64 дан комплексный чертеж двух плоскостей, заданных треугольником общего положения АВС и горизонтально-проецирующая плоскость Р , заданная следами. Так как плоскость Р – горизонтально- проецирующая, то все, что в ней находится, в том числе и линия ее пересечения с плоскостью треугольника АВС , на горизонтальной проекции совпадет с ее

горизонтальным следом. Фронтальную проекцию линии пересечения данных плоскостей находим из условия принадлежности точек элемента (сторонам) плоскости общего положения.

В случае задания плоскостей общего положения не следами, то для получения линии пересечения плоскостей последовательно находится точка встречи стороны одного треугольника с плоскостью другого треугольника. Если плоскости общего положения заданы не треугольниками, то линию ппересечения таких плоскостей можно найти путем введения поочередно двух вспомогательных секущих плоскостей – проецирующих (для задания плоскостей треугольниками) или уровня для всех других случаев.

Пересечение прямой общего положения с плоскость общего положения. Ранее были рассмотрены случаи пересечения плоскостей, когда одна из них являлась проецирующей. На основе этого мы можем найти точку пересечения прямой общего положения с плоскостью общего положения, путем введения дополнительной проецирующей плоскости-посредника.

Прежде чем рассматривать пересечение плоскостей общего положения, рассмотрим пересечение прямой общего положения с плоскостью общего положения.

Для нахождения точки встречи прямой общего положения с плоскостью общего положения необходимо:

1) прямую заключить во вспомогательную проецирующую плоскость,

2) найти линию пересечения заданной и вспомогательных плоскостей,


определить общую точку, принадлежащую одновременно двум плоскостям (это их линия пересечения) и прямой.

Рис. 1.65 Рис. 1.66

Рис. 1.67 Рис. 1.68

На комплексном чертеже (рис. 1.65) изображен треугольник СDE общего положения и прямая АВ общего положения. Для нахождения точки пересечения прямой с плоскостью, заключим прямую АВ Q . Найдем линию пересечения (12 ) плоскости- посредника Q и заданной плоскости СDE . При построении горизонтально проекции линии пересечения найдется общая точка К , одновременно принадлежащая двум плоскостям и заданной прямой АВ . Из принадлежности точки прямой находим фронтальную проекцию точки пересечения прямой с заданной плоскостью. Видимость элементов прямой на плоскостях проекций, определяем с помощью конкурирующих точек.

На рисунке 1.66 показан пример нахождения точки встречи прямой АВ , являющейся горизонталью (прямая параллельна горизонтальной плоскости проекций) и плоскости Р , общего положения, заданной следами. Для нахождения точки их пересечения, прямая АВ заключается в горизонтально- проецирующую плоскость Q. Далее поступают, как и в выше изложенном примере.


Для нахождения точки встречи горизонтально-проецирующей прямой АВ с плоскостью общего положения (рис. 1.67), через точку встречи прямой с плоскостью (ее горизонтальная проекция совпадает с горизонтальной проекцией самой прямой) проводим горизонталь (т.е. привязываем точку пересечения прямой с плоскостью в плоскость Р ). Найдя фронтальную проекцию проведенной горизонтали в плоскости Р , отмечаем фронтальную проекцию точки встречи прямой АВ с плоскостью Р.

Для нахождения линии пересечения плоскостей общего положения, заданных следами достаточно отметить две общие точки, одновременно принадлежащие обеим плоскостям. Такими точками являются точки пересечения их следов (рис.1.68).

Для нахождения линии пересечения плоскостей общего положения, заданных двумя треугольниками (рис. 1.69), последовательно находим точку

встречи стороны одного треугольника с плоскостью другого треугольника. Взяв любые две стороны из любого треугольника, заключив их в проецирующие плоскости посредники, находятся две точки, одновременно принадлежащие обоим треугольникам – линия их пересечения.

На рисунке 1.69 дан комплексный чертеж треугольников ABC и DEF общего положения. Для нахождения линии пересечения данных плоскостей:

1. Заключаем сторону ВС треугольника АВС во фронтально- проецирующую плоскость S (выбор плоскостей совершенно произвольный).

2. Находим линию пересечения плоскости S и плоскости DEF – 12 .

3. Отмечаем горизонтальную проекцию точки встречи (общая точка двух треугольников) К из пересечения 12 и ВС и находим ее фронтальную проекцию на фронтальной проекции прямой ВС.

4. Проводим вторую вспомогательную проецирующую плоскость Q через сторону DF треугольника DEF .

5. Находим линию пересечения плоскости Q и треугольника АВС – 3 4.

6. Отмечаем горизонтальную проекцию точки L , являющейся точкой встречи стороны DF c плоскостью треугольника АВС и находим ее фронтальную проекцию.

7. Соединяем одноименные проекции точек К и L. К L – линя пересечения плоскостей общего положения, заданных треугольниками АВС и DEF .

8. Способом конкурирующих точек определяем видимость элементов треугольников на плоскостях проекций.


Так как выше изложенное действительно и для главных линий параллельных плоскостей, то можно сказать, что плоскости параллельны, если параллельны их одноименные следы (рис. 1.71).

На рисунке 1.72 показано построение плоскости параллельной заданной и проходящей через точку А. В первом случае через точку А проведена прямая (фронталь), параллельная заданной плоскости G . Тем самым проведена плоскость Р содержащая прямую параллельную заданной плоскости G и параллельная ей. Во втором случае через точку А проведена плоскость, заданная главными линиями из условия параллельности этих линий заданной плоскости G .

Взаимно-перпендикулярные плоскости. Если одна плоскость содержит

хотя бы одну прямую, перпендикулярную другой плоскости, то такие

плоскости перпендикулярны. На рисунке 1.73 показаны взаимно перпендикулярные плоскости. На рисунке 1.74 показано построение плоскости, перпендикулярной заданной через точку А, используя условие перпендикулярности прямой (в данном случае главных линий) плоскости.


В первом случае через точку А проведена фронталь, перпендикулярная плоскости Р , построен ее горизонтальный след и через него проведен горизонтальный след плоскости Q , перпендикулярно горизонтальному следу плоскости Р . Через полученную точку схода следов Q X проведен фронтальный след плоскости Q перпендикулярно фронтальному следу плоскости Р .

Во втором случае в плоскости треугольника проведены горизонталь ВЕ и фронталь BF и через заданную точку А задаем плоскость пересекающимися прямыми (главными линиями), перпендикулярную плоскости треугольника. Для этого проводим через точку А горизонталь и фронталь. Горизонтальную проекцию горизонтали искомой плоскости (N ) проводим перпендикулярно горизонтальной проекции горизонтали треугольника, фронтальную проекцию фронтали новой плоскости (M ) – перпендикулярно фронтальной проекции фронтали треугольника.

Стереометрия

Взаимное расположение прямых и плоскостей

В пространстве

Параллельность прямых и плоскостей

Две прямые в пространстве называются параллельными , если они лежат в одной плоскости и не пересекаются.

Прямая и плоскость называются параллельными , если они не пересекаются.

Две плоскости называются параллельными , если они не пересекаются.

Прямые, которые не пересекаются и не лежат в одной плоскости, называются скрещивающимися .

Признак параллельности прямой и плоскости . Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости.

Признак параллельности плоскостей . Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Признак скрещивающихся прямых . Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то данные прямые скрещиваются.

Теоремыо параллельных прямых и параллельных плоскостях.

1. Две прямые, параллельные третьей прямой, параллельны.

2. Если одна из двух параллельных прямых пересекает плоскость, то и другая прямая пересекает эту плоскость.

3. Через точку вне данной прямой можно провести прямую, параллельную данной, и только одну.

4. Если прямая параллельна каждой из двух пересекающихся плоскостей, то она параллельна их линии пересечения.

5. Если две параллельные плоскости пересекаются третьей плоскостью, то линии пересечения параллельны.

6. Через точку, не лежащую в данной плоскости, можно провести плоскость, параллельную данной, и только одну.

7. Две плоскости, параллельные третьей, параллельны между собой.

8. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

Углы между прямыми и плоскостями

Углом между прямой и плоскостью называется угол между прямой и ее проекцией на плоскость (угол на рис. 1).


Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, параллельными соответственно данным скрещивающимся прямым.

Двугранным углом называется фигура, образованная двумя полуплоскостями с общей прямой. Полуплоскости называются гранями , прямая – ребром двугранного угла.

Линейным углом двугранного угла называется угол между полупрямыми, принадлежащими граням двугранного угла, исходящими из одной точки на ребре и перпендикулярными ребру (угол на рис. 2).

Градусная (радианная) мера двугранного угла равна градусной (радианной) мере его линейного угла.

Перпендикулярность прямых и плоскостей

Две прямые называются перпендикулярными , если они пересекаются под прямым углом.

Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой в плоскости, проходящей через точку пересечения данной прямой и плоскости.

Две плоскости называются перпендикулярными , если пересекаясь, они образуют прямые двугранные углы.

Признак перпендикулярности прямой и плоскости . Если прямая, пересекающая плоскость, перпендикулярна двум пересекающимся прямым в этой плоскости, то она перпендикулярна плоскости.

Признак перпендикулярности двух плоскостей . Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Теоремы о перпендикулярных прямых и плоскостях.

1. Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.

2. Если две прямые перпендикулярны одной и той же плоскости, то они параллельны.

3. Если прямая перпендикулярна одной из двух параллельных плоскостей, то она перпендикулярна и другой.

4. Если две плоскости перпендикулярны одной и той же прямой, то они параллельны.

Перпендикуляр и наклонная

Теорема . Если из одной точки вне плоскости проведены перпендикуляр и наклонные, то:

1) наклонные, имеющие равные проекции, равны;

2) из двух наклонных больше та, проекция которой больше;

3) равные наклонные имеют равные проекции;

4) из двух проекций больше та, которая соответствует большей наклонной.

Теорема о трех перпендикулярах . Для того чтобы прямая, лежащая в плоскости, была перпендикулярна наклонной, необходимо и достаточно, чтобы эта прямая была перпендикулярна проекции наклонной (рис.3).

Теорема о площади ортогональной проекции многоугольника на плоскость. Площадь ортогональной проекции многоугольника на плоскость равна произведению площади многоугольника на косинус угла между плоскостью многоугольника и плоскостью проекции.


Построение.

1. На плоскости a проводим прямую а .

3. В плоскости b через точку А проведем прямую b , параллельную прямой а .

4. Построена прямая b параллельная плоскости a .

Доказательство. По признаку параллельности прямой и плоскости прямая b параллельна плоскости a , так как она параллельна прямой а , принадлежащей плоскости a .

Исследование. Задача имеет бесконечное множество решений, так как прямая а в плоскости a выбирается произвольно.

Пример 2. Определите, на каком расстоянии от плоскости находится точка А , если прямая АВ пересекает плоскость под углом 45º, расстояние от точки А до точки В , принадлежащей плоскости, равно см?

Решение. Сделаем рисунок (рис. 5):


АС – перпендикуляр к плоскости a , АВ – наклонная, угол АВС – угол между прямой АВ и плоскостью a . Треугольник АВС – прямоугольный так как АС – перпендикуляр. Искомое расстояние от точки А до плоскости – это катет АС прямоугольного треугольника. Зная угол и гипотенузу см найдем катет АС :

Ответ: 3 см.

Пример 3. Определите, на каком расстоянии от плоскости равнобедренного треугольника находится точка, удаленная от каждой из вершин треугольника на 13 см, если основание и высота треугольника равны по 8 см?

Решение. Сделаем рисунок (рис. 6). Точка S удалена от точек А , В и С на одинаковое расстояние. Значит, наклонные SA , SB и SC равные, SO – общий перпендикуляр этих наклонных. По теореме о наклонных и проекциях АО = ВО = СО.

Точка О – центр окружности описанной около треугольника АВС . Найдем ее радиус:


где ВС – основание;

AD – высота данного равнобедренного треугольника.

Находим стороны треугольника АВС из прямоугольного треугольника ABD по теореме Пифагора:

Теперь находим ОВ :

Рассмотрим треугольник SOB : SB = 13 см, ОВ = = 5 см. Находим длину перпендикуляра SO по теореме Пифагора:

Ответ: 12 см.

Пример 4. Даны параллельные плоскости a и b . Через точку М , не принадлежащую ни одной из них, проведены прямые а и b , которые пересекают a в точках А 1 и В 1 , а плоскость b – в точках А 2 и В 2 . Найти А 1 В 1 , если известно, что МА 1 = 8 см, А 1 А 2 = 12 см, А 2 В 2 = 25 см.

Решение. Так как в условии не сказано, как расположена относительно обеих плоскостей точка М , то возможны два варианта: (рис. 7, а) и (рис. 7, б). Рассмотрим каждый из них. Две пересекающиеся прямые а и b задают плоскость. Эта плоскость пересекает две параллельные плоскости a и b по параллельным прямым А 1 В 1 и А 2 В 2 согласно теореме 5 о параллельных прямых и параллельных плоскостях.


Треугольники МА 1 В 1 и МА 2 В 2 подобны (углы А 2 МВ 2 и А 1 МВ 1 – вертикальные, углы МА 1 В 1 и МА 2 В 2 – внутренние накрест лежащие при параллельных прямых А 1 В 1 и А 2 В 2 и секущей А 1 А 2). Из подобия треугольников следует пропорциональность сторон:

Вариант а):

Вариант б):

Ответ: 10 см и 50 см.

Пример 5. Через точку А плоскости g проведена прямая АВ , образующая с плоскостью угол a . Через прямую АВ проведена плоскость r , образующая с плоскостью g угол b . Найти угол между проекцией прямой АВ на плоскость g и плоскостью r .

Решение. Сделаем рисунок (рис. 8). Из точки В опустим перпендикуляр на плоскость g . Линейный угол двугранного угла между плоскостями g и r – это угол Прямая AD DBC , по признаку перпендикулярности прямой и плоскости, так как и По признаку перпендикулярности плоскостей плоскость r перпендикулярна плоскости треугольника DBC , так как она проходит через прямую AD . Искомый угол построим, опустив перпендикуляр из точки С на плоскость r , обозначим его Найдем синус этого угла прямоугольного треугольника САМ . Введем вспомогательный отрезок а = ВС . Из треугольника АВС : Из треугольника ВМС найдем

Тогда искомый угол


Ответ:

Задания для самостоятельного решения

I уровень

1.1. Через точку проведите прямую перпендикулярную двум заданным скрещивающимся прямым.

1.2. Определите, сколько различных плоскостей можно провести:

1) через три различные точки;

2) через четыре различные точки, никакие три из которых не лежат на одной плоскости?

1.3. Через вершины треугольника АВС , лежащего в одной из двух параллельных плоскостей, проведены параллельные прямые, пересекающие вторую плоскость в точках А 1 , В 1 , С 1 . Докажите равенство треугольников АВС и А 1 В 1 С 1 .

1.4. Из вершины А прямоугольника ABCD восставлен перпендикуляр АМ к его плоскости.

1) докажите, что треугольники MBC и MDC – прямоугольные;

2) укажите среди отрезков MB , MC , MD и MA отрезок наибольшей и наименьшей длины.

1.5. Грани одного двугранного угла соответственно параллельны граням другого. Определите, какова зависимость между величинами этих двугранных углов.

1.6. Найдите величину двугранного угла, если расстояние от точки, взятой на одной грани, до ребра в 2 раза больше расстояния от точки до плоскости второй грани.

1.7. Из точки, отстоящей от плоскости на расстояние проведены две равные наклонные, образующие угол 60º. Проекции наклонных взаимно перпендикулярны. Найдите длины наклонных.

1.8. Из вершины В квадрата ABCD восставлен перпендикуляр ВЕ к плоскости квадрата. Угол наклона плоскости треугольника АСЕ к плоскости квадрата равен j , сторона квадрата равна а АСЕ .

II уровень

2.1. Через точку, которая не принадлежит ни одной из двух скрещивающихся прямых, проведите прямую, пересекающую обе данные прямые.

2.2. Параллельные прямые а , b и с не лежат в одной плоскости. Через точку А на прямой а проведены перпендикуляры к прямым b и с , пересекающие их соответственно в точках В и С . Докажите, что прямая ВС перпендикулярна прямым b и с .

2.3. Через вершину А прямоугольного треугольника АВС проведена плоскость, параллельная ВС . Катеты треугольника АС = 20 см, ВС = 15 см. Проекция одного из катетов на плоскость равна 12 см. Найдите проекцию гипотенузы.

2.4. В одной из граней двугранного угла, равного 30º, расположена точка М . Расстояние от нее до ребра угла равно 18 см. Найдите расстояние от проекции точки М на вторую грань до первой грани.

2.5. Концы отрезка АВ принадлежат граням двугранного угла, равного 90º. Расстояние от точек А и В до ребра равны соответственно АА 1 = 3 см, ВВ 1 = 6 см, расстояние между точками на ребре Найдите длину отрезка АВ .

2.6. Из точки, отстоящей от плоскости на расстояние а , проведены две наклонные, образующие с плоскостью углы 45º и 30º, а между собой угол – 90º. Найдите расстояние между основаниями наклонных.

2.7. Стороны треугольника равны 15 см, 21 см и 24 см. Точка М удалена от плоскости треугольника на 73 см и находится на одинаковом расстоянии от его вершин. Найдите это расстояние.

2.8. Из центра О окружности, вписанной в треугольник АВС , к плоскости треугольника восставлен перпендикуляр ОМ . Найдите расстояние от точки М до сторон треугольника, если АВ = ВС = 10 см, АС = 12 см, ОМ = 4 см.

2.9. Расстояния от точки М до сторон и вершины прямого угла соответственно равны 4 см, 7 см и 8 см. Найдите расстояние от точки М до плоскости прямого угла.

2.10. Через основание АВ равнобедренного треугольника АВС проведена плоскость под углом b к плоскости треугольника. Вершина С удалена от плоскости на расстояние а . Найдите площадь треугольника АВС , если основание АВ равнобедренного треугольника равно его высоте.

III уровень

3.1. Макет прямоугольника ABCD со сторонами а и b перегнут по диагонали BD так, что плоскости треугольников BAD и BCD стали взаимно перпендикулярны. Найдите длину отрезка АС .

3.2. Две прямоугольные трапеции с углами в 60º лежат в перпендикулярных плоскостях и имеют большее общее основание. Большие боковые стороны равны 4 см и 8 см. Найдите расстояние между вершинами прямых и вершинами тупых углов трапеций, если вершины их острых углов совпадают.

3.3.Задан куб ABCDA 1 B 1 C 1 D 1 . Найдите угол между прямой CD 1 и плоскостью BDC 1 .

3.4. На ребре АВ куба ABCDA 1 B 1 C 1 D 1 взята точка Р – середина этого ребра. Постройте сечение куба плоскостью, проходящей через точки C 1 PD и найдите площадь этого сечения, если ребро куба равно а .

3.5. Через сторону AD прямоугольника ABCD проведена плоскость a так, что диагональ BD составляет с этой плоскостью угол 30º. Найдите угол между плоскостью прямоугольника и плоскостью a , если АВ = а , AD = b . Определите, при каком соотношении а и b задача имеет решение.

3.6. Найдите геометрическое место точек, равноудаленных от прямых, определенных сторонами треугольника.

Призма. Параллелепипед

Призмой называется многогранник, две грани которого – равные n-угольники (основания) , лежащие в параллельных плоскостях, а остальные n граней – параллелограммы (боковые грани) . Боковым ребром призмы называется сторона боковой грани, не принадлежащая основанию.

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой призмой (рис. 1). Если боковые ребра не перпендикулярны плоскостям оснований, то призма называется наклонной . Правильной призмой называется прямая призма, основания которой – правильные многоугольники.

Высотой призмы называется расстояние между плоскостями оснований. Диагональю призмы называется отрезок, соединяющий две вершины, не принадлежащие одной грани. Диагональным сечением называется сечение призмы плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани. Перпендикулярным сечением называется сечение призмы плоскостью, перпендикулярной боковому ребру призмы.

Площадью боковой поверхности призмы называется сумма площадей всех боковых граней. Площадью полной поверхности называется сумма площадей всех граней призмы (т.е. сумма площадей боковых граней и площадей оснований).

Для произвольной призмы верны формулы :

где l – длина бокового ребра;

H – высота;

P

Q

S бок

S полн

S осн – площадь оснований;

V – объем призмы.

Для прямой призмы верны формулы:

где p – периметр основания;

l – длина бокового ребра;

H – высота.

Параллелепипедом называется призма, основанием которой служит параллелограмм. Параллелепипед, у которого боковые ребра перпендикулярны к основаниям, называется прямым (рис. 2). Если боковые ребра не перпендикулярны основаниям, то параллелепипед называется наклонным . Прямой параллелепипед, основанием которого является прямоугольник, называется прямоугольным. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.

Грани параллелепипеда, не имеющие общих вершин, называются противолежащими . Длины ребер, исходящих из одной вершины, называются измерениями параллелепипеда. Так как параллелепипед – это призма, то основные его элементы определяются аналогично тому, как они определены для призм.

Теоремы.

1. Диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.

2. В прямоугольном параллелепипеде квадрат длины диагонали равен сумме квадратов трех его измерений:

3. Все четыре диагонали прямоугольного параллелепипеда равны между собой.

Для произвольного параллелепипеда верны формулы:

где l – длина бокового ребра;

H – высота;

P – периметр перпендикулярного сечения;

Q – Площадь перпендикулярного сечения;

S бок – площадь боковой поверхности;

S полн – площадь полной поверхности;

S осн – площадь оснований;

V – объем призмы.

Для прямого параллелепипеда верны формулы:

где p – периметр основания;

l – длина бокового ребра;

H – высота прямого параллелепипеда.

Для прямоугольного параллелепипеда верны формулы:

где p – периметр основания;

H – высота;

d – диагональ;

a,b,c – измерения параллелепипеда.

Для куба верны формулы:

где a – длина ребра;

d – диагональ куба.

Пример 1. Диагональ прямоугольного параллелепипеда равна 33 дм, а его измерения относятся, как 2: 6: 9. Найти измерения параллелепипеда.

Решение. Для нахождения измерений параллелепипеда воспользуемся формулой (3), т.е. тем фактом, что квадрат гипотенузы прямоугольного параллелепипеда равен сумме квадратов его измерений. Обозначим через k коэффициент пропорциональности. Тогда измерения параллелепипеда будут равны 2k , 6k и 9k . Запишем формулу (3) для данных задачи:

Решая это уравнение относительно k , получим:

Значит, измерения параллелепипеда равны 6 дм, 18 дм и 27 дм.

Ответ: 6 дм, 18 дм, 27 дм.

Пример 2. Найти объем наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной 8 см, если боковое ребро равно стороне основания и наклонено под углом 60º к основанию.

Решение . Сделаем рисунок (рис. 3).

Для того, чтобы найти объем наклонной призмы необходимо знать площадь ее основания и высоту. Площадь основания данной призмы – это площадь равностороннего треугольника со стороной 8 см. Вычислим ее:

Высотой призмы является расстояние между ее основаниями. Из вершины А 1 верхнего основания опустим перпендикуляр на плоскость нижнего основания А 1 D . Его длина и будет высотой призмы. Рассмотрим DА 1 АD : так как это угол наклона бокового ребра А 1 А к плоскости основания, А 1 А = 8 см. Из этого треугольника находим А 1 D :

Теперь вычисляем объем по формуле (1):

Ответ: 192 см 3 .

Пример 3. Боковое ребро правильной шестиугольной призмы равно 14 см. Площадь наибольшего диагонального сечения равна 168 см 2 . Найти площадь полной поверхности призмы.

Решение. Сделаем рисунок (рис. 4)


Наибольшее диагональное сечение – прямоугольник AA 1 DD 1 , так как диагональ AD правильного шестиугольника ABCDEF является наибольшей. Для того, чтобы вычислить площадь боковой поверхности призмы, необходимо знать сторону основания и длину бокового ребра.

Зная площадь диагонального сечения (прямоугольника), найдем диагональ основания.

Поскольку , то

Так как то АВ = 6 см.

Тогда периметр основания равен:

Найдем площадь боковой поверхности призмы:

Площадь правильного шестиугольника со стороной 6 см равна:

Находим площадь полной поверхности призмы:

Ответ:

Пример 4. Основанием прямого параллелепипеда служит ромб. Площади диагональных сечений 300 см 2 и 875 см 2 . Найти площадь боковой поверхности параллелепипеда.

Решение. Сделаем рисунок (рис. 5).

Обозначим сторону ромба через а , диагонали ромба d 1 и d 2 , высоту параллелепипеда h . Чтобы найти площадь боковой поверхности прямого параллелепипеда необходимо периметр основания умножить на высоту: (формула (2)). Периметр основания р = АВ + ВС + CD + DA = 4AB = 4a , так как ABCD – ромб. Н = АА 1 = h . Т.о. Необходимо найти а и h .

Рассмотрим диагональные сечения. АА 1 СС 1 – прямоугольник, одна сторона которого диагональ ромба АС = d 1 , вторая – боковое ребро АА 1 = h , тогда

Аналогично для сечения ВВ 1 DD 1 получим:

Используя свойство параллелограмма такое, что сумма квадратов диагоналей равна сумме квадратов всех его сторон, получим равенство Получим следующее:

Из первых двух равенств выразим и подставим в третье. Получим: то

1.3. В наклонной треугольной призме проведено сечение перпендикулярное боковому ребру равному 12 см. В полученном треугольнике две стороны с длинами см и 8 см образуют угол 45°. Найдите площадь боковой поверхности призмы.

1.4. Основанием прямого параллелепипеда является ромб со стороной 4 см и острым углом 60°. Найдите диагонали параллелепипеда, если длина бокового ребра 10 см.

1.5. Основанием прямого параллелепипеда является квадрат с диагональю, равной см. Боковое ребро параллелепипеда 5 см. Найдите площадь полной поверхности параллелепипеда.

1.6. Основанием наклонного параллелепипеда является прямоугольник со сторонами 3 см и 4 см. Боковое ребро равное см наклонено к плоскости основания под углом 60°. Найдите объем параллелепипеда.

1.7. Вычислите площадь поверхности прямоугольного параллелепипеда, если два ребра и диагональ, исходящие из одной вершины, равны соответственно 11 см, см и 13 см.

1.8. Определите вес каменной колонны, имеющей форму прямоугольного параллелепипеда, с размерами 0,3 м, 0,3 м и 2,5 м, если удельный вес материала равен 2,2 г/см 3 .

1.9. Найдите площадь диагонального сечения куба, если диагональ его грани равна дм.

1.10. Найдите объем куба, если расстояние между двумя его вершинами, не лежащими в одной грани, равно см.

II уровень

2.1. Основанием наклонной призмы является равносторонний треугольник со стороной см. Боковое ребро наклонено к плоскости основания под углом 30°. Найдите площадь сечения призмы, проходящего через боковое ребро и высоту призмы, если известно, что одна из вершин верхнего основания проектируется на середину стороны нижнего основания.

2.2. Основанием наклонной призмы является равносторонний треугольник ABC со стороной равной 3 см. Вершина A 1 проектируется в центр треугольника ABC. Ребро AA 1 составляет с плоскостью основания угол 45°. Найдите площадь боковой поверхности призмы.

2.3. Вычислите объем наклонной треугольной призмы, если стороны основания 7 см, 5 см и 8 см, а высота призмы равна меньшей высоте треугольника-основания.

2.4. Диагональ правильной четырехугольной призмы наклонена к боковой грани под углом 30°. Найдите угол наклона к плоскости основания.

2.5. Основанием прямой призмы является равнобедренная трапеция, основания которой равны 4 см и 14 см, а диагональ – 15 см. Две боковые грани призмы – квадраты. Найдите площадь полной поверхности призмы.

2.6. Диагонали правильной шестиугольной призмы равны 19см и 21 см. Найдите ее объем.

2.7. Найдите измерения прямоугольного параллелепипеда, у которого диагональ равна 8 дм, и она образует с боковыми гранями углы 30° и 40°.

2.8. Диагонали основания прямого параллелепипеда равны 34 см и 38 см, а площади боковых граней 800 см 2 и 1200 см 2 . Найдите объем параллелепипеда.

2.9. Определите объем прямоугольного параллелепипеда, в котором диагонали боковых граней, выходящие из одной вершины, равны 4 см и 5 см и образуют угол в 60°.

2.10. Найдите объем куба, если расстояние от его диагонали до непересекающегося с ней ребра равно мм.

III уровень

3.1. В правильной треугольной призме проведено сечение через сторону основания и середину противоположного бокового ребра. Площадь основания 18 см 2 , а диагональ боковой грани наклонена к основанию под углом 60°. Найдите площадь сечения.

3.2. В основании призмы лежит квадрат ABCD, все вершины которого равноудалены от вершины A 1 верхнего основания. Угол между боковым ребром и плоскостью основания равен 60°. Сторона основания 12 см. Постройте сечение призмы плоскостью, проходя через вершину C, перпендикулярно ребру AA 1 и найти его площадь.

3.3. Основанием прямой призмы является равнобедренная трапеция. Площадь диагонального сечения и площади параллельных боковых граней соответственно равны 320 см 2 , 176 см 2 и 336 см 2 . Найдите площадь боковой поверхности призмы.

3.4. Площадь основания прямой треугольной призмы равна 9см 2 , площади боковых граней 18 см 2 , 20 см 2 и 34 см 2 . Найдите объем призмы.

3.5. Найдите диагонали прямоугольного параллелепипеда, зная, что диагонали его граней равны 11 см, 19 см и 20 см.

3.6. Углы, образованные диагональю основания прямоугольного параллелепипеда со стороной основания и диагональю параллелепипеда, равны соответственно a и b. Найдите площадь боковой поверхности параллелепипеда, если его диагональ равна d.

3.7. Площадь того сечения куба, которое представляет собой правильный шестиугольник, равна см 2 . Найдите площадь поверхности куба.

Прямая может принадлежать плоскости , быть ей параллельной или пересекать плоскость. Прямая принадлежит плоскости, если две точки, принадлежащие прямой и плоскости, имеют одинаковые отметки . Следствие, вытекающее из сказанного: точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости.

Прямая параллельна плоскости, если она параллельна прямой, лежащей в этой плоскости.

Прямая, пересекающая плоскость. Чтобы найти точку пересечения прямой с плоскостью, необходимо (рис. 3.28):

1) через заданную прямую m провести вспомогательную плоскость Т ;

2) построить линию n пересечения заданной плоскости Σ с вспомогательной плоскостью Т;

3) отметить точку пересечения R, заданной прямой m с линией пересечения n.

Рассмотрим задачу (рис. 3.29).Прямая m задана на плане точкой А 6 и углом наклона 35°. Через эту прямую проведена вспомогательная вертикальная плоскость Т, которая пересекает плоскость Σ по линии n (В 2 С 3 ). Таким образом, переходят от взаимного положения прямой и плоскости к взаимному положению двух прямых, лежащих в одной вертикальной плоскости. Такая задача решается построением профилей этих прямых. Пересечение прямых m и n на профиле определяет искомую точку R . Высотную отметку точки R определяют по шкале вертикальных масштабов.

Прямая, перпендикулярная плоскости. Прямая линия перпендикулярна к плоскости, если она перпендикулярна к любым двум пересекающимся прямым этой плоскости. На рис 3.30 изображена прямая m , перпендикулярная к плоскости Σ и пересекающая ее в точке А. На плане проекции прямой m и горизонтали плоскости взаимно перпендикулярны (прямой угол, одна сторона которого параллельна плоскости проекций, проецируется без искажения. Обе прямые лежат в одной вертикальной плоскости, следовательно заложения у таких прямых обратны по величине друг другу: l m = l /l u . Но l uΣ = l Σ , тогда l m = l / l Σ , то есть заложение прямой m обратно пропорционально заложению плоскости. Падения у прямой и плоскости направлены в разные стороны.

3.4. Проекции с числовыми отметками. Поверхности

3.4.1.Многогранники и кривые поверхности. Топографическая поверхность

В природе многие вещества имеют кристаллическое строение в виде многогранников. Многогранником называют совокупность плоских многоугольников, не лежащих в одной и той же плоскости, где каждая сторона одного из них является одновременно стороной другого. При изображении многогранника достаточно указать проекции его вершин, соединив их в определенном порядке прямыми линиями - проекциями ребер. При этом на чертеже необходимо указывать видимые и невидимые ребра. На рис. 3.31 изображены призма и пирамида, а также нахождение отметок точек, принадлежащих данным поверхностям.



Особой группой выпуклых многоугольников является группа правильных многоугольников, у которых все грани - равные между собой правильные многоугольники и все многоугольные углы равны. Существует пять видов правильных многоугольников.

Тетраэдр - правильный четырехугольник, ограниченный равносторонними треугольниками, имеет 4 вершины и 6 ребер (рис. 3.32 а).

Гексаэдр - правильный шестигранник (куб) - 8 вершин, 12 ребер (рис. 3.32б).

Октаэдр - правильный восьмигранник, ограниченный восемью равносторонними треугольниками - 6 вершин, 12 ребер (рис. 3.32в).

Додекаэдр - правильный двенадцатигранник, ограниченный двенадцатью правильными пятиугольниками, соединенными по три около каждой вершины.

Имеет 20 вершин и 30 ребер (рис.3.32 г).

Икосаэдр - правильный двадцатигранник, ограниченный двадцатью равносторонними треугольниками, соединенными по пяти около каждой вершины.12 вершин и 30 ребер (рис. 3.32 д).

При построении точки, лежащей на грани многогранника, необходимо провести прямую, принадлежащую этой грани и на ее проекции отметить проекцию точки.

Конические поверхности образуются перемещением прямолинейной образующей по криволинейной направляющей так, что во всех положениях образующая проходит через неподвижную точку -вершину поверхности. Конические поверхности общего вида на плане изображают направляющей горизонталью и вершиной. На рис. 3.33 показано нахождение отметки точки на поверхности конической поверхности.



Прямой круговой конус изображается серией концентрических окружностей, проведенных через равные интервалы (рис.3.34а). Эллиптический конус с круговым основанием - серией эксцентрических окружностей (рис. 3.34 б)

Сферические поверхности. Сферическую поверхность относят к поверхностям вращения. Она образуется вращением окружности вокруг ее диаметра. На плане сферическая поверхность определена центром К и проекцией одной из ее горизонталей (экватором сферы) (рис. 3.35).

Топографическая поверхность. Топографическую поверхность относят к геометрически неправильным поверхностям, так как она не имеет геометрического закона образования. Для характеристики поверхности определяют положение ее характерных точек относительно плоскости проекций. На рис. 3.3 б а дан пример участка топографической поверхности, на котором показаны проекции ее отдельных точек. Такой план хотя и дает возможность составить представление о форме изображаемой поверхности, однако отличается малой наглядностью. Чтобы придать чертежу большую наглядность и облегчить тем самым его чтение, проекции точек с одинаковыми отметками соединяют плавными кривыми линиями, которые называют горизонталями (изолиниями) (рис. 3.36 б).

Горизонтали топографической поверхности иногда определяют и как линии пересечения этой поверхности с горизонтальными плоскостями, отстоящими друг от друга на одно и то же расстояние (рис. 3.37). Разность отметок у двух смежных горизонталей называют высотой сечения.

Изображение топографической поверхности тем точнее, чем меньше разность отметок у двух смежных горизонталей. На планах горизонтали замыкаются в пределах чертежа или вне его. На более крутых склонах поверхности проекции горизонталей сближаются, на пологих – их проекции расходятся.

Кратчайшее расстояние между проекциями двух смежных горизонталей на плане называют заложением. На рис. 3.38 через точку А топографической поверхности проведено несколько отрезков прямых АВ, АС и АD . Все они имеют разные углы падения. Наибольший угол падения имеет отрезок АС , заложение которого имеет минимальное значение. Поэтому он и будет являться проекцией линии падения поверхности в данном месте.

На рис. 3.39 приводится пример построения проекции линии падения через заданную точку А . Из точки А 100 , как из центра, проводят дугу окружности, касающуюся ближайшей горизонтали в точке В 90 . Точка В 90 , лежащая на горизонтали h 90 , будет принадлежать линии падения. Из точки В 90 проводят дугу, касающуюся следующей горизонтали в точке С 80 , и т. д. Из чертежа видно, что линией падения топографической поверхности является ломаная линия, каждое звено которой перпендикулярно к горизонтали, проходящей через нижний, имеющий меньшую отметку, конец звена.

3.4.2.Пересечение конической поверхности плоскостью

Если секущая плоскость проходит через вершину конической поверхности, то она пересекает ее по прямым линиям-образующим поверхности. Во всех остальных случаях линия сечения будет плоской кривой: окружностью, эллипсом и т.д. Рассмотрим случай пересечения конической поверхности плоскостью.

Пример 1. Построить проекцию линии пересечения кругового конуса Φ(h о , S 5 ) с плоскостью Ω, параллельной образующей конической поверхности.

Коническая поверхность при заданном расположении плоскости пересекается по параболе. Проинтерполировав образующую t строим горизонтали кругового конуса - концентрические окружности с центром S 5 . Затем определяем точки пересечения одноименных горизонталей плоскости и конуса (рис. 3.40).

3.4.3. Пересечение топографической поверхности с плоскостью и прямой линией

Случай пересечения топографической поверхности с плоскостью наиболее часто встречается в решении геологических задач. На рис. 3.41 дан пример построения пересечения топографической поверхности с плоскостью Σ. Искомую кривую m определяют точками пересечения одноименных горизонталей плоскости и топографической поверхности.

На рис. 3.42 дан пример построения истинного вида топографической поверхности с вертикальной плоскостью Σ. Искомую линию m определяют точками А, В, С … пересечения горизонталей топографической поверхности с секущей плоскостью Σ. На плане проекция кривой вырождается в прямую линию, совпадающую с проекцией плоскости: m ≡ Σ. Профиль кривой m построен с учетом расположения на плане проекций ее точек, а также их высотных отметок.

3.4.4. Поверхность равного уклона

Поверхность равного уклона представляет собой линейчатую поверхность, все прямолинейные образующие которой составляют с горизонтальной плоскостью постоянный угол. Получить такую поверхность можно перемещением прямого кругового конуса с осью, перпендикулярной плоскости плана, так, что бы его вершина скользила по некоторой направляющей, а ось в любом положении оставалась вертикальной.

На рис. 3.43 изображена поверхность равного уклона (i=1/2), направляющей которой служит пространственная кривая A, B, C, D.

Градуирования плоскости. В качестве примеров рассмотрим плоскости откосов дорожного полотна.

Пример 1. Продольный уклон дорожного полотна i=0, уклон откоса насыпи i н =1:1,5, (рис. 3.44а). Требуется провести горизонтали через 1м. Решение сводится к следующему. Проводим масштаб уклона плоскости перпендикулярно бровке дорожного полотна, отмечаем точки на расстоянии, равном интервалу 1,5м, взятом с линейного масштаба, и определяем отметки 49, 48 и 47. Через полученные точки проводим горизонтали откоса параллельно бровке дороги.

Пример 2. Продольный уклон дороги i≠0, уклон откоса насыпи i н =1:1,5, (рис.3.44б). Плоскость дорожного полотна градуируется. Откос дорожного полотна градуируется следующим образом. В точке с вершиной 50,00 (или другой точке) помещаем вершину конуса, описываем окружность радиусом, равным интервалу откоса насыпи (в нашем примере l = 1,5м). Отметка этой горизонтали конуса будет на единицу меньше отметки вершины, т.е. 49м. Проводим ряд окружностей, получаем отметки горизонталей 48, 47, касательно к которым из точек бровки с отметками 49, 48, 47 проводим горизонтали откоса насыпи.

Градуирование поверхностей.

Пример 3. Если продольный уклон дороги i=0 и уклон откоса насыпи i н =1:1,5, то горизонтали откосов проводят через точки масштаба уклона, интервал которого равен интервалу откосов насыпи, (рис.3.45а). Расстояние между двумя проекциями смежных горизонталей в направлении общей нормы (масштаб уклона) всюду одинаково.

Пример 4. Если продольный уклон дороги i≠0,а уклон откоса насыпи i н =1:1,5, (рис.3.45б) то горизонтали строят аналогично, за исключением того, что горизонтали откоса проводят не прямыми линиями, а кривыми.

3.4.5. Определение линии пределов земляных работ

Так как большинство грунтов неспособно сохранять вертикальные стенки, приходится строить откосы (искусственные сооружения). Уклон, придаваемый откосом, зависит от грунта.

Чтобы участку поверхности земли придать вид плоскости с определённым уклоном, нужно знать линию пределов земляных и нулевых работ. Эта линия, ограничивающая планируемый участок, представляется линиями пересечения откосов насыпей и выемок с заданной топографической поверхностью.

Так как каждая поверхность (в том числе и плоская) изображается при помощи горизонталей, то линию пересечения поверхностей строят как множество точек пересечения горизонталей с одинаковыми отметками. Рассмотрим примеры.

Пример 1. На рис. 3.46 дано земляное сооружение, имеющее форму усеченной четырехугольной пирамиды, стоящее на плоскости Н . Верхнее основание АВСD пирамиды имеет отметку и размеры сторон 2×2,5 м . Боковые грани (откосы насыпи) имеет уклон 2:1 и 1:1, направление которых показано стрелками.

Нужно построить линию пересечения откосов сооружения с плоскостью Н и между собой, а также построить, продольный профиль по оси симметрии.

Вначале строят диаграмму уклонов, интервалов и масштабов заложений, заданных откосов. Перпендикулярно каждой стороне площадки вычерчиваются масштабы уклонов откосов с заданными интервалами, после чего проекции горизонталей с одинаковыми отметками смежных граней находятся линии пересечения откосов, которые являются проекциями боковых ребер данной пирамиды.

Нижнее основание пирамиды совпадает с нулевыми горизонталями откосов. Если данное земляное сооружение пересечь вертикальной плоскостью Q , в сечении получится ломаная линия – продольный профиль сооружения.

Пример 2 . Построить линию пересечения откосов котлована с плоским косогором и между собой. Дно (АВСD ) котлована представляет собой прямоугольную площадку с отметкой 10м и размерами 3×4м. Ось площадки составляет с линией юг – север угол 5°. Откосы выемок имеют одинаковые уклоны 2:1 (рис. 3.47).

Линия нулевых работ устанавливается по плану местности. Её строят по точкам пересечения между собой одноименных проекций горизонталей рассматриваемых поверхностей. По точкам пересечения горизонталей откосов и топографической поверхности с одинаковыми отметками находят линию пересечения откосов, которые являются проекциями боковых ребер данного котлована.

В данном случае к дну котлована примыкают боковые откосы выемок. Линия abcd – искомая линия пересечения. Aa, Bb, Сс, Dd – ребра котлована, линии пересечения откосов между собой.

4. Вопросы для самоконтроля и задачи для самостоятельной работы по теме «Прямоугольные проекции»

Точка

4.1.1. Сущность метода проекций.

4.1.2. Что такое проекция точки?

4.1.3. Как называются и обозначаются плоскости проекций?

4.1.4. Что такое линии проекционной связи на чертеже и как они располагаются на чертеже по отношению к осям проекций?

4.1.5. Как построить третью (профильную) проекцию точки?

4.1.6. Построить на трехкартинном чертеже три проекции точек А, В, С, записать их координаты и заполнить таблицу.

4.1.7. Построить недостающие оси проекций, х А =25, y A =20. Построить профильную проекцию точки А.

4.1.8. Построить три проекции точек по их координатам: А(25,20,15), В(20,25,0) и С(35,0,10). Указать положение точек по отношению к плоскостям и осям проекций. Какая из точек ближе к плоскости П 3 ?

4.1.9. Материальные точки А и В начинают одновременно падать. В каком положении окажется точка В, когда точка А коснется земли? Определить видимость точек. Построить точки в новом положении.

4.1.10. Построить три проекции точки А, если точка лежит в плоскости П 3 , а расстояние от нее до плоскости П 1 равно 20 мм, до плоскости П 2 – 30 мм. Записать координаты точки.

Прямая

4.2.1. Чем может быть задана прямая линия на чертеже?

4.2.2. Какая прямая называется прямой общего положения?

4.2.3. Какое положение может занимать прямая относительно плоскостей проекций?

4.2.4. В каком случае проекция прямой обращается в точку?

4.2.5. Что характерно для комплексного чертежа прямой уровня?

4.2.6. Определить взаимное положение данных прямых.

a … b a … b a … b

4.2.7. Построить проекции отрезка прямой АВ длиной 20 мм, параллельного плоскостям: а) П 2 ; б) П 1 ; в) оси Ох. Обозначить углы наклона отрезка к плоскостям проекций.

4.2.8. Построить проекции отрезка АВ по координатам его концов: А(30,10,10), В(10,15,30). Построить проекции точки С, делящей отрезок в отношении АС:СВ = 1:2.

4.2.9. Определить и записать количество ребер данного многогранника и положение их относительно плоскостей проекций.

4.2.10. Через точку А провести горизонталь и фронталь, пересекающие прямую m.

4.2.11. Определить расстояние между прямой b и точкой А

4.2.12. Построить проекции отрезка АВ длиной 20 мм, проходящего через точку А и перпендикулярного плоскости а) П 2 ; б) П 1 ; в) П 3 .

Взаимное расположение двух прямых

Следующие утверждения выражают необходимые и достаточные признаки взаимного расположения двух прямых в пространстве, заданных каноническими уравнениями

а ) Прямые скрещиваются, т.е. не лежат на одной плоскости.

б ) Прямые пересекаются.

Но векторы и неколлинеарны (иначе их координаты пропорциональны).

в ) Прямые параллельны.

Векторы и коллинеарны, но вектор им неколлинеарен.

г ) Прямые совпадают.

Все три вектора: , коллинеарны.

Доказательство. Докажем достаточность указанных признаков

а ) Рассмотрим вектор и направляющие векторы данных прямых

то эти векторы некомпланарны, следовательно, данные прямые не лежат на одной плоскости.

б ) Если, то векторы компланарны, следовательно, данные прямые лежат в одной плоскости, а так как в случае (б ) направляющие векторы и этих прямых предполагаются неколлинеарными, то прямые пересекаются.

в ) Если направляющие векторы и данных прямых коллинеарны, то прямые или параллельные, или совпадают. В случае (в ) прямые параллельны, т.к. по условию вектор, начало которого находится в точке первой прямой, а конец – в точке второй прямой не коллинеарен и.

г) Если все векторы и коллинеарны, то прямые совпадают.

Необходимость признаков доказывается методом от противного.

Клетеник № 1007

Следующие утверждения дают необходимые и достаточные условия взаимного расположения прямой, заданной каноническими уравнениями

и плоскости, заданной общим уравнением

относительно общей декартовой системы координат.

Плоскость и прямая пересекаются:

Плоскость и прямая параллельны:

Прямая лежит на плоскости:

Докажем сначала достаточность указанных признаков. Запишем уравнения данной прямой в параметрическом виде:

Подставляя в уравнение (2 (плоскости)) координаты произвольной точки данной прямой, взятые из формул (3), будем иметь:

1. Если, то уравнение (4) имеет относительно t единственное решение:

а значит, данная прямая и данная плоскость имеют только одну общую точку, т.е. пересекаются.

2. Если, то уравнение (4) не удовлетворяется ни при каком значение t , т.е. на данной прямой нет ни одной точки, лежащей на данной плоскости, следовательно, данные прямая и плоскость параллельны.

3. Если, то уравнение (4) удовлетворяется при любом значении t , т.е. все точки данной прямой лежат на данной плоскости, значит, данная прямая лежит на данной плоскости.

Выведенные нами достаточные условия взаимного расположения прямой и плоскости являются и необходимыми и доказываются сразу методом от противного.

Из доказанного следует необходимое и достаточное условие того, что вектор компланарен плоскости, заданной общим уравнением относительно общей декартовой системы координат.