Процентное соотношение кислорода в воздухе. Что такое воздух: естествознание для взрослых

В отличие от горячих и холодных планет нашей Солнечной системы, на планете Земля существуют условия, которые дают возможность жизни в определенной форме. Одним из главных условий является состав атмосферы, который дает всему живому возможность свободно дышать и защищает от смертельного излучения, царящего в космосе.

Из чего состоит атмосфера

Атмосфера Земли состоит из множества газов. В основном который занимает 77 %. Газ, без которого немыслима жизнь на Земле, занимает гораздо меньший объем, содержание кислорода в воздухе равно 21 % от всего объема атмосферы. Последние 2 % - смесь различных газов, включая аргон, гелий, неон, криптон и другие.

Атмосфера Земли поднимается на высоту 8 тыс. км. Воздух, пригодный для дыхания, есть только в нижнем слое атмосферы, в тропосфере, достигающей на полюсах - 8 км, ввысь, а над экватором - 16 км. С увеличением высоты воздух становится более разреженным и тем больше ощутима нехватка кислорода. Чтобы рассмотреть, какое содержание кислорода в воздухе бывает на разной высоте, приведем пример. На пике Эвереста (высота 8848 м) воздух вмещает этого газа в 3 раза меньше, чем над уровнем моря. Поэтому покорители высокогорных вершин - альпинисты - могут подняться на его вершину только в кислородных масках.

Кислород - главное условие выживания на планете

В начале существования Земли воздух, который ее окружал, не имел этого газа в своем составе. Это вполне подходило для жизни простейших - одноклеточных молекул, которые плавали в океане. Им кислород не был нужен. Процесс начался примерно 2 млн лет назад, когда первые живые организмы в результате реакции фотосинтеза начали выделять малые дозы этого газа, полученного в результате химических реакций, сначала в океан, затем в атмосферу. Жизнь развилась на планете и приняла разнообразные формы, большинство из которых не дожили до наших времен. Некоторые организмы со временем приспособились к жизни с новым газом.

Они научились использовать его силу безопасно внутри клетки, где она выступала в роли электростанции, для того чтобы добывать энергию из еды. Такой способ использования кислорода называется дыханием, и мы это делаем ежесекундно. Именно дыхание дало возможность для появления более сложных организмов и людей. За миллионы лет содержание в воздухе кислорода взлетело до современного уровня - около 21 %. Накопление этого газа в атмосфере способствовало созданию озонового слоя на высоте 8-30 км от поверхности земли. Вместе с этим планета получила защиту от пагубного действия ультрафиолетовых лучей. Дальнейшая эволюция жизненных форм на воде и на суше стремительно возросла в результате увеличения фотосинтеза.

Анаэробная жизнь

Хотя некоторые организмы адаптировались к повышающемуся уровню выделяемого газа, многие из простейших форм жизни, которые существовали на Земле, исчезли. Другие организмы выжили, прячась от кислорода. Некоторые из них сегодня живут в корнях бобовых, используя азот из воздуха для построения аминокислот для растений. Смертельный организм ботулизма - еще один "беженец" от кислорода. Он спокойно выживает в вакуумных упаковках с консервированными продуктами.

Какой кислородный уровень оптимален для жизни

Преждевременно рожденные малыши, легкие которых еще не полностью раскрыты для дыхания, попадают в специальные инкубаторы. В них содержание кислорода в воздухе по объему выше, и вместо обычных 21 % здесь установлен его уровень 30-40 %. Малыши, имеющие серьезные проблемы дыхания, окружаются воздухом со стопроцентным уровнем кислорода, чтобы предотвратить повреждение детского мозга. Нахождение в таких обстоятельствах совершенствует кислородный режим тканей, пребывающих в состоянии гипоксии, приводит в норму их жизненные функции. Но его чрезмерное количество в воздухе так же опасно, как и недостаток. Чрезмерное количество кислорода в крови ребенка может привести к повреждению кровеносных сосудов в глазах и спровоцировать утрату зрения. Это показывает двойственность свойств газа. Мы должны дышать им, чтобы жить, но его избыток иногда может стать отравой для организма.

Процесс окисления

При соединении кислорода с водородом или углеродом, совершается реакция, именуемая окислением. Этот процесс заставляет органические молекулы, являющиеся основанием жизни, распадаться. В человеческом организме окисление проходит следующим образом. Эритроциты крови собирают кислород из легких и разносят его по всему телу. Происходит процесс разрушения молекул еды, которую мы употребляем. Этот процесс освобождает энергию, воду и оставляет диосксид углерода. Последний выводится клетками крови обратно в легкие, и мы выдыхаем его в воздух. Человек может задохнуться, если ему помешать дышать дольше, чем 5 минут.

Дыхание

Рассмотрим содержание кислорода во вдыхаемом воздухе. Атмосферный воздух, попадающий извне в легкие при вдыхании, именуется вдыхаемым, а воздух, который выходит наружу через дыхательную систему при выдохе, - выдыхаемым.

Он представляет собой смесь воздуха, заполнявшего альвеолы, с тем, который находится в дыхательных путях. Химический состав воздуха, который здоровый человек вдыхает и выдыхает в естественных условиях, практически не меняется и выражается такими цифрами.

Кислород - главная для жизни составляющая воздуха. Изменения количества этого газа в атмосфере невелики. Если у моря содержание в воздухе кислорода вмещает до 20,99 %, то даже в очень загрязненном воздухе индустриальных городов его уровень не падает ниже 20,5 %. Такие изменения не выявляют воздействия на человеческий организм. Физиологические нарушения проявляются тогда, когда процентное содержание кислорода в воздухе падает до 16-17 %. При этом наблюдается явная которая ведет к резкому падению жизнедеятельности, а при содержании в воздухе кислорода 7-8 % возможен летальный исход.

Атмосфера в разные эпохи

Состав атмосферы всегда оказывал воздействие на эволюцию. В разные геологические времена из-за природных катаклизмов наблюдались подъемы или падения уровня кислорода, и это влекло за собой изменение биосистемы. Примерно 300 миллионов лет назад содержание его в атмосфере поднялось до 35 %, при этом наблюдалось заселение планеты насекомыми гигантских размеров. Наибольшее вымирание живых существ в истории Земли случилось около 250 миллионов лет назад. Во время него более чем 90 % обитателей океана и 75 % жителей суши погибло. Одна из версий массового вымирания гласит, что виной тому оказалось низкое содержание в воздухе кислорода. Количество этого газа упало до 12 %, и это - в нижнем слое атмосферы до высоты 5300 метров. В нашу эпоху содержание кислорода в атмосферном воздухе доходит до 20,9 %, что на 0,7 % ниже, чем 800 тысяч лет назад. Эти цифры подтверждены учеными из Принстонского университета, которые исследовали пробы Гренландского и Атлантического льда, образовавшегося в то время. Замерзшая вода сберегла пузырьки воздуха, и этот факт помогает вычислить уровень кислорода в атмосфере.

Чему подчиняется уровень его в воздухе

Активное поглощение его из атмосферы может быть вызвано передвижением ледников. Отодвигаясь, они открывают гигантские площади органических пластов, потребляющих кислород. Еще одним поводом может быть остывание вод Мирового океана: его бактерии при пониженной температуре активнее поглощают кислород. Исследователи утверждают, что индустриальный скачок и вместе с ним сжигание огромного количества топлива особенного воздействия при этом не оказывают. Мировой океан охлаждается в течение 15 миллионов лет, и количество жизненно важного в атмосфере уменьшилось независимо от воздействия человека. Вероятно, на Земле совершаются некоторые природные процессы, ведущие к тому, что потребление кислорода становится выше его производства.

Воздействие человека на состав атмосферы

Поговорим о влиянии человека на состав воздуха. Тот уровень, который мы сегодня имеем, идеально подходит для живых существ, содержание кислорода в воздухе составляет 21 %. Баланс его и других газов определяется жизненным циклом в природе: животные выдыхают диоксид углерода, растения используют его и выделяют кислород.

Но не существует гарантии, что такой уровень будет постоянным всегда. Повышается количество диоксида углерода, выбрасываемого в атмосферу. Это происходит из-за использования топлива человечеством. А оно, как известно, образовалось из окаменелостей органического происхождения и в воздух попадает диоксид углерода. А тем временем самые большие растения нашей планеты, деревья, уничтожаются с нарастающей скоростью. За минуту исчезают километры леса. Это значит, что часть кислорода в воздухе постепенно падает и ученые уже сейчас бьют тревогу. Земная атмосфера - не безграничная кладовая и кислород в нее извне не поступает. Он все время вырабатывался вместе с развитием Земли. Нужно постоянно помнить, что этот газ производится растительностью в процессе фотосинтеза за счет потребления углекислого газа. И любое существенное уменьшение растительности в виде уничтожения лесов, неотвратимо снижает попадание кислорода в атмосферу, тем самым, нарушая его баланс.


Воздух — естественная смесь газов, главным образом азота и кислорода, составляющая земную атмосферу. Воздух необходим для нормального существования подавляющего числа наземных живых организмов: кислород, содержащийся в воздухе, в процессе дыхания поступает в клетки организма и используется в процессе окисления, в результате которого происходит выделение необходимой для жизни энергии. В промышленности и в быту кислород воздуха используется для сжигания топлива с целью получения тепла и механической энергии в двигателях внутреннего сгорания. Из воздуха методом сжижения получают благородные газы. В соответствии с Федеральным Законом «Об охране атмосферного воздуха» под атмосферным воздухом понимается "жизненно важный компонент окружающей среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений".

Важнейшими факторами, определяющими пригодность для проживания человека, воздушной среды являются химический состав, степень ионизации, относительная влажность, давление, температура и скорость движения. Рассмотрим каждый из этих факторов по-отдельности.

В 1754 году Джозеф Блэк экспериментально доказал, что воздух представляет собой смесь газов, а не однородное вещество.

Нормальный состав воздуха

Вещество

Обозначение

По объёму, %

По массе, %

Азот

Кислород

Аргон

Углекислый газ

Неон

0,001818

Метан

0,000084

Гелий

0,000524

0,000073

Криптон

0,000114

Водород

Ксенон

0,0000087



Лёгкие аэроионы

Каждый житель Санкт-Петербурга чувствует, что воздух сильно загрязнен. Постоянно возрастающее количество автомобилей, фабрики и заводы выбрасывают в атмосферу тонны отходов своей деятельности. В загрязнённом воздухе присутствуют нехарактерные физические, химические и биологические вещества. Основными загрязнителями атмосферного воздуха мегаполиса являются: альдегиды, аммиак, атмосферная пыль, оксид углерода, оксиды азота, диоксид серы, углеводороды, тяжелые металлы (свинец, медь, цинк, кадмий, хром).

Наиболее опасными составляющими смога являются микроскопические частицы вредных веществ. Приблизительно 60% - это продукты сгорания автомобильных двигателей. Именно эти частицы мы вдыхаем гуляя по улицам наших городов и накапливаем в наших лёгких. Как утверждают медики, лёгкие жителя мегаполиса очень напоминают по степени загрязнённости лёгкие заядлого курильщика.

На первом месте по вкладу в загрязнение воздуха стоят выхлопные газы автомобилей, выбросы ТЭС – на втором месте, химическая промышленность – на третьем.

Степень ионизации воздуха


Высокая степень ионизации

Атмосферный воздух всегда ионизирован и содержит большее или меньшее количество аэроионов. Процесс ионизации природного воздуха происходит под действием целого ряда факторов, из которых главными являются радиоактивность почвы, горных пород, морских и подземных вод, космические лучи, молнии, разбрызгивание воды (эффект Ленарда) в водопадах, в барашках волн и т.п., ультрафиолетовое излучение Солнца, пламя лесных пожаров, некоторые ароматические вещества и т.п. Под влиянием этих факторов формируются как положительные, так и отрицательные аэроионы. На образовавшиеся ионы мгновенно оседают нейтральные молекулы воздуха, рождая так называемые нормальные и легкие атмосферные ионы. Встречая на своем пути взвешенные в воздухе пылинки, дымовые частицы, мельчайшие капельки воды, легкие ионы на них оседают и превращаются в тяжелые. В среднем над поверхностью земли в 1 см 3 содержится до 1500 ионов, среди которых преобладают положительно заряженные, что является, как будет показано далее, не совсем желательным для здоровья человека.

В некоторых регионах ионизация воздуха характеризуется более благоприятными показателями. К числу местностей, где воздух особенно ионизирован, принадлежат склоны высоких гор, горные долины, водопады, берега морей и океанов. Их часто используют для организации мест отдыха и санаторно-курортного лечения.

Таким образом, ионы воздуха — постоянно действующий фактор внешней среды, такой, как температура, относительная влажность и скорость движения воздуха.

Изменение степени ионизации вдыхаемого воздуха неизбежно влечет за собой сдвиги в различных органах и системах. Отсюда естественно стремление использовать ионизированный воздух в , с одной стороны, и потребность в разработке аппаратов и устройств для искусственного изменения концентрации и соотношения ионов в атмосферном воздухе, с другой. Сегодня, пользуясь специальной аппаратурой, можно усилить степень ионизации воздуха, увеличивая в тысячи раз количество ионов в 1 см 3 .

В санитарно-эпидемиологических правилах и нормативах СанПиН 2.2.4.1294-03 приведены гигиенические требования к аэроионному составу воздуха производственных и общественных помещений. Заметьте, что важно не только количество отрицательно и положительно заряженных аэроионов, но и отношение концентрации положительных к концентрации отрицательных, которое называется коэффициентом униполярности (см. таблицу ниже).


В соответствии с гигиеническими требованиями количество отрицательно заряженных аэроионов должно быть больше либо, в крайнем случае, равно количеству положительно заряженных аэроионов. В условиях проживания в городах и работы в офисных помещениях следует пользоваться аэроионизаторами воздуха, чтобы не терять концентрацию внимания и медленнее уставать во время рабочего дня.

Микроклимат: отн. влажность, температура, скорость движения, давление

Под микроклиматом подразумевают комплекс физичесих параметров окружающей среды, влияющих на теплообмен человека и его здоровье. Основными параметрами микроклимата являются относительная влажность, температура, давление и скорость движения воздуха. Поддержание всех этих параметров в норме внутри помещения является ключевым фактором, определяющим комфортность пребывания в нём человека.


Нормальное значение параметров микроклимата даёт возможность организму человека тратить минимум энергии: на поддержание необходимого уровня теплообмена, на получение необходимого количества кислорода; при этом человек не чувствует ни жары, ни холода, ни духоты. По статистике нарушения микроклимата являются самыми частыми среди всех нарушений санитарно-гигиенических норм.

Микроклимат определяется воздействием внешней среды, особенностями постройки здания и систем отопления, вентиляции и кондиционирования.

В многоэтажных домах существует сильный перепад давления воздуха снаружи здания и внутри. Это приводит к накоплению различных загрязнений в здании, причём их концентрация будет различной на верхних и на нижних этажах, что пагубно сказывается на .

Особенности микроклимата каждой конкретной квартиры формируются под влиянием потоков воздуха, влаги и тепла. Воздух в помещении постоянно находится в движении. Поэтому одним из ключевых параметров воздуха является скорость его движения.

Ниже приведена таблица, в которой указаны оптимальные и допустимые значения температуры, влажности и скорости движения воздуха в различных помещениях в соответствии с действующими СанПиН 2.1.2.2801-10 «Изменения и дополнения №1 к СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях».

Параметров воздуха у себя дома, в офисе или загородном коттедже, Вы сможете принять соответствующие меры по нормализации выявленных отклонений.

Действующие сантитарные правила и нормативы по воздуху

Наименование помещения

Температура воздуха, °C

Относительная влажность, %

Скорость движения воздуха, м/с

оптим.

допуст.

оптим.

допуст.

оптим.

допуст.

Холодный период года

Жилая комната

Качество воздуха, необходимого для поддержания жизненных процессов всех живых организмов на Земле, определяется содержанием в нем кислорода.
   Зависимость качества воздуха от процентного содержания в нем кислорода рассмотрим на примере рисунка 1.

Рис. 1 Процентное содержание кислорода в воздухе

   Благоприятный уровень содержания кислорода в воздухе

   Зона 1-2: такой уровень содержания кислорода характерен для экологически чистых районов, лесных массивов. Содержание кислорода в воздухе на берегу океана может достигать 21,9%

   Уровень комфортного содержания кислорода в воздухе

   Зона 3-4: ограничена законодательно утвержденным стандартом минимального содержания кислорода в воздухе для помещений (20,5%) и "эталоном" свежего воздуха (21%). Для городского воздуха нормальным считается содержание кислорода 20,8%.

   Недостаточный уровень содержания кислорода в воздухе

   Зона 5-6: ограничена минимально допустимым уровнем содержания кислорода, когда человек может находиться без дыхательного аппарата (18%).
   Пребывание человека в помещениях с таким воздухом сопровождается быстрой утомляемостью, сонливостью, снижением умственной активности, головными болями.
   Длительное пребывание в помещениях с такой атмосферой опасно для здоровья

   Опасно низкий уровень содержания кислорода в воздухе

   Зона 7 и далее: при содержании кислорода 16% наблюдается головокружение, учащенное дыхание, 13% - потеря сознания, 12% - необратимые изменения функционирования организма, 7% - смерть.
   Непригодная для дыхания атмосфера также характеризуется не только превышением предельно-допустимых концентраций вредных веществ в воздухе, но и недостаточным содержанием кислорода.
   В связи с различными определениями, которые даются понятию «недостаточное содержание кислорода» газоспасатели очень часто допускают ошибки при описании газоспасательных работа. Это происходит, в том числе и в результате изучения уставов, инструкций, стандартов и других документов, содержащих указание на содержание кислорода в атмосфере.
   Рассмотрим отличия в процентном содержании кислорода в основных регламентирующих документах.

   1.Содержание кислорода менее 20%.
   Газоопасные работы проводятся при содержании кислорода в воздухе рабочей зоны менее 20%.
   - Типовая инструкция по организации безопасного проведения газоопасных работ (утв. Госгортехнадзором СССР 20 февраля 1985 г.):
   1.5. К газоопасным относятся работы … при недостаточном содержании кислорода (объемная доля ниже 20%).
   - Типовая инструкция по организации безопасного проведения газоопасных работ на предприятиях нефтепродуктообеспечения ТОИ Р-112-17-95 (утв. приказом Министерства топлива и энергетики РФ от 4 июля 1995 г. N 144):
   1.3. К газоопасным относятся работы … при содержании кислорода в воздухе менее 20% по объему.
   - Национальный стандарт РФ ГОСТ Р 55892-2013 "Объекты малотоннажного производства и потребления сжиженного природного газа. Общие технические требования" (утв. приказом Федерального агентства по техническому регулированию и метрологии от 17 декабря 2013 г. N 2278-ст):
   К.1 К газоопасным относят работы… при содержании кислорода в воздухе рабочей зоны менее 20%.

   2. Содержание кислорода менее 18%.
   Газоспасательные работы проводятся при содержании кислорода менее 18%.
   - Положение о газоспасательном формировании (утверждено и введено в действие первым заместителем Министра промышленности, науки и технологий Свинаренко А.Г. 05.06.2003 г.; согласовано: Федеральный горный и промышленный надзор Российской Федерации 16.05.2003 г. N АС 04-35/373).
   3. Газоспасательные работы …в условиях снижения содержания кислорода в атмосфере до уровня менее 18 об.% ...
   - Руководство по организации и ведению аварийно-спасательных работ на предприятиях химического комплекса (утверждено ОАК №5/6 протокол №2 от 11.07.2015 г.).
   2. Газоспасательные работы … в условиях недостаточного (менее 18%) содержания кислорода…
   - ГОСТ Р 22.9.02-95 Безопасность в чрезвычайных ситуациях. Режимы деятельности спасателей, использующих средства индивидуальной защиты при ликвидации последствий аварий на химически опасных объектах. Общие требования (принят в качестве межгосударственного стандарта ГОСТ 22.9.02-97)
   6.5 При высоких концентрациях ОХВ и недостаточном содержании кислорода (менее 18%) в очаге химического заражения использовать только изолирующие СИЗ органов дыхания.

   3. Содержание кислорода менее 17%.
   Запрещается применение фильтрующих СИЗОД при содержании кислорода менее 17%.
   - ГОСТ Р 12.4.233-2012 (ЕН 132:1998) Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Термины, определения и обозначения (утв. и введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. N 1824-ст)
   2.87… атмосфера с дефицитом кислорода: Окружающий воздух, содержащий менее 17% кислорода по объему, в котором нельзя использовать фильтрующие СИЗОД.
   - Межгосударственный стандарт ГОСТ 12.4.299-2015 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Рекомендации по выбору, применению и техническому обслуживанию (введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 24 июня 2015 г. N 792-ст)
   B.2.1 Дефицит кислорода. Если анализ условий окружающей среды указывает на наличие или возможность дефицита кислорода (объемная доля менее 17%), то СИЗОД фильтрующего типа не применяют…
   - Решение Комиссии Таможенного союза от 9 декабря 2011 г. N 878 О принятии технического регламента Таможенного союза "О безопасности средств индивидуальной защиты"
   7) …не допускается использование фильтрующих средств индивидуальной защиты органов дыхания при содержании во вдыхаемом воздухе кислорода менее 17 процентов
   - Межгосударственный стандарт ГОСТ 12.4.041-2001 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания фильтрующие. Общие технические требования (введен в действие постановлением Госстандарта РФ от 19 сентября 2001 г. N 386-ст)
   1 …фильтрующие средства индивидуальной защиты органов дыхания предназначенные для защиты от вредных для здоровья аэрозолей, газов и паров и их сочетаний в окружающем воздухе при условии содержания в нем кислорода не менее 17 об. %.

Строение и состав атмосферы Земли, нужно сказать, не всегда были постоянными величинами в тот или иной период развития нашей планеты. Сегодня вертикальное строение этого элемента, имеющего общую «толщину» 1,5-2,0 тыс. км, представлено несколькими основными слоями, в том числе:

  1. Тропосферой.
  2. Тропопаузой.
  3. Стратосферой.
  4. Стратопаузой.
  5. Мезосферой и мезопаузой.
  6. Термосферой.
  7. Экзосферой.

Основные элементы атмосферы

Тропосфера представляет собой слой, в котором наблюдаются сильные вертикальные и горизонтальные движения, именно здесь формируется погода, осадочные явления, климатические условия. Она простирается на 7-8 километров от поверхности планеты почти повсеместно, за исключением полярных регионов (там - до 15 км). В тропосфере наблюдается постепенное понижение температуры, приблизительно на 6,4°С с каждым километром высоты. Этот показатель может отличаться для разных широт и времен года.

Состав атмосферы Земли в этой части представлен следующими элементами и их процентными долями:

Азот - около 78 процентов;

Кислород - почти 21 процент;

Аргон - около одного процента;

Углекислый газ - менее 0.05 %.

Единый состав до высоты 90 километров

Кроме того, здесь можно найти пыль, капельки воды, водяной пар, продукты горения, кристаллики льда, морские соли, множество аэрозольных частиц и др. Такой состав атмосферы Земли наблюдается приблизительно до девяноста километров высоты, поэтому воздух примерно одинаков по химическому составу, не только в тропосфере, но и в вышележащих слоях. Но там атмосфера имеет принципиально другие физические свойства. Слой же, который имеет общий химический состав, называют гомосферой.

Какие элементы еще входят в состав атмосферы Земли? В процентах (по объему, в сухом воздухе) здесь представлены такие газы как криптон (около 1.14 х 10 -4), ксенон (8.7 х 10 -7), водород (5.0 х 10 -5), метан (около 1.7 х 10 -4), закись азота (5.0 х 10 -5) и др. В процентах по массе из перечисленных компонентов больше всего закиси азота и водорода, далее следует гелий, криптон и пр.

Физические свойства разных атмосферных слоев

Физические свойства тропосферы тесно связаны с ее прилеганием к поверхности планеты. Отсюда отраженное солнечное тепло в форме инфракрасных лучей направляется обратно вверх, включая процессы теплопроводности и конвекции. Именно поэтому с удалением от земной поверхности падает температура. Такое явление наблюдается до высоты стратосферы (11-17 километров), потом температура становится практически неизменной до отметки 34-35 км, и далее идет опять рост температур до высот в 50 километров (верхняя граница стратосферы). Между стратосферой и тропосферой есть тонкий промежуточный слой тропопаузы (до 1-2 км), где наблюдаются постоянные температуры над экватором - около минус 70°С и ниже. Над полюсами же тропопауза «прогревается» летом до минус 45°С, зимой температуры здесь колеблются около отметки -65°С.

Газовый состав атмосферы Земли включает в себя такой важный элемент, как озон. Его относительно немного у поверхности (десять в минус шестой степени от процента), так как газ образуется под воздействием солнечных лучей из атомарного кислорода в верхних частях атмосферы. В частности, больше всего озона на высоте около 25 км, а весь «озоновый экран» расположен в областях от 7-8 км в области полюсов, от 18 км на экваторе и до пятидесяти километров в общем над поверхностью планеты.

Атмосфера защищает от солнечной радиации

Состав воздуха атмосферы Земли играет очень важную роль в сохранении жизни, так как отдельные химические элементы и композиции удачно ограничивают доступ солнечной радиации к земной поверхности и живущим на ней людям, животным, растениям. Например, молекулы водяного пара эффективно поглощают почти все диапазоны инфракрасного излучения, за исключением длин в интервале от 8 до 13 мкм. Озон же поглощает ультрафиолет вплоть до длины волн в 3100 А. Без его тонкого слоя (составит всего в среднем 3 мм, если его расположить на поверхности планеты) обитаемы могут быть только воды на глубине более 10 метров и подземные пещеры, куда не доходит солнечная радиация.

Ноль по Цельсию в стратопаузе

Между двумя следующими уровнями атмосферы, стратосферой и мезосферой, существует примечательный слой - стратопауза. Он приблизительно соответствует высоте озонных максимумов и здесь наблюдается относительно комфортная для человека температура - около 0°С. Выше стратопаузы, в мезосфере (начинается где-то на высоте 50 км и заканчивается на высоте 80-90 км), наблюдается опять же падение температур с увеличением расстояния от поверхности Земли (до минус 70-80°С). В мезосфере обычно полностью сгорают метеоры.

В термосфере - плюс 2000 К!

Химический состав атмосферы Земли в термосфере (начинается после мезопаузы с высот около 85-90 до 800 км) определяет возможность такого явления, как постепенный нагрев слоев весьма разреженного «воздуха» под воздействием солнечного излучения. В этой части «воздушного покрывала» планеты встречаются температуры от 200 до 2000 К, которые получаются в связи с ионизацией кислорода (выше 300 км находится атомарный кислород), а также рекомбинацией атомов кислорода в молекулы, сопровождающейся выделением большого количества тепла. Термосфера - это место возникновения полярных сияний.

Выше термосферы находится экзосфера - внешний слой атмосферы, из которого легкие и быстро перемещающиеся атомы водорода могут уходить в космическое пространство. Химический состав атмосферы Земли здесь представлен больше отдельными атомами кислорода в нижних слоях, атомами гелия в средних, и почти исключительно атомами водорода - в верхних. Здесь господствуют высокие температуры - около 3000 К и отсутствует атмосферное давление.

Как образовалась земная атмосфера?

Но, как уже упоминалось выше, такой состав атмосферы планета имела не всегда. Всего существует три концепции происхождения этого элемента. Первая гипотеза предполагает, что атмосфера была взята в процессе аккреции из протопланетного облака. Однако сегодня эта теория подвергается существенной критике, так как такая первичная атмосфера должна была быть разрушена солнечным «ветром» от светила в нашей планетной системе. Кроме того, предполагается, что летучие элементы не могли удержаться в зоне образования планет по типу земной группы из-за слишком высоких температур.

Состав первичной атмосферы Земли, как предполагает вторая гипотеза, мог быть сформирован за счет активной бомбардировки поверхности астероидами и кометами, которые прибыли из окрестностей Солнечной системы на ранних этапах развития. Подтвердить или опровергнуть эту концепцию достаточно сложно.

Эксперимент в ИДГ РАН

Самой правдоподобной представляется третья гипотеза, которая считает, что атмосфера появилась в результате выделения газов из мантии земной коры приблизительно 4 млрд. лет назад. Эту концепцию удалось проверить в ИДГ РАН в ходе эксперимента под названием «Царев 2», когда в вакууме был разогрет образец вещества метеорного происхождения. Тогда было зафиксировано выделение таких газов как Н 2 , СН 4 , СО, Н 2 О, N 2 и др. Поэтому ученые справедливо предположили, что химический состав первичной атмосферы Земли включал в себя водяной и углекислый газ, пары фтороводорода (HF), угарного газа (CO), сероводорода (H 2 S), соединений азота, водород, метан (СН 4), пары аммиака (NH 3), аргон и др. Водный пар из первичной атмосферы участвовал в образовании гидросферы, углекислый газ оказался в большей мере в связанном состоянии в органических веществах и горных породах, азот перешел в состав современного воздуха, а также опять в осадочные породы и органические вещества.

Состав первичной атмосферы Земли не позволил бы современным людям находиться в ней без дыхательных аппаратов, так как кислорода в требуемых количествах тогда не было. Этот элемент в значительных объемах появился полтора миллиарда лет назад, как полагают, в связи с развитием процесса фотосинтеза у сине-зеленых и других водорослей, которые являются древнейшими обитателями нашей планеты.

Минимум кислорода

На то, что состав атмосферы Земли изначально был почти бескислородным, указывает то, что в древнейших (катархейских) породах находят легкоокисляемый, но не окисленный графит (углерод). Впоследствии появились так называемые полосчатые железные руды, которые включали в себя прослойки обогащенных окислов железа, что означает появление на планете мощного источника кислорода в молекулярной форме. Но эти элементы попадались только периодически (возможно, те же водоросли или другие продуценты кислорода появились небольшими островками в бескислородной пустыне), в то время как остальной мир был анаэробным. В пользу последнего говорит то, что легко окисляемый пирит находили в виде гальки, обработанной течением без следов химических реакций. Так как текучие воды не могут быть плохо аэрированными, выработалась точка зрения, что атмосфера до начала кембрия содержала менее одного процента кислорода от сегодняшнего состава.

Революционное изменение состава воздуха

Приблизительно в середине протерозоя (1,8 млрд. лет назад) произошла «кислородная революция», когда мир перешел к аэробному дыханию, в ходе которого из одной молекулы питательного вещества (глюкоза) можно получать 38, а не две (как при анаэробном дыхании) единицы энергии. Состав атмосферы Земли, в части кислорода, стал превышать один процент от современного, стал возникать озоновый слой, защищающий организмы от радиации. Именно от нее «скрывались» под толстыми панцирями, к примеру, такие древние животные, как трилобиты. С тех пор и до нашего времени содержание основного «дыхательного» элемента постепенно и медленно возрастало, обеспечивая многообразие развития форм жизни на планете.

ЛЕКЦИЯ № 3. Атмосферный воздух.

Тема: Атмосферный воздух, его химический состав и физиологическое

значение составных частей.

Атмосферные загрязнения; их влияние на здоровье населения.

План лекции:

    Химический состав атмосферного воздуха.

    Биологическая роль и физиологическое значение его составных частей: азота, кислорода, углекислого газа, озона, инертных газов.

    Понятие об атмосферных загрязнениях и их источниках.

    Влияние атмосферных загрязнений на здоровье (прямое воздействие).

    Влияние атмосферных загрязнений на условия жизни населения (косвенное воздействие на здоровье).

    Вопросы охраны атмосферного воздуха от загрязнения.

Газовая оболочка земли называется атмосферой. Общий вес земной атмосферы составляет 5,13  10 15 тонн.

Воздух, образующий атмосферу, представляет собой смесь различных газов. Состав сухого воздуха на уровне моря будет следующий:

Таблица № 1

Состав сухого воздуха при температуре 0 0 С и

давлении 760 мм рт. ст.

Составляющие

компоненты

Процентный состав

по объему

Концентрация в мг/м 3

Кислород

Углекислый газ

Закись азота

Состав земной атмосферы остается постоянным над сушей, над морем, в городах и сельской местности. Не изменяется он также с высотой. При этом следует помнить, что речь идет о процентном содержании составных частей воздуха на разных высотах. Однако этого нельзя сказать о весовой концентрации газов. По мере подъема вверх плотность воздуха падает и количество молекул, содержащихся в единице пространства, тоже снижается. Вследствие этого падает весовая концентрация газа и его парциальное давление.

Остановимся на характеристике отдельных составных частей воздуха.

Главной составной частью атмосферы является азот. Азот является инертным газом. Он не поддерживает дыхания и горения. В атмосфере азота жизнь невозможна.

Азот играет важную биологическую роль. Азот воздуха усваивается некоторыми видами бактерий и водорослями, которые образуют из него органические соединения.

Под влиянием атмосферного электричества образуется небольшое количество ионов азота, которые вымываются из атмосферы осадками и обогащают почву солями азотистой и азотной кислоты. Соли азотистой кислоты под влиянием почвенных бактерий превращаются в нитриты. Нитриты и соли аммиака усваиваются растениями и служат для синтеза белков.

Таким образом, осуществляется превращение инертного азота атмосферы в живую материю органического мира.

Ввиду недостатка азотистых удобрений природного происхождения, человечество научилось получать их искусственным путем. Создана и развивается азотно-туковая промышленность, которая перерабатывает атмосферный азот в аммиак и азотистые удобрения.

Биологическое значение азота не ограничивается его участием в круговороте азотистых веществ. Он играет важную роль как разбавитель кислорода атмосферы, так как в чистом кислороде жизнь невозможна.

Увеличение содержания азота в воздухе вызывает гипоксию и асфиксию вследствие снижения парциального давления кислорода.

При повышении парциального давления азот проявляет наркотические свойства. Однако, в условиях открытой атмосферы наркотическое действие азота не проявляется, так как колебания его концентрации незначительны.

Наиболее важным из компонентов атмосферы является газообразный кислород (О 2 ) .

Кислород в нашей Солнечной системе в свободном состоянии встречается только на Земле.

Много предположений выдвинуто относительно эволюции (развития) земного кислорода. Наиболее признанное объяснение заключается в том, что подавляющая часть кислорода в современной атмосфере образовалась в процессе фотосинтеза в биосфере; и только начальное, малое количество кислорода образовалось в результате фотосинтеза воды.

Биологическая роль кислорода чрезвычайно велика. Без кислорода невозможна жизнь. Земная атмосфера содержит 1,18  10 15 тонн кислорода.

В природе непрерывно идут процессы потребления кислорода: дыхание человека и животных, процессы горения, окисления. В то же время непрерывно идут процессы восстановления содержания кислорода в воздухе (фотосинтез). Растения поглощают углекислый газ, расщепляют его, усваивают углерод, а кислород выделяют в атмосферу. Растения выбрасывают в атмосферу 0,5  10 5 миллионов тонн кислорода. Этого достаточно чтобы покрыть естественную убыль кислорода. Поэтому содержание его в воздухе постоянно и составляет 20, 95%.

Непрерывное течение воздушных масс перемешивают тропосферу, вот почему не наблюдается разницы в содержании кислорода в городах и сельской местности. Концентрация кислорода колеблется в пределах нескольких десятых процентов. Это не имеет значения. Однако, в глубоких ямах, колодцах, пещерах содержание кислорода может падать, поэтому спуск в них опасен.

При падении парциального давления кислорода у человека и животных наблюдаются явления кислородного голодания. Значительные изменения парциального давления кислорода наступают при подъеме вверх над уровнем моря. Явления кислородной недостаточности могут наблюдаться при подъемах в горы (альпинизм, туризм), при авиаперелетах. Подъем на высоту 3000м может вызвать высотную или горную болезнь.

При длительном проживании в высокогорной местности у людей развивается привыкание к недостатку кислорода и наступает акклиматизация.

Высокое парциальное давление кислорода неблагоприятно для человека. При парциальном давлении более 600 мм уменьшается жизненная емкость легких. Вдыхание чистого кислорода (парциальное давление 760 мм) вызывает отек легких, пневмонию, судороги.

В естественных условиях в воздухе не наблюдается повышенное содержание кислорода.

Озон является составной частью атмосферы. Масса его составляет 3,5 миллиарда тонн. Содержание озона в атмосфере меняется по сезонам года: весной оно высокое, осенью низкое. Содержание озона зависит от широты местности: чем ближе к экватору, тем оно ниже. Концентрация озона имеет суточный ход: максимума оно достигает к полудню.

Концентрация озона неравномерно распределяется по высоте. Наиболее высокое его содержание наблюдается на высоте 20-30 км.

Озон непрерывно образуется в стратосфере. Под влиянием ультрафиолетовой радиации солнца, молекулы кислорода диссоциируют (распадаются) с образованием атомарного кислорода. Атомы кислорода рекомбинируются (соединяются) с молекулами кислорода и образуют озон (О 3). На высоте выше и ниже 20-30 км процессы фотосинтеза (образования) озона замедляются.

Наличие слоя озона в атмосфере имеет большое значение для существования жизни на Земле.

Озон задерживает коротковолновую часть спектра солнечной радиации, не пропускает волны короче 290 нм (нанометров). При отсутствии озона жизнь на земле была бы невозможна, вследствие губительного действия короткой ультрафиолетовой радиации на все живое.

Озон поглощает также инфракрасную радиацию с длиной волны 9,5 мкм (микрон). Благодаря этому, озон задерживает около 20 процентов теплового излучения земли, уменьшая потерю ее тепла. В отсутствие озона абсолютная температура Земли была бы ниже на 7 0 .

В нижний слой атмосферы – тропосферу озон заносится из стратосферы в результате перемешивания воздушных масс. При слабом перемешивании концентрация озона у поверхности земли падает. Увеличение озона в воздухе наблюдается при грозе в результате разрядов атмосферного электричества и увеличения турбулентности (перемешивания) атмосферы.

Вместе с тем, значительное повышение концентрации озона в воздухе является результатом фотохимического окисления органических веществ, которые поступают в атмосферу с выхлопными газами автомобилей и выбросами промышленности. Озон относится к числу токсических веществ. Озон оказывает раздражающее действие на слизистые оболочки глаз, носа, горла в концентрации 0,2-1 мг/м 3 .

Углекислый газ (СО 2 ) находится в атмосфере в концентрации 0,03%. Общее количество его равно 2330 миллиардов тонн. Большое количество углекислого газа содержится в растворенном виде в воде морей и океанов. В связанном виде он входит в состав доломитов и известняков.

Атмосфера постоянно пополняется углекислым газом в результате процессов жизнедеятельности живых организмов, процессов горения, гниения, брожения. Человек выделяет в день 580 л углекислого газа. Большое количество углекислого газа выделяется при разложении известняков.

Несмотря на наличие многочисленных источников образования, существенного накопления углекислого газа в воздухе не происходит. Углекислый газ постоянно ассимилируется (усваивается) растениями в процессе фотосинтеза.

Кроме растений регулятором содержания углекислого газа в атмосфере являются моря и океаны. При повышении парциального давления углекислого газа в воздухе, он растворяется в воде, а при снижении выделяется в атмосферу.

В приземной атмосфере наблюдаются небольшие колебания концентрации углекислого газа: над океаном она ниже, чем над сушей; в лесу выше, чем в поле; в городах выше, чем за городом.

Углекислый газ играет большую роль в жизнедеятельности животных и человека. Он является побудителем дыхательного центра.

В атмосферном воздухе присутствует некоторое количество инертных газов : аргона, неона, гелия, криптона и ксенона. Эти газы относятся к нулевой группе таблицы Менделеева, не вступают в реакции с другими элементами, являются инертными в химическом смысле.

Инертные газы являются наркотическими. Их наркотические свойства проявляются при высоком барометрическом давлении. В открытой атмосфере наркотические свойства инертных газов не могут проявиться.

Кроме составных частей атмосферы, в ней содержатся различные примеси природного происхождения и загрязнения, вносимые в результате деятельности человека.

Примеси, которые присутствуют в воздухе помимо его естественного химического состава, называются атмосферными загрязнениями .

Атмосферные загрязнения подразделяются на естественные и искусственные.

К естественным загрязнениям относят примеси, поступающие в воздух в результате стихийных природных процессов (растительная, почвенная пыль, извержение вулканов, космическая пыль).

Искусственные атмосферные загрязнения образуются в результате производственной деятельности человека.

Искусственные источники атмосферных загрязнений делят на 4 группы:

    транспорт;

    промышленность;

    теплоэнергетика;

    сжигание мусора.

Остановимся на их краткой характеристике.

Современная ситуация характеризуется тем, что объем выбросов автомобильного транспорта превышает объем выбросов промышленных предприятий.

Один автомобиль выбрасывает в воздушный бассейн более 200 химических соединений. Каждый автомобиль потребляет в год в среднем 2 тонны топлива и 30 тонн воздуха, а выбрасывает в атмосферу 700 кг оксида углерода (СО), 230 кг несгоревших углеводородов, 40 кг окислов азота (NО 2) и 2-5 кг твердых веществ.

Современный город насыщен и другими видами транспорта: железнодорожным, водным и воздушным. Общее количество выбросов в окружающую среду от всех видов транспорта имеет тенденцию к непрерывному росту.

Промышленные предприятия по степени наносимого вреда окружающей среде занимают второе место после транспорта.

Наиболее интенсивно загрязняют атмосферный воздух предприятия черной и цветной металлургии, нефтехимической и коксохимической промышленности, а также предприятия по производству строительных материалов. Они выбрасывают в атмосферу десятки тонн сажи, пыли, металлов и их соединений (меди, цинка, свинца, никеля, олова и др.).

Поступая в атмосферу, металлы загрязняют почву, накапливаются в ней, проникают в воду водоемов.

В районах расположения промышленных предприятий, население подвергается риску неблагоприятного воздействия атмосферных загрязнений.

Помимо твердых частиц промышленность выбрасывает в воздух различные газы: серный ангидрид, окись углерода, окислы азота, сероводород, углеводороды, радиоактивные газы.

Загрязняющие вещества могут длительно находиться в окружающей среде и оказывать вредное влияние на организм человека.

Например, углеводороды сохраняются в окружающей среде до 16 лет, принимают активное участие в фотохимических процессах в атмосферном воздухе с образованием токсических туманов.

Массивное загрязнение атмосферы наблюдается при сжигании твердого и жидкого топлива на теплоэлектростанциях. Они являются основными источниками загрязнения атмосферы окислами серы и азота, окисью углерода, сажей и пылью. Для этих источников характерна массивность загрязнения атмосферного воздуха.

В настоящее время известно много фактов неблагоприятного влияния атмосферных загрязнений на здоровье людей.

Атмосферные загрязнения оказывают на организм человека как острое, так и хроническое воздействие.

Примерами острого влияния атмосферных загрязнений на здоровье населения являются токсические туманы. Концентрации токсических веществ в воздухе возрастали при неблагоприятных метеорологических условиях.

Первый токсический туман зарегистрирован в Бельгии в 1930 году. Пострадало несколько сот человек, 60 человек умерли. В последующем подобные случаи повторялись: в 1948 году в американском городе Донора. Пострадало 6000 человек. В 1952 году от «великого лондонского тумана» умерло 4000 человек. В 1962 году по этой же причине погибло 750 жителей Лондона. В 1970 году от смога над японской столицей (Токио) пострадало 10 тысяч человек, 1971 году – 28 тысяч.

Помимо перечисленных катастроф, анализ материалов исследований отечественных и зарубежных авторов обращает внимание на повышение общей заболеваемости населения по причине загрязнения атмосферы.

Выполненные в данном плане исследования позволяют заключить, что в результате воздействия атмосферных загрязнений в промышленных центрах наблюдается повышение:

    общего уровня смертности от сердечно-сосудистых заболеваний и болезней органов дыхания;

    острой неспецифической заболеваемости верхних дыхательных путей;

    хронических бронхитов;

    бронхиальной астмы;

    эмфиземы легких;

    рака легких;

    снижение продолжительности жизни и творческой активности.

Кроме того, в настоящее время математический анализ выявил статистически значимую корреляционную зависимость между уровнем заболеваемости населения болезнями крови, органов пищеварения, болезнями кожи и уровнями загрязнения атмосферного воздуха.

Органы дыхания, пищеварительная система и кожа являются «входными воротами» для токсических веществ и служат мишенями их прямого и опосредованного действия.

Влияние атмосферных загрязнений на условия жизни расценивается как непрямое (косвенное) воздействие атмосферных загрязнений на здоровье населения.

Оно включает:

    снижение общей освещенности;

    снижение ультрафиолетовой радиации солнца;

    изменение климатических условий;

    ухудшение жилищно-бытовых условий;

    отрицательное воздействие на зеленые насаждения;

    отрицательное воздействие на животных.

Вещества, загрязняющие атмосферу, наносят большой ущерб зданиям, сооружениям, строительным материалам.

Общий экономический ущерб США от загрязнителей атмосферы, включая их влияние на здоровье человека, строительные материалы, металлы, ткани, кожу, бумагу, краски, резину и другие материалы ежегодно составляет 15-20 миллиардов долларов.

Все вышесказанное свидетельствует о том, что охрана атмосферного воздуха от загрязнения является проблемой чрезвычайной важности и объектом пристального внимания специалистов во всех странах мира.

Все мероприятия по охране атмосферного воздуха должны осуществляться комплексно по нескольким направлениям:

    Законодательные меры. Это принятые правительством страны законы, направленные на охрану воздушной среды;

    Рациональное размещение промышленных и жилых зон;

    Технологические мероприятия, направленные на снижение выбросов в атмосферу;

    Санитарно-технические мероприятия;

    Разработка гигиенических нормативов для атмосферного воздуха;

    Контроль за чистотой атмосферного воздуха;

    Контроль за работой промышленных предприятий;

    Благоустройство населенных мест, озеленение, обводнение, создание защитных разрывов между промышленными предприятиями и жилыми комплексами.

Кроме перечисленных мер внутригосударственного плана, в настоящее время разрабатываются и широко внедряются межгосударственные Программы по охране атмосферного воздуха.

Проблема охраны воздушного бассейна решается в ряде международных организаций – ВОЗ, ООН, ЮНЕСКО и других.