Как вычислить давление газа 4 способа. Как изменяется давление идеального газа? Действие воды и газа на погруженное в них тело

Выбирать систему, распределяющую газообразное вещество, по критерию, который оценивает давление, уровню редукции и принципов постройки систем, распределяющих газопроводов (это могут быть кольцевой, тупиковый и смешанный газопроводов) стоит, основываясь на экономических просчетах и технических особенностях. Учитывая объем, структурные нюансы и свойство плотности потребляющего уровня газа, надежность и безопасный режим газоснабжающей системы, кроме того, местные постройки и эксплуатационные особенности.

Виды газопроводов

Газопроводные системы связываются с уровнями давления газообразного вещества, которое перемещается по ним, делятся на следующие виды:

1. Газопроводная конструкция с наличием высокого давления первого сорта в условиях рабочего давления газового вещества в пределах 0,71,3 МПа для натурального вещества и газовоздушной смеси и до 1,7 МПа для СУГ;

2. Газопроводный канал с высоким уровнем давления второй категории в условиях давления в рамках 0,40,7 МПа;

3. Газопроводное сооружение со средними показателями давления имеется давление в рабочем режиме в пределах 0,0060,4 МПа;

4. Газовый канал с низким давлением уровень давления до 0,006 МПа.


Виды газоснабжающих систем

Газоснабжающая система может иметь такие виды:

1. Одноуровневая, где подача газа потребляющим лицам производится только по газопроводному изделию одинаковых показателей давления (либо с низкими показателями, либо со средними);

2. Двухуровневая, где подача газа кругу потребляющих лиц осуществляется по газопроводному сооружению с двумя разными видами давления (показатели среднегонизкого либо среднеговысокого 1 или 2 уровня, либо высоких показателей 2 категории низких);

3. Трехуровневая, где прохождение газового вещества производится по газопроводу с тремя давлениями (высокое первого или второго уровня, среднее и низкое);

4. Многоуровневая, при которой газ движется по газовым линиям с четырьмя видами давления: высокое 1 и 2 уровня, среднее и низкое.

Связываться газопроводные системы с разными давлениями, которые входят в газоснабжающую систему, должны посредством ГРП, КДРД.


Для теплоустановок промышленной отрасли и котельного оборудования, стоящих отдельно от газопроводных линий, допустимым считается применение газового вещества с имеющимся давлением в пределах 1,3 МПа при условии, если такие показатели давления необходимы для особенностей технического процесса. Нельзя прокладывать газопроводную систему с показателем давления больше чем 1,2 МПа для многоэтажного жилого дома в населенной местности, в участках нахождения сооружений общего пользования, в местах нахождения большого количества людей, например, рынок, стадион, торговый центр, здание театра.

Нынешние системы распределения газоснабжающей линии состоят из сложного комплексного состава сооружений, которые, в свою очередь, имеют вид основных элементов таких, как газовых кольцевых, тупиковых и смешанных сетей с низкими, средними и высокими показателями давления. Они проложены на городских участках, других населенных пунктах, в сердце микрорайонов или здания. Кроме того, они могут размещаться на трассах газораспределительной станции, газорегуляторного пункта и установки, системе связи, системе автоматических установок и телемеханического оборудования.

Вся конструкция должна обеспечить подачу потребительского газа без проблем. В конструкции должно иметься отключающее устройство, которое направлено на отдельные ее элементы и участки газопровода для осуществления ремонта и устранения аварийных ситуаций. Помимо прочего, она обеспечивает беспроблемную транспортировку газового вещества потребляющим газ лицам, иметь простой механизм, безопасную, надежную и удобную эксплуатацию.

Проектировать газоснабжение всей области, города или поселка необходимо на основании схематических чертежей и планировки района, генерального плана города, учитывая перспективное развитие. Все элементы, приборы, механизмы и узловые детали в газоснабжающей системе стоит использовать одинаковые.

Выбирать распределяющую систему и принципов постройки газопровода (кольцевого, тупикового, смешанного) стоит осуществлять, основываясь на технических и экономических расчетных операциях, учитывая объем, структуру и плотность потребления газа.

Выбранная система должна иметь самую большую эффективность, с экономической точки зрения, и обязательно предполагать строительные процессы и иметь возможность вводить в работу газоснабжающую систему частично.


Классификация газопроводов

Основными частями газоснабжающей системы являются газопроводные конструкции, которые имеют виды в зависимости от давления газа и предназначения. Зависимо от наивысших показателей давления газа, которые транспортируется, газопроводные конструкции делятся на следующие:

1. Газопроводное сооружение с высокими показателями давления первого уровня в условиях показателей давления газообразного вещества более чем 0,7 МПа, до 1,7 МПа для СГУ;

2. Газопроводное изделие с высокими отметками давления второго уровня при режиме больше чем 0,4 МПа и до 0,7 МПа;

3. Провод со средним уровнем давления показатели выше 0,005 МПа и варьируются до 0,4 МПа;

4. Конструкция с низкими показателями, а именно до 0,004 МПа.

Газопроводная система с низкими отметками давления служит для перемещения газа в жилые сооружения и здания общего пользования, на предприятия общепита, а также в помещения котельных и предприятий бытового предназначения. К газопроводной системе с низким давлением разрешено присоединить небольшие потребительские установки и котельные. А вот большие коммунальные предприятия нельзя присоединять к линиям с низкими показателями давления, поскольку перемещать по ней большой объем газа не имеет смысла, это не имеет экономической выгоды.

Газопроводная конструкция со средними и высокими режимами давления предназначена в качестве источника питания для городской распределительной сети с низким и средним давлением в газовый провод промышленных цехов и коммунальных учреждений.

Городская газовая линия с высоким давлением считается главной линией, которая питает огромный город. Ее изготавливают как огромное , полукольцо или имеет лучеобразный вид. По ней газовое вещество подается посредством ГРП в сеть со средними и высокими отметками, кроме того, в большие промышленные предприятия, технологический процесс которых предполагает наличие газа с рабочим режимом больше 0,8 МПа.

Газоснабжающая система города

Показатели давления газа в трубопроводе до 0,003 МПа

Газоснабжающая система города это серьезный механизм, включающий в себя сооружения, технические устройства и трубопроводы, которые обеспечивают прохождение газа до пункта назначения и распределяют его между предприятиями, коммунальными учреждениями, потребителям, на основании спроса.

В своем составе имеет такие сооружения:
1. Газовая сеть с низким, средним и высоким климатом;

2. Газорегуляторная станция;

3. Газорегуляторный пункт;

4. Газорегуляторное оборудование;

5. Контролирующее устройство и система автоматического управления;

6. Диспетчерские приспособления;
7. Эксплуатационная система.

Подача газообразного вещества доходит по газопроводу через газорегуляторные станции напрямую в городскую газовую линию. На ГРС показатели давления падают с помощью автоматических клапанов на регуляторе, и остается неизменным на необходимом уровне для городского потребления на протяжении всего времени. Техническими специалистами в схему ГРС включается система, обеспечивающая защиту автоматически. Кроме того, она гарантирует поддержание показателей давления в городской линии, а также обеспечивает, чтобы они не превышали допустимый уровень. Из газорегулирующих станций газовое вещество по газовой линии доходит до потребителей.

Так как основным элементом городских газоснабжающих систем являются газовые линии, состоящие из газопроводных различий показателей давления, они могут быть представлены в следующих типах:

1. Линия с низкими отметками давления до 4 кПа;

2. Линия со средними показателями давления до 0,4 МПа;

3. Сеть с высоким режимом давления второго уровня до 0,7 МПа;

4. Сети с высокими показаниями первого уровня до 1,3 МПа.

По газопроводным конструкциям с низкими показателями давления газ перемещается и проходит распределение в жилое и общественное здание и различные помещения, а еще в цеха предприятий бытового назначения.

В газопроводной линии, находящейся в жилом помещении, допустимы показатели давления до 3 кПа, а в помещении предприятия бытового назначения и общественных сооружениях до 5 кПа. Как правило, в линии поддерживают давление низких показателей (до 3 кПа), и все сооружения стараются присоединить к газовой линии, в которой не предусмотрено регулятора газового давления. В газопроводных каналах со средним и высоким давлением (0,6 МПа), газообразный продукт подается посредством ГРП в линии с низким и средним давлением. Внутри ГРП имеется защищающее устройство, которое работает автоматически. Она исключает шансы перепадов давления с низкого уровня более чем допустимое значение.

По аналогичным коммуникациям через ГРУ газообразное вещество подается и в помещения промышленных предприятий и коммунальных учреждений. Согласно действующим нормам, самое высокое давление для предприятий промышленного, коммунального и сельскохозяйственного назначения, а также для установок отопительной системы разрешается в пределах 0,6 МПа, а для предприятия бытового назначения и рядом стоящих зданий в пределах 0,3 МПа. К установкам, которые располагаются на фасадах жилого дома или общественного здания разрешена подача газа с показателем давления не больше чем 0,3 МПа.

Газопроводные конструкции со средним и высоким режимом это и есть распределительные сети города. Газопроводное сооружение с высокими отметками давления используется исключительно в городах-мегаполисах. Помещения промышленности можно подсоединять к сети со средним и высоким давлением не применяя регуляторы, конечно же, если это основывается на технико-экономических расчетах. Системы городов строятся по иерархии, которая, в свою очередь, делится в зависимости от давления газопровода.

Иерархия имеет несколько уровней:

1. Линии с высоким и средним давлением основа городских газопроводов. Резервация происходит с помощью кольцеваний и дублирований отдельных мест. Тупиковая сеть может быть исключительно в маленьких городах. Газообразное вещество постепенно перемещается по уровням с низким давлением, оно производится колебаниями на клапане регулятора ГРП и находится на уровне постоянно. В случае наличия нескольких разных потребителей газа в одном участке разрешено укладывать в параллель газопроводные линии с разным давлением. А вот конструкция с высоким и средним давлением создает одну сеть в городе, которая имеет гидравлические нюансы.

2. Сеть с низким давлением. Она подает газ самым разным потребителям. Проект сетей создают со смешанными особенностями, при этом закольцуют только лишь главные газопроводные каналы, в остальных случаях создают тупиковые. Газопровод с низким давлением не может разделять реку, озеро или овраг, а также железную дорогу, автомагистраль. Его нельзя укладывать по промзонам, поэтому он не может быть частью единой гидравлической сетью. Проект сети с низкими показателями создаются в качестве локальной линии, которая имеет множество источников питания, через которые подается газ.

3. Газовая конструкция жилого дома или общественного сооружения, промцеха или предприятия. Они не резервируются. Давление зависит от назначения сети и уровня, который требуется для установки.

В зависимости от количества степеней, городские системы делятся :

1. Двухуровневая сеть состоит их линии с низким и средним давлением или с низким и высоким давлением.

2. Трехуровневая линия включает систему с низким, средним и высоким давлением.

3. Шагоуровневая сеть состоит из газопроводных конструкций всех уровней.

Городской газопровод с высоким и средним давлением создают как единую линию, которая подает газ к предприятию, котельной, коммунальным организациям и само ГРП. Создавать единую линию гораздо выгоднее, в отличие от разделяющей для промышленных помещений и, вообще, для бытового газового участка.

Выбирают городскую систему, основываясь на такие нюансы :

1. Какой город по размеру.

2. План городской местности.

3. Постройки в нем.

4. Какое в городе население.

5. Характеристика всех предприятий в городе.

6. Перспектива развития мегаполиса.

Выбрав необходимую систему нужно учитывать, что она должна отвечать требованиям экономичности, безопасности и надежности в использовании. Выражает простоту и удобство в применении, предполагать отключение отдельных ее участков для выполнения ремонтных работ. Кроме того, все части, приборы и приспособления в выбранной системе должны иметь однотипные детали.

В город по многоуровневой линии газ подается по двум магистралям через станцию, что, в свою очередь, увеличивает уровень надежности. Станция связана с участком высокого давления, которое находится по окраинам городских линий. Их этого участка газ подается в кольца с высоким или средним давлением. Если в центре мегаполиса создать газопроводную сеть с высоким давлением неосуществимо и недопустимо, тогда их необходимо разделить на две части: сеть со средним давлением в центре и сеть с высоким давлением на окраине.

Чтобы можно было отключить части газопроводной линии с высоким и средним давлением, отдельные участки с низким давлением, сооружения на жилых домах, промышленных цехов и помещений монтируют устройства, которые отключаются или, попросту сказать, специальные краны (см. ). Задвижку необходимо устанавливать на вводе и выводе, на ветвях уличного газопровода, на пересечении разных преград, железнодорожных установках и дорогах.

На внешних линиях устанавливают задвижку в колодце вместе с , показывающим значения температуры и напряжения. Кроме того, обеспечивает комфортную установку и разборку запорные элементы арматуры. Колодец нужно размещать, учитывая промежуток в два метра от построек или заборов. Количество барьеров должно обосновываться и быть по максимуму минимальным. Задвижка при вводе в помещение устанавливается на стене, при этом необходимо выдержать некоторый промежуток от дверей и окон. Если расположить арматуру выше 2 метров необходимо предусмотреть место с лестницей для того, чтобы была возможность ее обслужить.

В коттеджи в большинстве случаев подают газ по сетям со средним давлением, но не с низким. Во-первых, это предусматривает дополнительное регулирующее устройство, так как показатели давления выше. Во-вторых, газовые котлы в последнее время набирают популярности, то только на среднем давлении можно подавать газ в необходимом количестве к потребителям.

Газифицируя в условиях низкого давления, показатели конечного прибора будут падать. К примеру, если зимой допустимым считается давление около 300, то если отдалять от ГРП у потребителей будут падать показатели до 120. До морозов газового давления достаточно. Но если придет лютый мороз и все начнут обогреваться газовыми котлами, включив полную мощность, у собственников коттеджа на периферии давление значительным образом падает. А когда давление ниже 120 у собственников котлов начинают появляться неприятности, например, котловая установка, тухнет или показывает, что подача газа прекращена. В условиях подачи среднего давления по трубопроводу перемещается газ в сжатом состоянии. Далее, посредством регулятора, давление понижается до низких показателей, и котел работает беспроблемно.

Где бы ни находился газ: в воздушном шаре, автомобильной шине, или металлическом баллоне - он заполняет собой весь объём сосуда, в котором находится.

Давление газа возникает совсем по другой причине, нежели давление твёрдого тела. Оно образуется в результате ударов молекул о стенки сосуда.

Давление газа на стенки сосуда

Двигаясь хаотично в пространстве, молекулы газа сталкиваются между собой и со стенками сосуда, в котором находятся. Сила удара одной молекулы мала. Но так как молекул очень много, и сталкиваются они с большой частотой, то, действуя сообща на стенки сосуда, они создают значительное давление. Если в газ помещено твёрдое тело, то оно также подвергается ударам молекул газа.

Проведём несложный опыт. Под колокол воздушного насоса поместим завязанный воздушный шарик, не полностью наполненный воздухом. Так как воздуха в нём мало, шарик имеет неправильную форму. Когда же мы начнём откачивать воздух из-под колокола, шарик станет раздуваться. Через некоторое время он примет форму правильного шара.

Что же произошло с нашим шариком? Ведь он был завязан, следовательно, количество воздуха в нём осталось прежним.

Всё объясняется довольно просто. Во время движения молекулы газа сталкиваются с оболочкой шарика снаружи и внутри него. Если воздух откачивается из колокола, молекул становится меньше. Уменьшается плотность, а значит и частота ударов молекул о наружную оболочку также уменьшается. Следовательно, давление снаружи оболочки падает. А так как внутри оболочки число молекул осталось прежним, то внутреннее давление превышает наружное. Газ давит изнутри на оболочку. И по этой причине она постепенно раздувается и принимает форму шара.

Закон Паскаля для газов

Молекулы газа очень подвижны. Благодаря этому давление они передают не только в направлении действия силы, вызывающей это давление, но и равномерно по всем направлениям. Закон о передаче давления сформулировал французский учёный Блез Паскаль: «Давление, производимое на газ или жидкость, передаётся без изменений в любую точку по всем направлениям ». Этот закон называют основным законом гидростатики - науки о жидкости и газе в состоянии равновесия.

Закон Паскаля подтверждается опытом с прибором, который называют шаром Паскаля . Этот прибор представляет собой шар из твёрдого вещества с проделанными в нём крошечными отверстиями, соединённый с цилиндром, по которому двигается поршень. Шар заполняется дымом. При сжатии поршнем дым выталкивается из отверстий шара одинаковыми струйками.

Давление газа вычисляют по формуле:

где е lin - средняя кинетическая энергия поступательного движения молекул газа;

n - концентрация молекул

Парциальное давление. Закон Дальтона

На практике чаще всего нам приходится встречаться не с чистыми газами, а с их смесями. Мы дышим воздухом, являющимся смесью газов. Выхлопные газы автомобилей - тоже смесь. При сварке уже давно не применяется чистый углекислый газ. Вместо него также используют газовые смеси.

Газовой смесью называют смесь газов, не вступающих в химические реакции между собой.

Давление отдельного компонента газовой смеси называется парциальным давлением .

Если предположить, что все газы смеси являются идеальными газами, то давление смеси определяется законом Дальтона: «Давление смеси идеальных газов, не взаимодействующих химически, равно сумме парциальных давлений».

Его величина определяется по формуле:

Каждый газ в смеси создаёт парциальное давление. Его температура равна температуре смеси.

Давление газа можно изменить, меняя его плотность. Чем больше газа будет закачано в металлический баллон, тем больше в нём будет молекул, ударяющихся о стенки, и тем выше станет его давление. Соответственно, откачивая газ, мы разрежаем его, и давление снижается.

Но давление газа также можно изменить, изменив его объём или температуру, то есть, сжав газ. Сжатие проводят, воздействуя силой на газообразное тело. В результате такого воздействия уменьшается занимаемый им объём, повышается давление и температура.

Газ сжимается в цилиндре двигателя при движении поршня. На производстве высокое давление газа создают, сжимая его с помощью сложных устройств - компрессоров, которые способны создать давление до нескольких тысяч атмосфер.

Инструкция

Найдите давление идеального газа при наличии значений средней скорости , массы одной молекулы и концентрации по формуле P=⅓nm0v2, где n – концентрация (в граммах или молях на литр), m0 – масса одной молекулы.

Вычислите давление , если вы знаете температуру газа и его концентрацию, используя формулу P=nkT, где k – постоянная Больцмана (k=1,38·10-23 моль·К-1), Т - температура по абсолютной шкале Кельвина.

Найдите давление из двух равноценных вариантов уравнения Менделеева-Клайперона в зависимости от известных значений: P=mRT/MV или P=νRT/V, где R – универсальная газовая постоянная (R=8,31 Дж/моль·К), ν - в молях, V – объем газа в м3.

Если в условии задачи указана средняя молекул газа и его концентрация, найдите давление с помощью формулы P=⅔nEк, где Eк - кинетическая энергия в Дж.

Найдите давление из газовых законов - изохорного (V=const) и изотермического (T=const), если дано давление в одном из состояний. При изохорном процессе отношение давлений в двух состояниях равно отношению : P1/P2=T1/T2. Во втором случае, если температура остается постоянной величиной, произведение давления газа на его объем в первом состоянии равно тому же произведению во втором состоянии: P1·V1=P2·V2. Выразите неизвестную величину.

При расчете парциального давления пара , если в условии даны температура и воздуха, выразите давление из формулы φ/100=Р1/Р2, где φ/100 - относительная влажность, Р1 - парциальное давление водяного пара, Р2 - максимальное значение паров воды при данной температуре. В ходе расчета пользуйтесь таблицами зависимости максимальной упругости пара (максимального парциального давления) от температуры в градусах Цельсия.

Полезный совет

Используйте барометр-анероид или ртутный барометр для более точного значения, если вам необходимо вычислить давление газа в ходе эксперимента или лабораторной работы. Для измерения давления газа в сосуде или баллоне пользуйтесь обычным или электронным манометром.

Источники:

  • Давление и плотность насыщенного водяного пара в зависимости от температуры — таблица
  • формула давления газа

Выдержит ли ведро, если налить в него воды? А если налить туда более тяжелую жидкость? Для того чтобы ответить на этот вопрос, необходимо рассчитать давление , которое оказывает жидкость на стенки того или иного сосуда. Это очень часто бывает необходимо на производстве – например, при изготовлении цистерн или резервуаров. Особенно важно рассчитать прочность емкостей, если речь идет об опасных жидкостях.

Вам понадобится

  • Сосуд
  • Жидкость с известной плотностью
  • Знание закона Паскаля
  • Ареометр или пикнометр
  • Мерная мензурка
  • Таблица поправок для взвешивания на воздухе
  • Линейка

Инструкция

Источники:

  • Расчет давления жидкости на дно и стенки сосуда

Даже приложив небольшое усилие, можно создать значительное давление . Все, что для этого необходимо - сконцентрировать это усилие на небольшой площади. И наоборот, если равномерно распределить по большой площади значительное усилие, давление получится сравнительно малым. Чтобы узнать, каким именно, придется провести расчет.

Инструкция

В случае если в задаче приведена не сила, а масса груза, вычислите силу по следующей формуле:F=mg, где F - сила (Н), m - масса (кг), g - ускорение свободного падения, равное 9,80665 м/с².

Если в условиях вместо площади указаны геометрические параметры области, на которую оказывается давление , вначале рассчитайте площадь этой области. Например, для прямоугольника:S=ab, где S - площадь (м²), a - длина (м), b - ширина (м).Для круга:S=πR², где S - площадь (м²), π - число «пи», 3,1415926535 (безразмерная величина), R - радиус (м).

Чтобы узнать давление , поделите усилие на площадь:P=F/S, где P - давление (Па), F - сила (н), S - площадь (м²).

В ходе подготовки сопроводительной документации к товарам, предназначенным для поставки на экспорт, может потребоваться выразить давление в фунтах на квадратный дюйм (PSI - pounds per square inch). В этом случае руководствуйтесь следующим соотношением: 1 PSI=6894,75729 Па.

  • Форма, строение молекул достаточно сложны. Но попробуем представить их в виде маленьких шариков. Это позволит нам применить к описанию процесса удара молекул о стенки сосуда законы механики, в частности, второй закон Ньютона .
  • Будем считать, что молекулы газа находятся на достаточно большом расстоянии друг от друга, так, что силы взаимодействия между ними пренебрежимо малы. Если между частицами отсутствуют силы взаимодействия, соответственно, равна нулю и потенциальная энергия взаимодействия . Назовем газ, отвечающий этим свойствам, идеальным .
  • Известно, что молекулы газа движутся с разными скоростями . Однако, усредним скорости движения молекул и будем считать их одинаковыми .
  • Предположим, что удары молекул о стенки сосуда абсолютно упругие (молекулы ведут себя при ударе подобно резиновым мячикам, а не подобно куску пластилина). При этом скорости молекул изменяются лишь по направлению, а по величине остаются прежними. Тогда изменение скорости каждой молекулы при ударе равно –2υ.

Введя такие упрощения, рассчитаем давление газа на стенки сосуда.


Сила действует на стенку со стороны множества молекул. Она может быть рассчитана как произведение силы, действующей со стороны одной молекулы, на число молекул, движущихся в сосуде в направлении этой стенки. Так как пространство трехмерно и каждое измерение имеет два направления: положительное и отрицательное, можно считать, что в направлении одной стенки движется одна шестая часть всех молекул (при большом их числе): N = N 0 / 6 .

Сила, действующая на стенку со стороны одной молекулы, равна силе, действующей на молекулу со стороны стенки. Сила, действующая на молекулу со стороны стенки, равна произведению массы одной молекулы на ускорение, которое она получает при ударе о стенку:

F" = m 0 a .

Ускорение же – это физическая величина, определяемая отношением изменения скорости ко времени, в течение которого это изменение произошло: a = Δυ / t .

Изменение скорости равно удвоенному значению скорости молекулы до удара: Δυ = –2υ .

Если молекула ведет себя подобно резиновому мячику, нетрудно представить процесс удара: молекула, ударяясь, деформируется. На процесс сжатия и разжатия затрачивается время. Пока молекула действует на стенку сосуда, о последнюю успевает удариться еще некоторое число молекул, находящихся от нее на расстояниях не дальше l = υt . (Например, условно говоря, пусть молекулы имеют скорость 100 м/с. Удар длится 0,01 с. Тогда за это время до стенки успеют долететь и внести свой вклад в давление молекулы, находящиеся от нее на расстояниях 10, 50, 70 см, но не далее 100 см).

Будем рассматривать объем сосуда V = lS .

Подставив все формулы в исходную, получаем уравнение:

где: – масса одной молекулы, – среднее значение квадрата скорости молекул, N – число молекул в объеме V .

Сделаем некоторые пояснения по поводу одной из величин, входящих в полученное уравнение.

Так как движение молекул хаотично и преимущественного движения молекул в сосуде нет, их средняя скорость равна нулю. Но ясно, что это не относится к каждой отдельной молекуле.

Для вычисления давления идеального газа на стенку сосуда используется не среднее значение x -компоненты скорости молекул а среднее значение квадрата скорости

Чтобы введение этой величины было более понятным, рассмотрим численный пример.

Пусть четыре молекулы имеют скорости 1, 2, 3, 4 усл. ед.

Квадрат среднего значения скорости молекул равен:

Среднее значение квадрата скорости равно:

Средние значения проекций квадрата скорости на оси x , y , z связаны со средним значением квадрата скорости соотношением.

Как изменяется давление идеального газа?

Идеальный газ представляет собой физическую модель газа. Эта модель практически не учитывает взаимодействие молекул между собой. Она используется для описания поведения газов с математической точки зрения. Данная модель предполагает следующие свойства газа:

  • размер молекул больше, чем расстояние между молекулами;
  • молекулы представляют собой круглый шары;
  • отталкиваются молекулы друг от друга и от стенок сосуда только после соударения. Соударения совершенно упруги;
  • двигаются молекулы в соответствии с законами Ньютона.

Существует несколько видов идеального газа:

  • классический;
  • квантовый (рассматривает идеальный газ в условиях понижения температуры и увеличения расстояния между молекулами);
  • в гравитационном поле (рассматривает изменения свойств идеального газа в гравитационном поле).

Ниже будет рассмотрен классический идеальный газ.

Как определить давление идеального газа?

Фундаментальная зависимость всех идеальных газов выражается с помощью уравнения Менделеева-Клапейрона.

PV=(m/M).RT [Формула 1]

  • P — давление. Единица измерения — Па (Паскаль)
  • R=8,314 — универсальная газовая постоянная. Единица измерения — (Дж/моль.К)
  • T — температура
  • V — объем
  • m — масса газа
  • M — молярная масса газа. Единица измерения — (г/моль).

P = nkT [Формула 2]

Формула 2 показывает, что давление идеального газа зависит от концентрации молекул и температуры. Если учесть особенности идеального газа, то n будет определятся формулой:

n = mNа/MV [Формула 3]

  • N - число молекул в сосуде
  • N а - постоянная Авогадро

Подставив формулу 3 в формулу 2, получаем:

  • PV = (m/M)Nа kT [Формула 4]
  • k*N а = R [Формула 5]

Постоянная R является константой для одного моля газа в равенстве Менделеева-Клапейрона (вспомним: при постоянных давлении и температуре 1 моль различных газов занимает одинаковый объем).

Теперь выведем уравнение давления для идеального газа

m/M = ν [Формула 6]

  • где ν — количества вещества. Единица измерения — моль

Получаем уравнение давления идеального газа, формула приведена ниже:

P=νRT/V [Формула 7]

  • где P — давление. Единица измерения — Па (Паскаль)
  • R= 8,314 — универсальная газовая постоянная. Единица измерения — (Дж/моль.К)
  • T — температура
  • V — объем.

Как изменится давление идеального газа?

Проанализировав равенство 7, можно увидеть, что давление идеального газа пропорционально изменению температуры и концентрации.

В состоянии идеального газа возможны изменения всех параметров, от которых он зависит, а возможны изменения и некоторых из них. Рассмотрим наиболее вероятные ситуации:

  • Изотермический процесс. Этот процесс характеризуется тем, что температура в нем будет постоянна (T = const). Если в уравнение 1 подставить постоянную температуру, то увидим, что значение произведения P*V тоже будет постоянным.
    • PV = const [Формула 8]

Равенство 8 показывает зависимость между объемом газа и его давлением при постоянной температуре. Это уравнение было в 17 веке открыто экспериментальным путем физиками Робертом Бойлем и Эдмом Мариоттом. Уравнение назвали в их честь законом Бойля-Мариотта.

  • Изохорный процесс. В этом процессе постоянным остается объем, масса газа и его молярная масса. V= const, m = const, M = const. Таким образом, получаем давления идеального газа. Формула показана ниже:
    • P= P 0 AT [Формула 9]
    • Где: P — давление газа при абсолютной температуре,
    • P 0 — давление газа при температуре 273° K (0° C),
    • A — температурный коэффициент давления. A = (1/273,15) К -1

Эта зависимость была открыта в 19 веке экспериментальным путем физиком Шарлем. Поэтому уравнение и носит название своего создателя - закон Шарля.

Изохорный процесс можно наблюдать, если при постоянном объеме нагревать газ.

  • Изобарный процесс. Для этого процесса постоянными будут давление, масса газа и его молярная масса. P = const, m = const, M = const. Уравнение изобарного процесса имеет вид:
    • V/T = const или V = V 0 AT [Формула 10]
    • где: V 0 — объем газа при температуре 273° K (0° C);
    • A = (1/273,15) К -1 .

В данной формуле коэффициент А выступает температурным коэффициентом для объемного расширения газа.

Эта зависимость была открыта в 19 веке физиком Жозефом Гей-Люссаком. Именно поэтому это равенство носит его имя — закон Гай-Люссака.

Если взять стеклянную колбу, соединенную с трубкой, отверстие которой будет закрыто жидкостью, и нагревать конструкцию, то можно будет наблюдать изобарный процесс.

Стоит отметить, что воздух при комнатной температуре имеет свойства, схожие с идеальным газом.