Автокорреляционная функция. Примеры расчётов

Периодическая зависимость представляет собой общий тип компонент временного ряда. Можно легко видеть, что каждое наблюдение очень похоже на соседнее; дополнительно, имеется повторяющаяся периодическая составляющая, это означает, что каждое наблюдение также похоже на наблюдение, имевшееся в том же самое время период назад. В общем, периодическая зависимость может быть формально определена как корреляционная зависимость порядка k между каждым i-м элементом ряда и (i-k)-м элементом. Ее можно измерить с помощью автокорреляции (т.е. корреляции между самими членами ряда); k обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если ошибка измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые k временных единиц .

Периодические составляющие временного ряда могут быть найдены с помощью коррелограммы. Коррелограмма (автокоррелограмма) показывает численно и графически автокорреляционную функцию (AКФ), иными словами коэффициенты автокорреляции для последовательности лагов из определенного диапазона. На коррелограмме обычно отмечается диапазон в размере двух стандартных ошибок на каждом лаге, однако обычно величина автокорреляции более интересна, чем ее надежность, потому что интерес в основном представляют очень сильные автокорреляции .

При изучении коррелограмм следует помнить, что автокорреляции последовательных лагов формально зависимы между собой. Рассмотрим следующий пример. Если первый член ряда тесно связан со вторым, а второй с третьим, то первый элемент должен также каким-то образом зависеть от третьего и т.д. Это приводит к тому, что периодическая зависимость может существенно измениться после удаления автокорреляций первого порядка, (т.е. после взятия разности с лагом 1).

Цель работы:

1. Дать основные теоретические сведения

2. Дать примеры расчета АКФ

Глава 1. Теоретические сведения

Коэффициент автокорреляции и его оценка

Для полной характеристики случайного процесса недостаточно его математического ожидания и дисперсии. Еще в 1927 г. Е.Е.Слуцкий ввел для зависимых наблюдений понятие «связанного ряда»: вероятность возникновения на определенном месте тех или иных конкретных значений зависит от того, какие значения случайная величина уже получила раньше или будет получать позже. Иными словами, существует поле рассеяния пар значений x(t), x(t+k) временного ряда, где k - постоянный интервал или задержка, характеризующее взаимозависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации –

g (k) = E[(x(t) - m)(x(t + k) - m)] –

и автокорреляции

r (k) = E[(x(t) - m)(x(t + k) - m)] / D ,

где m и D - математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p(x(t 1),x(t 2)). Однако для стационарных процессов, находящихся в определенном статистическом равновесии, это распределение вероятностей одинаково для всех времен t 1 , t 2 , разделенных одним и тем же интервалом. Поскольку дисперсия стационарного процесса в любой момент времени (как в t, так и в t + k) равна D = g (0), то автокорреляция с задержкой k может быть выражена как

r (k) = g (k) /g (0),

откуда вытекает, что r (0) = 1. В тех же условиях стационарности коэффициент корреляции r (k) между двумя значениями временного ряда зависит лишь от величины временного интервала k и не зависит от самих моментов наблюдений t.

В статистике имеется несколько выборочных оценок теоретических значений автокорреляции r (k) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой k (Андерсон, 1976; Вайну, 1977):

Наиболее важным из различных коэффициентов автокорреляции является первый - r 1 , измеряющий тесноту связи между уровнями x(1), x(2) ,..., x(n -1) и x(2), x(3), ..., x(n).

Распределение коэффициентов автокорреляции неизвестно, позтому для оценки их достоверности иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику

t = r 1 (n -1) 0.5 ,

которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).

Автокорреляционные функции

Последовательность коэффициентов корреляции r k , где k = 1, 2, ..., n, как функция интервала k между наблюдениями называется автокорреляционной функцией (АКФ).

Вид выборочной автокорреляционной функции тесно связан со структурой ряда.

· Автокорреляционная функция r k для «белого шума», при k >0, также образует стационарный временной ряд со средним значением 0.

· Для стационарного ряда АКФ быстро убывает с ростом k. При наличии отчетливого тренда автокорреляционная функция приобретает характерный вид очень медленно спадающей кривой .

· В случае выраженной сезонности в графике АКФ также присутствуют выбросы для запаздываний, кратных периоду сезонности, но эти выбросы могут быть завуалированы присутствием тренда или большой дисперсией случайной компоненты.

Рассмотрим примеры автокорреляционной функции:

· на рис. 1 представлен график АКФ, характеризующегося умеренным трендом и неясно выраженной сезонностью;

· рис. 2 демонстрирует АКФ ряда, характеризующегося феноменальной сезонной детерминантой;

· практически незатухающий график АКФ ряда (рис. 3) свидетельствует о наличии отчетливого тренда.




В общем случае можно предполагать, что в рядах, состоящих из отклонений от тренда, автокорреляции нет. Например, на рис. 4 представлен график АКФ для остатков, полученных от сглаживания ряда, очень напоминающий процесс «белого шума». Однако нередки случаи, когда остатки (случайная компонента h) могут оказаться автокоррелированными, например, по следующим причинам :

· в детерминированных или стохастических моделях динамики не учтен существенный фактор

· в модели не учтено несколько несущественных факторов, взаимное влияние которых оказывается существенным вследствие совпадения фаз и направлений их изменения;

· выбран неправильный тип модели (нарушен принцип контринтуитивности);

· случайная компонента имеет специфическую структуру.


Критерий Дарбина-Уотсона

Критерий Дарбина-Уотсона (Durbin, 1969) представляет собой распространенную статистику, предназначенную для тестирования наличия автокорреляции остатков первого порядка после сглаживания ряда или в регрессионных моделях.

Численное значение коэффициента равно

d = [(e(2)-e(1)) 2 + ... + (e(n)-e(n -1)) 2 ]/,

где e(t) - остатки.

Возможные значения критерия находятся в интервале от 0 до 4, причем табулированы его табличные пороговые значения для разных уровней значимости (Лизер, 1971).

Значение d близко к величине 2*(1 - r 1), где r - выборочный коэффициент автокорреляции для остатков. Соответственно, идеальное значение статистики - 2 (автокорреляция отсутствует). Меньшие значения соответствуют положительной автокорреляции остатков, большие – отрицательной .

Например, после сглаживания ряда ряд остатков имеет критерий d = 1.912. Аналогичная статистика после сглаживания ряда - d = 1.638 - свидетельствует о некоторой автокоррелированности остатков.

Глава 2. Примеры практических расчетов с помощью макроса Excel «Автокорреляционная функция»

Все данные взяты с сайта http://e3.prime-tass.ru/macro/

Пример 1. ВВП РФ

Приведем данные о ВВП РФ

Год квартал ВВП первая разность
2001 I 1900,9
II 2105,0 204,1
III 2487,9 382,9
IV 2449,8 -38,1
2002 I 2259,5 -190,3
II 2525,7 266,2
III 3009,2 483,5
IV 3023,1 13,9
2003 I 2850,7 -172,4
II 3107,8 257,1
III 3629,8 522,0
IV 3655,0 25,2
2004 I 3516,8 -138,2
II 3969,8 453,0
III 4615,2 645,4
IV 4946,4 331,2
2005 I 4479,2 -467,2
II 5172,9 693,7
III 5871,7 698,8
IV 6096,2 224,5
2006 I 5661,8 -434,4
II 6325,8 664,0
III 7248,1 922,3
IV 7545,4 297,3
2007 I 6566,2 -979,2
II 7647,5 1081,3
Как уже отмечалось ранее, частная автокорреляционная функция была введена с целью определения порядка авторегрессионного процесса. Дело в том, что в процессе скользящего среднего порядок модели достаточно просто определить, так как после него автокорреляционная функция резко стремится к нулю. Однако...
(Эконометрика)
  • Важное значение в анализе временных рядов имеют стационарные временные ряды, вероятностные свойства которых не изменяются во времени. Стационарные временные ряды применяются, в частности, при описании случайных составляющих анализируемых рядов. Временной ряд yt(t= 1,2,..., п) называется...
    (ЭКОНОМЕТРИКА)
  • Для упрощения анализа положим, что база ЛЧМ-сигнала достаточно велика, и поэтому его энергетический спектр равномерен и расположен лишь в полосе (со0 - со д/2, со0 + сод/2) вокруг несущей частоты со0. Тогда согласно выражению (2.61) АКФ ЛЧМ-сигнала равна Рис. 2.44. График нормированной АКФ ...
    (ТЕОРИЯ ЭЛЕКТРОСВЯЗИ)
  • Выявление структуры временного ряда. Автокорреляционная функция
    При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от значений предыдущих уровней. Степень тесноты связи между последовательностями наблюдений временного ряда (сдвинутых относительно друг друга на L единиц, или, как говорят, с лагом...
    (ЭКОНОМЕТРИКА)
  • Базовые модели временных рядов и автокорреляционный анализ
    1. Простейшим случаем аддитивной модели временного ряда является модель случайных изменений : Модель предполагает, что значения изучаемого показателя изменяются относительно постоянного среднего значения ц (нет восходящего или нисходящего тренда) с постоянной дисперсией и не зависят друг от друга....
    (ОСНОВЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ)
  • Автокорреляционная функция (АКФ) ЛЧМ-сигнала.
    Для упрощения анализа положим, что база ЛЧМ-сигнала достаточно велика, и поэтому его энергетический спектр равномерен и расположен лишь в полосе (со0 - сод/2, со0 + сол/2) вокруг несущей частоты со0. Тогда согласно выражению (2.61) АКФ ЛЧМ-сигнала равна График нормированной АКФ ЛЧМ-импульса R(т)...
    (ОБЩАЯ ТЕОРИЯ СВЯЗИ)
  • Стационарные временные ряды и их характеристики. Автокорреляционная функция
    Важное значение в анализе временных рядов имеют стационар- н ы е Понятие стационарного временного ряда тесно связано с понятием порождающего его стационарного случайного процесса (параграф 7.2). временные ряды, вероятностные свойства которых не изменяются во времени. Стационарные временные ряды применяются,...
    (ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА)
  • Введение

    Периодическая зависимость представляет собой общий тип компонент временного ряда. Можно легко видеть, что каждое наблюдение очень похоже на соседнее; дополнительно, имеется повторяющаяся периодическая составляющая, это означает, что каждое наблюдение также похоже на наблюдение, имевшееся в том же самое время период назад. В общем, периодическая зависимость может быть формально определена как корреляционная зависимость порядка k между каждым i-м элементом ряда и (i-k)-м элементом. Ее можно измерить с помощью автокорреляции (т.е. корреляции между самими членами ряда); k обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если ошибка измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые k временных единиц .

    Периодические составляющие временного ряда могут быть найдены с помощью коррелограммы. Коррелограмма (автокоррелограмма) показывает численно и графически автокорреляционную функцию (AКФ), иными словами коэффициенты автокорреляции для последовательности лагов из определенного диапазона. На коррелограмме обычно отмечается диапазон в размере двух стандартных ошибок на каждом лаге, однако обычно величина автокорреляции более интересна, чем ее надежность, потому что интерес в основном представляют очень сильные а, следовательно, высоко значимые автокорреляции .

    При изучении коррелограмм следует помнить, что автокорреляции последовательных лагов формально зависимы между собой. Рассмотрим следующий пример. Если первый член ряда тесно связан со вторым, а второй с третьим, то первый элемент должен также каким-то образом зависеть от третьего и т.д. Это приводит к тому, что периодическая зависимость может существенно измениться после удаления автокорреляций первого порядка, (т.е. после взятия разности с лагом 1).

    Цель работы:

    1. Дать основные теоретические сведения

    2. Дать примеры расчета АКФ

    Автокорреляционная функция

    Коэффициент автокорреляции и его оценка

    Для полной характеристики случайного процесса недостаточно его математического ожидания и дисперсии. Еще в 1927 г. Е.Е.Слуцкий ввел для зависимых наблюдений понятие «связанного ряда»: вероятность возникновения на определенном месте тех или иных конкретных значений зависит от того, какие значения случайная величина уже получила раньше или будет получать позже. Иными словами, существует поле рассеяния пар значений x(t), x(t+k) временного ряда, где k - постоянный интервал или задержка, характеризующее взаимозависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации -

    g (k) = E[(x(t) - m)(x(t + k) - m)] -

    и автокорреляции

    r (k) = E[(x(t) - m)(x(t + k) - m)] / D ,

    где m и D - математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p(x(t 1),x(t 2)). Однако для стационарных процессов, находящихся в определенном статистическом равновесии, это распределение вероятностей одинаково для всех времен t 1 , t 2 , разделенных одним и тем же интервалом. Поскольку дисперсия стационарного процесса в любой момент времени (как в t, так и в t + k) равна D = g (0), то автокорреляция с задержкой k может быть выражена как

    r (k) = g (k) /g (0),

    откуда вытекает, что r (0) = 1. В тех же условиях стационарности коэффициент корреляции r (k) между двумя значениями временного ряда зависит лишь от величины временного интервала k и не зависит от самих моментов наблюдений t. Коэффициент автокорреляции может быть оценен и для нестационарного ряда, но в этом случае его вероятностная интерпретация теряется.

    В статистике имеется несколько выборочных оценок теоретических значений автокорреляции r (k) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой k (Андерсон, 1976; Вайну, 1977):

    Наиболее важным из различных коэффициентов автокорреляции является первый - r 1 , измеряющий тесноту связи между уровнями x(1), x(2) ,..., x(n -1) и x(2), x(3), ..., x(n).

    Распределение коэффициентов автокорреляции неизвестно, позтому для оценки их достоверности иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику

    t = r 1 (n -1) 0.5 ,

    которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).

    Краткая теория

    При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда. Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

    Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Некоторые авторы считают целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный лаг должен быть не больше .

    Отметим два важных свойства коэффициента автокорреляции. Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

    Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

    Последовательность коэффициентов автокорреляции уровней первого, второго и т. д. порядков называют автокорреляционной функцией временного рада. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой.

    Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т. е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

    Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка , ряд содержит циклические колебания с периодичностью в моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты () и циклической (сезонной) компоненты ().

    Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания. Простейший подход - расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий:

    Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой , сезонной и случайной компонент. Общий вид мультипликативный модели выглядит так:

    Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой , сезонной и случайной компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

    Построение аддитивной и мультипликативной моделей сводится к расчету значений и для каждого уровня ряда.

    Процесс построения модели включает в себя следующие шаги.

    1. Выравнивание исходного ряда методом скользящей средней.

    2. Расчет значений сезонной компоненты .

    3. Устранение сезонной компоненты из исходных уровней ряда и получение выравненных данных в аддитивной или в мультипликативной модели.

    4. Аналитическое выравнивание уровней или и расчет значений с использованием полученного уравнения тренда.

    5. Расчет полученных по модели значений или .

    6. Расчет абсолютных и/или относительных ошибок.

    Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.

    Пример решения задачи

    Условие задачи

    Имеются условные данные об объемах потребления электроэнергии жителями региона за 16 кварталов.

    Требуется:

    1. Построить автокорреляционную функцию и сделать вывод о наличии сезонных колебаний.

    2. Построить аддитивную модель временного ряда (для нечетных вариантов) или мультипликативную модель временного ряда (для четных вариантов).

    3. Сделать прогноз на 2 квартала вперед.

    Чтобы решение задачи по эконометрике было максимально точным и верным, многие недорого заказывают контрольную работу на этом сайте. Подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Купить контрольную работу по эконометрике...

    1 5.5 9 8.2 2 4.8 10 5.5 3 5.1 11 6.5 4 9.0 12 11.0 5 7.1 13 8.9 6 4.9 14 6.5 7 6.1 15 7.3 8 10.0 16 11.2

    Решение задачи

    1) Построим поле корреляции:

    Уже исходя из графика видно, что значения образуют пилообразную фигуру. Рассчитаем несколько последовательных коэффициентов автокорреляции. Для этого составляем первую вспомогательную таблицу:

    1 5.5 --- --- --- --- --- --- 2 4.8 5.5 -2.673 -1.593 4.260 7.147 2.539 3 5.1 4.8 -2.373 -2.293 5.443 5.633 5.259 4 9 5.1 1.527 -1.993 -3.043 2.331 3.973 5 7.1 9 -0.373 1.907 -0.712 0.139 3.635 6 4.9 7.1 -2.573 0.007 -0.017 6.622 0.000 7 6.1 4.9 -1.373 -2.193 3.012 1.886 4.811 8 10 6.1 2.527 -0.993 -2.510 6.384 0.987 9 8.2 10 0.727 2.907 2.112 0.528 8.449 10 5.5 8.2 -1.973 1.107 -2.184 3.894 1.225 11 6.5 5.5 -0.973 -1.593 1.551 0.947 2.539 12 11 6.5 3.527 -0.593 -2.092 12.437 0.352 13 8.9 11 1.427 3.907 5.574 2.035 15.262 14 6.5 8.9 -0.973 1.807 -1.758 0.947 3.264 15 7.3 6.5 -0.173 -0.593 0.103 0.030 0.352 16 11.2 7.3 3.727 0.207 0.770 13.888 0.043 Сумма 112.1 106.4 0 0 10.507 64.849 52.689 Среднее значение 7.473 7.093

    Следует заметить. что среднее значение получается путем деления не на 16, а на 15, так как у нас теперь на одно наблюдение меньше.

    Коэффициент автокорреляции первого порядка:

    Составляем вспомогательную таблицу для расчета коэффициента автокорреляции второго порядка:

    1 5.5 --- --- --- --- --- --- 2 4.8 --- --- --- --- --- --- 3 5.1 5.5 -2.564 -1.579 4.048 6.576 2.492 4 9 4.8 1.336 -2.279 -3.044 1.784 5.192 5 7.1 5.1 -0.564 -1.979 1.116 0.318 3.915 6 4.9 9 -2.764 1.921 -5.311 7.641 3.692 7 6.1 7.1 -1.564 0.021 -0.034 2.447 0.000 8 10 4.9 2.336 -2.179 -5.089 5.456 4.746 9 8.2 6.1 0.536 -0.979 -0.524 0.287 0.958 10 5.5 10 -2.164 2.921 -6.323 4.684 8.535 11 6.5 8.2 -1.164 1.121 -1.306 1.356 1.258 12 11 5.5 3.336 -1.579 -5.266 11.127 2.492 13 8.9 6.5 1.236 -0.579 -0.715 1.527 0.335 14 6.5 11 -1.164 3.921 -4.566 1.356 15.378 15 7.3 8.9 -0.364 1.821 -0.664 0.133 3.318 16 11.2 6.5 3.536 -0.579 -2.046 12.501 0.335 Сумма 107.3 99.1 0 0 -29.721 57.192 52.644 Среднее значение 7.664 7.079

    Следовательно:

    Аналогично находим коэффициенты автокорреляции более высоких порядков, а все полученные значения заносим в сводную таблицу:

    Лаг Коэффициент автокорреляции уровней 1 0.180 2 -0.542 3 0.129 4 0.980 5 0.987 6 -0.686 7 0.019 8 0.958 9 0.117 10 -0.707 11 -0.086 12 0.937

    Коррелограмма:

    Анализ коррелограммы и графика исходных уровней временного ряда позволяет сделать выводы о наличии в изучаемом временном ряде сезонных колебаний периодичностью в четыре квартала.

    2) Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:

    Просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объемы потребления электроэнергии.

    Разделив полученные суммы на 4, найдем скользящие средние. Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

    Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние.

    Итого за четыре квартала Скользящая средняя за четыре квартала Центрированая скользящая средняя Оценка сезонной компоненты 1 5.5 -- -- -- -- 2 4.8 24.4 6.1 -- -- 3 5.1 26 6.5 6.300 -1.200 4 9 26.1 6.525 6.513 2.488 5 7.1 27.1 6.775 6.650 0.450 6 4.9 28.1 7.025 6.900 -2.000 7 6.1 29.2 7.3 7.163 -1.063 8 10 29.8 7.45 7.375 2.625 9 8.2 30.2 7.55 7.500 0.700 10 5.5 31.2 7.8 7.675 -2.175 11 6.5 31.9 7.975 7.888 -1.388 12 11 32.9 8.225 8.100 2.900 13 8.9 33.7 8.425 8.325 0.575 14 6.5 33.9 8.475 8.450 -1.950 15 7.3 --- --- --- --- 16 11.2 --- --- --- ---

    Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими среднеми. Используем эти оценки для расчета значений сезонной компоненты . Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты :

    Показатели Год № квартала, I II III IV 1 --- --- -1.2 2.488 2 0.45 -2 -1.063 2.625 3 0.7 -2.175 -1.388 2.9 4 0.575 -1.95 --- --- Всего за i-й квартал 1.725 -6.125 -3.651 8.013 Средняя оценка сезонной компоненты для -го квартала, 0.575 -2.042 -1.217 2.671 Скорректированная сезонная компонента, 0.578 -2.039 -1.213 2.674

    В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должны быть равна нулю.

    Для данной модели имеем:

    Корректирующий коэффициент:

    Рассчитываем скорректированные значения сезонной компоненты и заносим полученные данные в таблицу.

    Проверим равенство нулю суммы значений сезонной компоненты:

    Исключим влияние сезонной компоненты, вычитая ее значения из кажждого уровня исходного временного ряда. Получим величины . Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.

    1 5.5 0.578 4.922 5.853 6.431 -0.931 0.867 3.423 2 4.8 -2.039 6.839 6.053 4.014 0.786 0.618 6.503 3 5.1 -1.213 6.313 6.253 5.040 0.060 0.004 5.063 4 9 2.674 6.326 6.453 9.127 -0.127 0.016 2.723 5 7.1 0.578 6.522 6.653 7.231 -0.131 0.017 0.063 6 4.9 -2.039 6.939 6.853 4.814 0.086 0.007 6.003 7 6.1 -1.213 7.313 7.053 5.840 0.260 0.068 1.563 8 10 2.674 7.326 7.253 9.927 0.073 0.005 7.023 9 8.2 0.578 7.622 7.453 8.031 0.169 0.029 0.722 10 5.5 -2.039 7.539 7.653 5.614 -0.114 0.013 3.423 11 6.5 -1.213 7.713 7.853 6.640 -0.140 0.020 0.723 12 11 2.674 8.326 8.053 10.727 0.273 0.075 13.323 13 8.9 0.578 8.322 8.253 8.831 0.069 0.005 2.403 14 6.5 -2.039 8.539 8.453 6.414 0.086 0.007 0.723 15 7.3 -1.213 8.513 8.653 7.440 -0.140 0.020 0.003 16 11.2 2.674 8.526 8.853 11.527 -0.327 0.107 14.823 Итого 1.876 68.500

    Определим компоненту данной модели. Для этого проведем аналитическое выравнивание ряда с помощью линейного тренда. Результаты аналитического выравнивания следующие:

    Подставляя в это уравнение значения , найдем уровни для каждого момента времени

    Найлем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням значения сезонной компоненты для соответствующих кварталов.

    На одном графике отложим фактические значения уровней временного ряда и теоретические, полученные по аддитивной модели.

    Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок:

    Следовательно, можно сказать, что аддитивная модель объясняет 99.3% общей вариации уровней временного ряда.

    3) Прогнозное значение уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:

    Значения сезонных компонент за соответствующие кварталы равны:

    Таким образом:

    Если возникли сложности с решением задач, то сайт сайт оказывает онлайн помощь студентам по эконометрике с контрольными или экзаменами.

    Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

    Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

    Примеры близких по теме задач

    Линейная модель парной регрессии
    Задача на расчет линейной модели парной регрессии. В ходе решения приведено вычисление коэффициентов регрессии, произведена оценка их значимости, а также вычислена средняя ошибка аппроксимации и показан расчет доверительного интервала прогноза.

    Модель множественной линейной регрессии
    Страница содержит последовательное и систематизирование решение задачи на тему корреляционного анализа. Рассмотрена линейная модель множественной регрессии - вычисление коэффициентов регрессии и коэффициентов стандартизированного уравнения регрессии. Приведен расчет парных, частных и множественного коэффициента корреляции, коэффициентов эластичности.

    Периодическая зависимость представляет собой общий тип компонент временного ряда. Можно легко видеть, что каждое наблюдение очень похоже на соседнее; дополнительно, имеется повторяющаяся периодическая составляющая, это означает, что каждое наблюдение также похоже на наблюдение, имевшееся в том же самое время период назад. В общем, периодическая зависимость может быть формально определена как корреляционная зависимость порядка k между каждым i-м элементом ряда и (i-k)-м элементом. Ее можно измерить с помощью автокорреляции (т.е. корреляции между самими членами ряда); k обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если ошибка измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые k временных единиц .

    Периодические составляющие временного ряда могут быть найдены с помощью коррелограммы. Коррелограмма (автокоррелограмма) показывает численно и графически автокорреляционную функцию (AКФ), иными словами коэффициенты автокорреляции для последовательности лагов из определенного диапазона. На коррелограмме обычно отмечается диапазон в размере двух стандартных ошибок на каждом лаге, однако обычно величина автокорреляции более интересна, чем ее надежность, потому что интерес в основном представляют очень сильные автокорреляции .

    При изучении коррелограмм следует помнить, что автокорреляции последовательных лагов формально зависимы между собой. Рассмотрим следующий пример. Если первый член ряда тесно связан со вторым, а второй с третьим, то первый элемент должен также каким-то образом зависеть от третьего и т.д. Это приводит к тому, что периодическая зависимость может существенно измениться после удаления автокорреляций первого порядка, (т.е. после взятия разности с лагом 1).

    Цель работы:

    1. Дать основные теоретические сведения

    2. Дать примеры расчета АКФ

    Глава 1. Теоретические сведения

    Коэффициент автокорреляции и его оценка

    Для полной характеристики случайного процесса недостаточно его математического ожидания и дисперсии. Еще в 1927 г. Е.Е.Слуцкий ввел для зависимых наблюдений понятие «связанного ряда»: вероятность возникновения на определенном месте тех или иных конкретных значений зависит от того, какие значения случайная величина уже получила раньше или будет получать позже. Иными словами, существует поле рассеяния пар значений x(t), x(t+k) временного ряда, где k - постоянный интервал или задержка, характеризующее взаимозависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации –

    g (k) = E[(x(t) - m)(x(t + k) - m)] –

    и автокорреляции

    r (k) = E[(x(t) - m)(x(t + k) - m)] / D ,

    где m и D - математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p(x(t 1),x(t 2)). Однако для стационарных процессов, находящихся в определенном статистическом равновесии, это распределение вероятностей одинаково для всех времен t 1 , t 2 , разделенных одним и тем же интервалом. Поскольку дисперсия стационарного процесса в любой момент времени (как в t, так и в t + k) равна D = g (0), то автокорреляция с задержкой k может быть выражена как

    r (k) = g (k) /g (0),

    откуда вытекает, что r (0) = 1. В тех же условиях стационарности коэффициент корреляции r (k) между двумя значениями временного ряда зависит лишь от величины временного интервала k и не зависит от самих моментов наблюдений t.

    В статистике имеется несколько выборочных оценок теоретических значений автокорреляции r (k) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой k (Андерсон, 1976; Вайну, 1977):

    Наиболее важным из различных коэффициентов автокорреляции является первый - r 1 , измеряющий тесноту связи между уровнями x(1), x(2) ,..., x(n -1) и x(2), x(3), ..., x(n).

    Распределение коэффициентов автокорреляции неизвестно, позтому для оценки их достоверности иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику

    t = r 1 (n -1) 0.5 ,

    которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).

    Автокорреляционные функции

    Последовательность коэффициентов корреляции r k , где k = 1, 2, ..., n, как функция интервала k между наблюдениями называется автокорреляционной функцией (АКФ).

    Вид выборочной автокорреляционной функции тесно связан со структурой ряда.

    · Автокорреляционная функция r k для «белого шума», при k >0, также образует стационарный временной ряд со средним значением 0.

    · Для стационарного ряда АКФ быстро убывает с ростом k. При наличии отчетливого тренда автокорреляционная функция приобретает характерный вид очень медленно спадающей кривой .

    · В случае выраженной сезонности в графике АКФ также присутствуют выбросы для запаздываний, кратных периоду сезонности, но эти выбросы могут быть завуалированы присутствием тренда или большой дисперсией случайной компоненты.

    Рассмотрим примеры автокорреляционной функции:

    · на рис. 1 представлен график АКФ, характеризующегося умеренным трендом и неясно выраженной сезонностью;

    · рис. 2 демонстрирует АКФ ряда, характеризующегося феноменальной сезонной детерминантой;

    · практически незатухающий график АКФ ряда (рис. 3) свидетельствует о наличии отчетливого тренда.

    В общем случае можно предполагать, что в рядах, состоящих из отклонений от тренда, автокорреляции нет. Например, на рис. 4 представлен график АКФ для остатков, полученных от сглаживания ряда, очень напоминающий процесс «белого шума». Однако нередки случаи, когда остатки (случайная компонента h) могут оказаться автокоррелированными, например, по следующим причинам :

    · в детерминированных или стохастических моделях динамики не учтен существенный фактор

    · в модели не учтено несколько несущественных факторов, взаимное влияние которых оказывается существенным вследствие совпадения фаз и направлений их изменения;

    · выбран неправильный тип модели (нарушен принцип контринтуитивности);

    · случайная компонента имеет специфическую структуру.

    Критерий Дарбина-Уотсона

    Критерий Дарбина-Уотсона (Durbin, 1969) представляет собой распространенную статистику, предназначенную для тестирования наличия автокорреляции остатков первого порядка после сглаживания ряда или в регрессионных моделях.

    Численное значение коэффициента равно

    d = [(e(2)-e(1)) 2 + ... + (e(n)-e(n -1)) 2 ]/,

    где e(t) - остатки.

    Возможные значения критерия находятся в интервале от 0 до 4, причем табулированы его табличные пороговые значения для разных уровней значимости (Лизер, 1971).

    Значение d близко к величине 2*(1 - r 1), где r - выборочный коэффициент автокорреляции для остатков. Соответственно, идеальное значение статистики - 2 (автокорреляция отсутствует). Меньшие значения соответствуют положительной автокорреляции остатков, большие – отрицательной .

    Например, после сглаживания ряда ряд остатков имеет критерий d = 1.912. Аналогичная статистика после сглаживания ряда - d = 1.638 - свидетельствует о некоторой автокоррелированности остатков.

    Глава 2. Примеры практических расчетов с помощью макроса Excel «Автокорреляционная функция»

    Все данные взяты с сайта http://e3.prime-tass.ru/macro/

    Пример 1. ВВП РФ

    Приведем данные о ВВП РФ

    первая разность

    Исследуем ряд

    На диаграммах показаны: исходный ряд (сверху) и автокорреляционная функция до лага 9 (снизу). На нижней диаграмме штриховой линией обозначен уровень «белого шума» - граница статистической значимости коэффициентов корреляции. Видно, что имеется сильная корреляция 1 и 2 порядка, соседних членов ряда, но и удаленных на 1 единицу времени друг от друга. Корреляционные коэффициенты значительно превышают уровень «белого шума». По графику автокорреляции видим наличие четкого тренда.

    Ниже даны значения автокорреляционной функции и уровня белого шума

    Ошибка АКФ

    Если нас интересует внутренняя динамика ряда необходимо найти первую разность его членов, т.е. для каждого квартала найти изменение значения по сравнению с предыдущим кварталом. Для первой разности построим автокорреляционную функцию.

    Пример 2. Импорт

    значение

    разность

    Построим автокорреляционную функцию

    Ошибка АКФ

    Видим, что есть автокорреляция 1-го и 2-го порядков. График показывает наличие тренда. Положительная автокорреляция объясняется неправильно выбранной спецификацией, т.к. линейный тренд тут непригоден, он скорее экспоненциальный. Поэтому сделаем ряд стационарным, взяв первую разность.

    Ошибка АКФ

    Видим наличие автокорреляции 4-го порядка, что соответствует корреляции данных, отдаленных на год. Автокорреляцию первого порядка не имеем.

    Статистика Дарбина-Ватсона (DW) =2,023

    Пример 3. Экспорт

    Приведем данные

    значение

    разность


    Для исходного ряда имеем:

    Ошибка АКФ

    Очевидно наличие четкого тренда, значимыми являются коэффициенты автокорреляции 1-го и 2-го порядков. Для первой разности

    Ошибка АКФ

    Автокорреляции уже не видим, остатки распределены как «белый шум».

    Заключение

    Другой полезный метод исследования периодичности состоит в исследовании частной автокорреляционной функции (ЧАКФ), представляющей собой углубление понятия обычной автокорреляционной функции. В ЧАКФ устраняется зависимость между промежуточными наблюдениями (наблюдениями внутри лага). Другими словами, частная автокорреляция на данном лаге аналогична обычной автокорреляции, за исключением того, что при вычислении из нее удаляется влияние автокорреляций с меньшими лагами. На лаге 1 (когда нет промежуточных элементов внутри лага), частная автокорреляция равна, очевидно, обычной автокорреляции. На самом деле, частная автокорреляция дает более "чистую" картину периодических зависимостей.

    Как отмечалось выше, периодическая составляющая для данного лага k может быть удалена взятием разности соответствующего порядка. Это означает, что из каждого i-го элемента ряда вычитается (i-k)-й элемент. Имеются два довода в пользу таких преобразований. Во-первых, таким образом можно определить скрытые периодические составляющие ряда. Напомним, что автокорреляции на последовательных лагах зависимы. Поэтому удаление некоторых автокорреляций изменит другие автокорреляции, которые, возможно, подавляли их, и сделает некоторые другие сезонные составляющие более заметными. Во-вторых, удаление периодических составляющих делает ряд стационарным, что необходимо для применения некоторых методов анализа.

    Литература

    1. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1977.

    2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Высшая школа, 1997.

    3. Калинина В.Н., Панкин В.Ф. Математическая статистика. М.: Высшая школа, 1994.

    4. Мацкевич И.П., Свирид Г.П., Булдык Г.М. Сборник задач и упражнений по высшей математике (Теория вероятностей и математическая статистика). Минск: Вышейша школа, 1996.

    5. Тимофеева Л.К., Суханова Е.И., Сафиулин Г.Г. Сборник задач по теории вероятностей и математической статистике / Самарск. экон. ин-т. Самара, 1992.

    6. Тимофеева Л.К., Суханова Е.И., Сафиулин Г.Г. Теория вероятностей и математическая статистика / Самарск. гос. экон. акад. Самара, 1994.

    7. Тимофеева Л.К., Суханова Е.И. Математика для экономистов. Сборник задач по теории вероятностей и математической статистике. –М.: УМиИЦ «Учебная литература», 1998.


    А, следовательно, высоко значимые

    Коэффициент автокорреляции может быть оценен и для нестационарного ряда, но в этом случае его вероятностная интерпретация теряется.

    Фактически, нарушен принцип омнипотентности