Метод линейной регрессии в статистике. Регрессия в Excel: уравнение, примеры

Регрессионный анализ — это статистический метод исследования, позволяющий показать зависимость того или иного параметра от одной либо нескольких независимых переменных. В докомпьютерную эру его применение было достаточно затруднительно, особенно если речь шла о больших объемах данных. Сегодня, узнав как построить регрессию в Excel, можно решать сложные статистические задачи буквально за пару минут. Ниже представлены конкретные примеры из области экономики.

Виды регрессии

Само это понятие было введено в математику в 1886 году. Регрессия бывает:

  • линейной;
  • параболической;
  • степенной;
  • экспоненциальной;
  • гиперболической;
  • показательной;
  • логарифмической.

Пример 1

Рассмотрим задачу определения зависимости количества уволившихся членов коллектива от средней зарплаты на 6 промышленных предприятиях.

Задача. На шести предприятиях проанализировали среднемесячную заработную плату и количество сотрудников, которые уволились по собственному желанию. В табличной форме имеем:

Количество уволившихся

Зарплата

30000 рублей

35000 рублей

40000 рублей

45000 рублей

50000 рублей

55000 рублей

60000 рублей

Для задачи определения зависимости количества уволившихся работников от средней зарплаты на 6 предприятиях модель регрессии имеет вид уравнения Y = а 0 + а 1 x 1 +…+а k x k , где х i — влияющие переменные, a i — коэффициенты регрессии, a k — число факторов.

Для данной задачи Y — это показатель уволившихся сотрудников, а влияющий фактор — зарплата, которую обозначаем X.

Использование возможностей табличного процессора «Эксель»

Анализу регрессии в Excel должно предшествовать применение к имеющимся табличным данным встроенных функций. Однако для этих целей лучше воспользоваться очень полезной надстройкой «Пакет анализа». Для его активации нужно:

  • с вкладки «Файл» перейти в раздел «Параметры»;
  • в открывшемся окне выбрать строку «Надстройки»;
  • щелкнуть по кнопке «Перейти», расположенной внизу, справа от строки «Управление»;
  • поставить галочку рядом с названием «Пакет анализа» и подтвердить свои действия, нажав «Ок».

Если все сделано правильно, в правой части вкладки «Данные», расположенном над рабочим листом «Эксель», появится нужная кнопка.

в Excel

Теперь, когда под рукой есть все необходимые виртуальные инструменты для осуществления эконометрических расчетов, можем приступить к решению нашей задачи. Для этого:

  • щелкаем по кнопке «Анализ данных»;
  • в открывшемся окне нажимаем на кнопку «Регрессия»;
  • в появившуюся вкладку вводим диапазон значений для Y (количество уволившихся работников) и для X (их зарплаты);
  • подтверждаем свои действия нажатием кнопки «Ok».

В результате программа автоматически заполнит новый лист табличного процессора данными анализа регрессии. Обратите внимание! В Excel есть возможность самостоятельно задать место, которое вы предпочитаете для этой цели. Например, это может быть тот же лист, где находятся значения Y и X, или даже новая книга, специально предназначенная для хранения подобных данных.

Анализ результатов регрессии для R-квадрата

В Excel данные полученные в ходе обработки данных рассматриваемого примера имеют вид:

Прежде всего, следует обратить внимание на значение R-квадрата. Он представляет собой коэффициент детерминации. В данном примере R-квадрат = 0,755 (75,5%), т. е. расчетные параметры модели объясняют зависимость между рассматриваемыми параметрами на 75,5 %. Чем выше значение коэффициента детерминации, тем выбранная модель считается более применимой для конкретной задачи. Считается, что она корректно описывает реальную ситуацию при значении R-квадрата выше 0,8. Если R-квадрата<0,5, то такой анализа регрессии в Excel нельзя считать резонным.

Анализ коэффициентов

Число 64,1428 показывает, каким будет значение Y, если все переменные xi в рассматриваемой нами модели обнулятся. Иными словами можно утверждать, что на значение анализируемого параметра оказывают влияние и другие факторы, не описанные в конкретной модели.

Следующий коэффициент -0,16285, расположенный в ячейке B18, показывает весомость влияния переменной Х на Y. Это значит, что среднемесячная зарплата сотрудников в пределах рассматриваемой модели влияет на число уволившихся с весом -0,16285, т. е. степень ее влияния совсем небольшая. Знак «-» указывает на то, что коэффициент имеет отрицательное значение. Это очевидно, так как всем известно, что чем больше зарплата на предприятии, тем меньше людей выражают желание расторгнуть трудовой договор или увольняется.

Множественная регрессия

Под таким термином понимается уравнение связи с несколькими независимыми переменными вида:

y=f(x 1 +x 2 +…x m) + ε, где y — это результативный признак (зависимая переменная), а x 1 , x 2 , …x m — это признаки-факторы (независимые переменные).

Оценка параметров

Для множественной регрессии (МР) ее осуществляют, используя метод наименьших квадратов (МНК). Для линейных уравнений вида Y = a + b 1 x 1 +…+b m x m + ε строим систему нормальных уравнений (см. ниже)

Чтобы понять принцип метода, рассмотрим двухфакторный случай. Тогда имеем ситуацию, описываемую формулой

Отсюда получаем:

где σ — это дисперсия соответствующего признака, отраженного в индексе.

МНК применим к уравнению МР в стандартизируемом масштабе. В таком случае получаем уравнение:

в котором t y , t x 1, … t xm — стандартизируемые переменные, для которых средние значения равны 0; β i — стандартизированные коэффициенты регрессии, а среднеквадратическое отклонение — 1.

Обратите внимание, что все β i в данном случае заданы, как нормируемые и централизируемые, поэтому их сравнение между собой считается корректным и допустимым. Кроме того, принято осуществлять отсев факторов, отбрасывая те из них, у которых наименьшие значения βi.

Задача с использованием уравнения линейной регрессии

Предположим, имеется таблица динамики цены конкретного товара N в течение последних 8 месяцев. Необходимо принять решение о целесообразности приобретения его партии по цене 1850 руб./т.

номер месяца

название месяца

цена товара N

1750 рублей за тонну

1755 рублей за тонну

1767 рублей за тонну

1760 рублей за тонну

1770 рублей за тонну

1790 рублей за тонну

1810 рублей за тонну

1840 рублей за тонну

Для решения этой задачи в табличном процессоре «Эксель» требуется задействовать уже известный по представленному выше примеру инструмент «Анализ данных». Далее выбирают раздел «Регрессия» и задают параметры. Нужно помнить, что в поле «Входной интервал Y» должен вводиться диапазон значений для зависимой переменной (в данном случае цены на товар в конкретные месяцы года), а в «Входной интервал X» — для независимой (номер месяца). Подтверждаем действия нажатием «Ok». На новом листе (если так было указано) получаем данные для регрессии.

Строим по ним линейное уравнение вида y=ax+b, где в качестве параметров a и b выступают коэффициенты строки с наименованием номера месяца и коэффициенты и строки «Y-пересечение» из листа с результатами регрессионного анализа. Таким образом, линейное уравнение регрессии (УР) для задачи 3 записывается в виде:

Цена на товар N = 11,714* номер месяца + 1727,54.

или в алгебраических обозначениях

y = 11,714 x + 1727,54

Анализ результатов

Чтобы решить, адекватно ли полученное уравнения линейной регрессии, используются коэффициенты множественной корреляции (КМК) и детерминации, а также критерий Фишера и критерий Стьюдента. В таблице «Эксель» с результатами регрессии они выступают под названиями множественный R, R-квадрат, F-статистика и t-статистика соответственно.

КМК R дает возможность оценить тесноту вероятностной связи между независимой и зависимой переменными. Ее высокое значение свидетельствует о достаточно сильной связи между переменными «Номер месяца» и «Цена товара N в рублях за 1 тонну». Однако, характер этой связи остается неизвестным.

Квадрат коэффициента детерминации R 2 (RI) представляет собой числовую характеристику доли общего разброса и показывает, разброс какой части экспериментальных данных, т.е. значений зависимой переменной соответствует уравнению линейной регрессии. В рассматриваемой задаче эта величина равна 84,8%, т. е. статистические данные с высокой степенью точности описываются полученным УР.

F-статистика, называемая также критерием Фишера, используется для оценки значимости линейной зависимости, опровергая или подтверждая гипотезу о ее существовании.

(критерий Стьюдента) помогает оценивать значимость коэффициента при неизвестной либо свободного члена линейной зависимости. Если значение t-критерия > t кр, то гипотеза о незначимости свободного члена линейного уравнения отвергается.

В рассматриваемой задаче для свободного члена посредством инструментов «Эксель» было получено, что t=169,20903, а p=2,89Е-12, т. е. имеем нулевую вероятность того, что будет отвергнута верная гипотеза о незначимости свободного члена. Для коэффициента при неизвестной t=5,79405, а p=0,001158. Иными словами вероятность того, что будет отвергнута верная гипотеза о незначимости коэффициента при неизвестной, равна 0,12%.

Таким образом, можно утверждать, что полученное уравнение линейной регрессии адекватно.

Задача о целесообразности покупки пакета акций

Множественная регрессия в Excel выполняется с использованием все того же инструмента «Анализ данных». Рассмотрим конкретную прикладную задачу.

Руководство компания «NNN» должно принять решение о целесообразности покупки 20 % пакета акций АО «MMM». Стоимость пакета (СП) составляет 70 млн американских долларов. Специалистами «NNN» собраны данные об аналогичных сделках. Было принято решение оценивать стоимость пакета акций по таким параметрам, выраженным в миллионах американских долларов, как:

  • кредиторская задолженность (VK);
  • объем годового оборота (VO);
  • дебиторская задолженность (VD);
  • стоимость основных фондов (СОФ).

Кроме того, используется параметр задолженность предприятия по зарплате (V3 П) в тысячах американских долларов.

Решение средствами табличного процессора Excel

Прежде всего, необходимо составить таблицу исходных данных. Она имеет следующий вид:

  • вызывают окно «Анализ данных»;
  • выбирают раздел «Регрессия»;
  • в окошко «Входной интервал Y» вводят диапазон значений зависимых переменных из столбца G;
  • щелкают по иконке с красной стрелкой справа от окна «Входной интервал X» и выделяют на листе диапазон всех значений из столбцов B,C, D, F.

Отмечают пункт «Новый рабочий лист» и нажимают «Ok».

Получают анализ регрессии для данной задачи.

Изучение результатов и выводы

«Собираем» из округленных данных, представленных выше на листе табличного процессора Excel, уравнение регрессии:

СП = 0,103*СОФ + 0,541*VO - 0,031*VK +0,405*VD +0,691*VZP - 265,844.

В более привычном математическом виде его можно записать, как:

y = 0,103*x1 + 0,541*x2 - 0,031*x3 +0,405*x4 +0,691*x5 - 265,844

Данные для АО «MMM» представлены в таблице:

Подставив их в уравнение регрессии, получают цифру в 64,72 млн американских долларов. Это значит, что акции АО «MMM» не стоит приобретать, так как их стоимость в 70 млн американских долларов достаточно завышена.

Как видим, использование табличного процессора «Эксель» и уравнения регрессии позволило принять обоснованное решение относительно целесообразности вполне конкретной сделки.

Теперь вы знаете, что такое регрессия. Примеры в Excel, рассмотренные выше, помогут вам в решение практических задач из области эконометрики.

Регрессионный анализ лежит в основе создания большинства эконометрических моделей, к числу которых следует отнести и модели оценки стоимости. Для построения моделей оценки этот метод можно использовать, если количество аналогов (сопоставимых объектов) и количество факторов стоимости (элементов сравнения) соотносятся между собой следующим образом: п > (5 -г-10) х к, т.е. аналогов должно быть в 5-10 раз больше, чем факторов стоимости. Это же требование к соотношению количества данных и количества факторов распространяется и на другие задачи: установление связи между стоимостью и потребительскими параметрами объекта; обоснование порядка расчета корректирующих индексов; выяснение трендов цен; установление связи между износом и изменениями влияющих факторов; получение зависимостей для расчета нормативов затрат и т.п. Выполнение данного требования необходимо для того, чтобы уменьшить вероятность работы с выборкой данных, которая не удовлетворяет требованию нормальности распределения случайных величин.

Регрессионная связь отражает лишь усредненную тенденцию изменения результирующей переменной, например, стоимости, от изменения одной или нескольких факторных переменных, например, местоположения, количества комнат, площади, этажа и т.п. В этом заключается отличие регрессионной связи от функциональной, при которой значение результирующей переменной строго определено при заданном значении факторных переменных.

Наличие регрессионной связи / между результирующей у и факторными переменными х р ..., х к (факторами) свидетельствует о том, что эта связь определяется не только влиянием отобранных факторных переменных, но и влиянием переменных, одни из которых вообще неизвестны, другие не поддаются оценке и учету:

Влияние неучтенных переменных обозначается вторым слагаемым данного уравнения ?, которое называют ошибкой аппроксимации.

Различают следующие типы регрессионных зависимостей:

  • ? парная регрессия - связь между двумя переменными (результирующей и факторной);
  • ? множественная регрессия - зависимость одной результирующей переменной и двух или более факторных переменных, включенных в исследование.

Основная задача регрессионного анализа - количественное определение тесноты связи между переменными (при парной регрессии) и множеством переменных (при множественной регрессии). Теснота связи количественно выражается коэффициентом корреляции.

Применение регрессионного анализа позволяет установить закономерность влияния основных факторов (гедонистических характеристик ) на изучаемый показатель как в их совокупности, так и каждого из них в отдельности. С помощью регрессионного анализа, как метода математической статистики, удается, во-первых, найти и описать форму аналитической зависимости результирующей (искомой) переменной от факторных и, во-вторых, оценить тесноту этой зависимости.

Благодаря решению первой задачи получают математическую регрессионную модель, с помощью которой затем рассчитывают искомый показатель при заданных значениях факторов. Решение второй задачи позволяет установить надежность рассчитанного результата.

Таким образом, регрессионный анализ можно определить как совокупность формальных (математических) процедур, предназначенных для измерения тесноты, направления и аналитического выражения формы связи между результирующей и факторными переменными, т.е. на выходе такого анализа должна быть структурно и количественно определенная статистическая модель вида:

где у - среднее значение результирующей переменной (искомого показателя, например, стоимости, аренды, ставки капитализации) по п ее наблюдениям; х - значение факторной переменной (/-й фактор стоимости); к - количество факторных переменных.

Функция f(x l ,...,x lc), описывающая зависимость результирующей переменной от факторных, называется уравнением (функцией) регрессии. Термин «регрессия» (regression (лат.) - отступление, возврат к чему-либо) связан со спецификой одной из конкретных задач, решенных на стадии становления метода, и в настоящее время не отражает всей сущности метода, но продолжает применяться.

Регрессионный анализ в общем случае включает следующие этапы:

  • ? формирование выборки однородных объектов и сбор исходной информации об этих объектах;
  • ? отбор основных факторов, влияющих на результирующую переменную;
  • ? проверка выборки на нормальность с использованием х 2 или биноминального критерия;
  • ? принятие гипотезы о форме связи;
  • ? математическую обработку данных;
  • ? получение регрессионной модели;
  • ? оценку ее статистических показателей;
  • ? поверочные расчеты с помощью регрессионной модели;
  • ? анализ результатов.

Указанная последовательность операций имеет место при исследовании как парной связи между факторной переменной и одной результирующей, так и множественной связи между результирующей переменной и несколькими факторными.

Применение регрессионного анализа предъявляет к исходной информации определенные требования:

  • ? статистическая выборка объектов должна быть однородной в функциональном и конструктивно-технологическом отношениях;
  • ? достаточно многочисленной;
  • ? исследуемый стоимостной показатель - результирующая переменная (цена, себестоимость, затраты) - должен быть приведен к одним условиям его исчисления у всех объектов в выборке;
  • ? факторные переменные должны быть измерены достаточно точно;
  • ? факторные переменные должны быть независимы либо минимально зависимы.

Требования однородности и полноты выборки находятся в противоречии: чем жестче ведут отбор объектов по их однородности, тем меньше получают выборку, и, наоборот, для укрупнения выборки приходится включать в нее не очень схожие между собой объекты.

После того как собраны данные по группе однородных объектов, проводят их анализ для установления формы связи между результирующей и факторными переменными в виде теоретической линии регрессии. Процесс нахождения теоретической линии регрессии заключается в обоснованном выборе аппроксимирующей кривой и расчете коэффициентов ее уравнения. Линия регрессии представляет собой плавную кривую (в частном случае прямую), описывающую с помощью математической функции общую тенденцию исследуемой зависимости и сглаживающую незакономерные, случайные выбросы от влияния побочных факторов.

Для отображения парных регрессионных зависимостей в задачах по оценке чаще всего используют следующие функции: линейную - у - а 0 + арс + с степенную - у - aj&i + с показательную - у - линейно-показательную - у - а 0 + ар* + с. Здесь - е ошибка аппроксимации, обусловленная действием неучтенных случайных факторов.

В этих функциях у - результирующая переменная; х - факторная переменная (фактор); а 0 , а р а 2 - параметры регрессионной модели, коэффициенты регрессии.

Линейно-показательная модель относится к классу так называемых гибридных моделей вида:

где

где х (i = 1, /) - значения факторов;

b t (i = 0, /) - коэффициенты регрессионного уравнения.

В данном уравнении составляющие А, В и Z соответствуют стоимости отдельных составляющих оцениваемого актива, например, стоимости земельного участка и стоимости улучшений, а параметр Q является общим. Он предназначен для корректировки стоимости всех составляющих оцениваемого актива на общий фактор влияния, например, местоположение.

Значения факторов, находящихся в степени соответствующих коэффициентов, представляют собой бинарные переменные (0 или 1). Факторы, находящиеся в основании степени, - дискретные или непрерывные переменные.

Факторы, связанные с коэффициентами знаком умножения, также являются непрерывными или дискретными.

Спецификация осуществляется, как правило, с использованием эмпирического подхода и включает два этапа:

  • ? нанесение на график точек регрессионного поля;
  • ? графический (визуальный) анализ вида возможной аппроксимирующей кривой.

Тип кривой регрессии не всегда можно выбрать сразу. Для его определения сначала наносят на график точки регрессионного поля по исходным данным. Затем визуально проводят линию по положению точек, стремясь выяснить качественную закономерность связи: равномерный рост или равномерное снижение, рост (снижение) с возрастанием (убыванием) темпа динамики, плавное приближение к некоторому уровню.

Этот эмпирический подход дополняют логическим анализом, отталкиваясь от уже известных представлений об экономической и физической природе исследуемых факторов и их взаимовлияния.

Например, известно, что зависимости результирующих переменных - экономических показателей (цены, аренды) от ряда факторных переменных - ценообразующих факторов (расстояния от центра поселения, площади и др.) имеют нелинейный характер, и достаточно строго их можно описать степенной, экспоненциальной или квадратичной функциями. Но при небольших диапазонах изменения факторов приемлемые результаты можно получить и с помощью линейной функции.

Если все же невозможно сразу сделать уверенный выбор какой- либо одной функции, то отбирают две-три функции, рассчитывают их параметры и далее, используя соответствующие критерии тесноты связи, окончательно выбирают функцию.

В теории регрессионный процесс нахождения формы кривой называется спецификацией модели, а ее коэффициентов - калибровкой модели.

Если обнаружено, что результирующая переменная у зависит от нескольких факторных переменных (факторов) х { , х 2 , ..., х к, то прибегают к построению множественной регрессионной модели. Обычно при этом используют три формы множественной связи: линейную - у - а 0 + а х х х + а^х 2 + ... + а к х к, показательную - у - а 0 a *i а х т- а х ь, степенную - у - а 0 х х ix 2 a 2. .х^или их комбинации.

Показательная и степенная функции более универсальны, так как аппроксимируют нелинейные связи, каковыми и является большинство исследуемых в оценке зависимостей. Кроме того, они могут быть применены при оценке объектов и в методе статистического моделирования при массовой оценке, и в методе прямого сравнения в индивидуальной оценке при установлении корректирующих коэффициентов.

На этапе калибровки параметры регрессионной модели рассчитывают методом наименьших квадратов, суть которого состоит в том, что сумма квадратов отклонений вычисленных значений результирующей переменной у ., т.е. рассчитанных по выбранному уравнению связи, от фактических значений должна быть минимальной:

Значения j) (. и у. известны, поэтому Q является функцией только коэффициентов уравнения. Для отыскания минимума S нужно взять частные производные Q по коэффициентам уравнения и приравнять их к нулю:

В результате получаем систему нормальных уравнений, число которых равно числу определяемых коэффициентов искомого уравнения регрессии.

Положим, нужно найти коэффициенты линейного уравнения у - а 0 + арс. Сумма квадратов отклонений имеет вид:

/=1

Дифференцируют функцию Q по неизвестным коэффициентам а 0 и и приравнивают частные производные к нулю:

После преобразований получают:

где п - количество исходных фактических значений у их (количество аналогов).

Приведенный порядок расчета коэффициентов регрессионного уравнения применим и для нелинейных зависимостей, если эти зависимости можно линеаризовать, т.е. привести к линейной форме с помощью замены переменных. Степенная и показательная функции после логарифмирования и соответствующей замены переменных приобретают линейную форму. Например, степенная функция после логарифмирования приобретает вид: In у = 1пя 0 +а х 1пх. После замены переменных Y- In у, Л 0 - In а № X- In х получаем линейную функцию

Y=A 0 + cijX, коэффициенты которой находят описанным выше способом.

Метод наименьших квадратов применяют и для расчета коэффициентов множественной регрессионной модели. Так, система нормальных уравнений для расчета линейной функции с двумя переменными Xj и х 2 после ряда преобразований имеет следующий вид:

Обычно данную систему уравнений решают, используя методы линейной алгебры. Множественную степенную функцию приводят к линейной форме путем логарифмирования и замены переменных таким же образом, как и парную степенную функцию.

При использовании гибридных моделей коэффициенты множественной регрессии находятся с использованием численных процедур метода последовательных приближений.

Чтобы сделать окончательный выбор из нескольких регрессионных уравнений, необходимо проверить каждое уравнение на тесноту связи, которая измеряется коэффициентом корреляции, дисперсией и коэффициентом вариации. Для оценки можно использовать также критерии Стьюдента и Фишера. Чем большую тесноту связи обнаруживает кривая, тем она более предпочтительна при прочих равных условиях.

Если решается задача такого класса, когда надо установить зависимость стоимостного показателя от факторов стоимости, то понятно стремление учесть как можно больше влияющих факторов и построить тем самым более точную множественную регрессионную модель. Однако расширению числа факторов препятствуют два объективных ограничения. Во-первых, для построения множественной регрессионной модели требуется значительно более объемная выборка объектов, чем для построения парной модели. Принято считать, что количество объектов в выборке должно превышать количество п факторов, по крайней мере, в 5-10 раз. Отсюда следует, что для построения модели с тремя влияющими факторами надо собрать выборку примерно из 20 объектов с разным набором значений факторов. Во-вторых, отбираемые для модели факторы в своем влиянии на стоимостный показатель должны быть достаточно независимы друг от друга. Это обеспечить непросто, поскольку выборка обычно объединяет объекты, относящиеся к одному семейству, у которых имеет место закономерное изменение многих факторов от объекта к объекту.

Качество регрессионных моделей, как правило, проверяют с использованием следующих статистических показателей.

Стандартное отклонение ошибки уравнения регрессии (ошибка оценки):

где п - объем выборки (количество аналогов);

к - количество факторов (факторов стоимости);

Ошибка, необъясняемая регрессионным уравнением (рис. 3.2);

у. - фактическое значение результирующей переменной (например, стоимости); y t - расчетное значение результирующей переменной.

Этот показатель также называют стандартной ошибкой оценки {СКО ошибки ). На рисунке точками обозначены конкретные значения выборки, символом обозначена линия среднего значений выборки, наклонная штрихпунктирная линия - это линия регрессии.


Рис. 3.2.

Стандартное отклонение ошибки оценки измеряет величину отклонения фактических значений у от соответствующих расчетных значений у { , полученных с помощью регрессионной модели. Если выборка, на которой построена модель, подчинена нормальному закону распределения, то можно утверждать, что 68% реальных значений у находятся в диапазоне у ± & е от линии регрессии, а 95% - в диапазоне у ± 2d e . Этот показатель удобен тем, что единицы измерения сг? совпадают с единицами измерения у ,. В этой связи его можно использовать для указания точности получаемого в процессе оценки результата. Например, в сертификате стоимости можно указать, что полученное с использованием регрессионной модели значение рыночной стоимости V с вероятностью 95% находится в диапазоне от (V -2d,.) до + 2d s).

Коэффициент вариации результирующей переменной:

где у - среднее значение результирующей переменной (рис. 3.2).

В регрессионном анализе коэффициент вариации var представляет собой стандартное отклонение результата, выраженное в виде процентного отношения к среднему значению результирующей переменной. Коэффициент вариации может служить критерием прогнозных качеств полученной регрессионной модели: чем меньше величина var , тем более высокими являются прогнозные качества модели. Использование коэффициента вариации предпочтительнее показателя & е, так как он является относительным показателем. При практическом использовании данного показателя можно порекомендовать не применять модель, коэффициент вариации которой превышает 33%, так как в этом случае нельзя говорить о том, что данные выборки подчинены нормальному закону распределения.

Коэффициент детерминации (квадрат коэффициента множественной корреляции):

Данный показатель используется для анализа общего качества полученной регрессионной модели. Он указывает, какой процент вариации результирующей переменной объясняется влиянием всех включенных в модель факторных переменных. Коэффициент детерминации всегда лежит в интервале от нуля до единицы. Чем ближе значение коэффициента детерминации к единице, тем лучше модель описывает исходный ряд данных. Коэффициент детерминации можно представить иначе:

Здесь- ошибка, объясняемая регрессионной моделью,

а - ошибка, необъясняемая

регрессионной моделью. С экономической точки зрения данный критерий позволяет судить о том, какой процент вариации цен объясняется регрессионным уравнением.

Точную границу приемлемости показателя R 2 для всех случаев указать невозможно. Нужно принимать во внимание и объем выборки, и содержательную интерпретацию уравнения. Как правило, при исследовании данных об однотипных объектах, полученных примерно в один и тот же момент времени величина R 2 не превышает уровня 0,6-0,7. Если все ошибки прогнозирования равны нулю, т.е. когда связь между результирующей и факторными переменными является функциональной, то R 2 =1.

Скорректированный коэффициент детерминации:

Необходимость введения скорректированного коэффициента детерминации объясняется тем, что при увеличении числа факторов к обычный коэффициент детерминации практически всегда увеличивается, но уменьшается число степеней свободы (п - к - 1). Введенная корректировка всегда уменьшает значение R 2 , поскольку (п - 1) > {п- к - 1). В результате величина R 2 CKOf) даже может стать отрицательной. Это означает, что величина R 2 была близка к нулю до корректировки и объясняемая с помощью уравнения регрессии доля дисперсии переменной у очень мала.

Из двух вариантов регрессионных моделей, которые различаются величиной скорректированного коэффициента детерминации, но имеют одинаково хорошие другие критерии качества, предпочтительнее вариант с большим значением скорректированного коэффициента детерминации. Корректировка коэффициента детерминации не производится, если (п - к): к> 20.

Коэффициент Фишера:

Данный критерий используется для оценки значимости коэффициента детерминации. Остаточная сумма квадратов представляет собой показатель ошибки предсказания с помощью регрессии известных значений стоимости у.. Ее сравнение с регрессионной суммой квадратов показывает, во сколько раз регрессионная зависимость предсказывает результат лучше, чем среднее у . Существует таблица критических значений F R коэффициента Фишера, зависящих от числа степеней свободы числителя - к , знаменателя v 2 = п - к - 1 и уровня значимости а. Если вычисленное значение критерия Фишера F R больше табличного значения, то гипотеза о незначимости коэффициента детерминации, т.е. о несоответствии заложенных в уравнении регрессии связей реально существующим, с вероятностью р = 1 - а отвергается.

Средняя ошибка аппроксимации (среднее процентное отклонение) вычисляется как средняя относительная разность, выраженная в процентах, между фактическими и расчетными значениями результирующей переменной:

Чем меньше значение данного показателя, тем лучше прогнозные качества модели. При значении данного показателя не выше 7% говорят о высокой точности модели. Если 8 > 15%, говорят о неудовлетворительной точности модели.

Стандартная ошибка коэффициента регрессии:

где (/I) -1 .- диагональный элемент матрицы {Х Г Х)~ 1 к - количество факторов;

X - матрица значений факторных переменных:

X 7 - транспонированная матрица значений факторных переменных;

(ЖЛ) _| - матрица, обратная матрице.

Чем меньше эти показатели для каждого коэффициента регрессии, тем надежнее оценка соответствующего коэффициента регрессии.

Критерий Стьюдента (t-статистика):

Этот критерий позволяет измерить степень надежности (существенности) связи, обусловленной данным коэффициентом регрессии. Если вычисленное значение t . больше табличного значения

t av , где v - п - к - 1 - число степеней свободы, то гипотеза о том, что данный коэффициент является статистически незначимым, отвергается с вероятностью (100 - а)%. Существуют специальные таблицы /-распределения, позволяющие по заданному уровню значимости а и числу степеней свободы v определять критическое значение критерия. Наиболее часто употребляемое значение а равно 5%.

Мультиколлинеарность , т.е. эффект взаимных связей между факторными переменными, приводит к необходимости довольствоваться ограниченным их числом. Если это не учесть, то можно в итоге получить нелогичную регрессионную модель. Чтобы избежать негативного эффекта мультиколлинеарности, до построения множественной регрессионной модели рассчитываются коэффициенты парной корреляции r xjxj между отобранными переменными х. и х

Здесь XjX; - среднее значение произведения двух факторных переменных;

XjXj - произведение средних значений двух факторных переменных;

Оценка дисперсии факторной переменной х..

Считается, что две переменные регрессионно связаны между собой (т.е. коллинеарные), если коэффициент их парной корреляции по абсолютной величине строго больше 0,8. В этом случае какую-либо из этих переменных надо исключить из рассмотрения.

С целью расширения возможностей экономического анализа получаемых регрессионных моделей используются средние коэффициенты эластичности, определяемые по формуле:

где Xj - среднее значение соответствующей факторной переменной;

у - среднее значение результирующей переменной; a i - коэффициент регрессии при соответствующей факторной переменной.

Коэффициент эластичности показывает, на сколько процентов в среднем изменится значение результирующей переменной при изменении факторной переменной на 1 %, т.е. как реагирует результирующая переменная на изменение факторной переменной. Например, как реагирует цена кв. м площади квартиры на удаление от центра города.

Полезным с точки зрения анализа значимости того или иного коэффициента регрессии является оценка частного коэффициента детерминации:

Здесь - оценка дисперсии результирующей

переменной. Данный коэффициент показывает, на сколько процентов вариация результирующей переменной объясняется вариацией /-й факторной переменной, входящей в уравнение регрессии.

  • Под гедонистическими характеристиками понимаются характеристики объекта, отражающие его полезные (ценные) с точки зрения покупателей и продавцов свойства.

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

Регрессия бывает:

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx 2);
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

У = а 0 + а 1 х 1 +…+а к х к.

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.



В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.



Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» - первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» - второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

Пример:


Теперь стали видны и данные регрессионного анализа.

Что такое регрессия?

Рассмотрим две непрерывные переменные x=(x 1 , x 2 , .., x n), y=(y 1 , y 2 , ..., y n).

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение , если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x , причём изменения в y вызываются именно изменениями в x , мы можем определить линию регрессии (регрессия y на x ), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова "регрессия" исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей "регрессировал" и "двигался вспять" к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y - зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x , т.е. это «предсказанное значение y »

  • a - свободный член (пересечение) линии оценки; это значение Y , когда x=0 (Рис.1).
  • b - угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b .

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия .

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b - выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y - предсказанный y , Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Остатки нормально распределены с нулевым средним значением;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Аномальные значения (выбросы) и точки влияния

"Влиятельное" наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть "влиятельным" наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для "влиятельных" наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента


,

- оценка дисперсии остатков.

Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.


где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации , обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.

Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.

Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

а регрессионное уравнение с использованием P для X1 выглядит как

Y = b0 + b1 P

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

а уравнение примет вид

Y = b0 + b1 P2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 (Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 (Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на.40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p<.05 . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на.65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся "внутри диапазона."

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию (-.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p<.001 .

Итог

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.