Ряд распределения. Многоугольник распределения

Понятие случайной величины. Закон распределения случайной величины

Случайные величины (сокращенно: с. в.) обозначаются прописны­ми латинскими буквами Х,У, Z,... (или строчными греческими буква­ми ξ (кси), η(эта), θ (тэта), ψ (пси) и т. д.), а принимаемые ими значения соответственно малыми буквами х 1 , х 2 ,…, у 1 , у 2 , у 3

Примерами с. в. могут служить: 1) X - число очков, появляющих­ся при бросании игральной кости; 2) У - число выстрелов до первого попадания в цель; 3) Z - время безотказной работы прибора и т. п. (рост человека, курс доллара, количество бракованных деталей в пар­тии, температура воздуха, выигрыш игрока, координата точки при слу­чайном выборе ее на , прибыль фирмы, ...).

Случайной величиной X Ώ w

X(w), т.е. X = X(w), w Î Ώ (или X = f (w)) (31)

Пример1. Опыт состоит в бросании монеты 2 раза. На ПЭС Ώ={ w 1 , w 2 , w 3 , w 4 }, где w 1 = ГГ, w 2 = ГР, w 3 = РГ, w 4 = РР, можно рассмотреть с. в. X - число появлений герба. С. в. X является функ­цией от элементарного события w i : X(w 1 ) = 2, X(w 2 ) = 1, X(w 3 ) = 1, X(w 4 )= 0; X - д. с. в. со значениями x 1 = 0, x 2 =1 , x 3 = 2.

X(w) S Р(А) = Р(Х < х).

X - д. с. в.,

x 1 , x 2 , x 3 ,…,x n ,…

p i , где i = 1,2,3, ...,n,… .

Закон распределения д. с. в. p i =Р{Х=x i }, i=1,2,3,... ,n,...,

с. в. X x i . :

X x 1 x 2 …. x n
P p 1 p 2 …. p n

Так как события {X = x 1 }, {X = x 2 },…,{X = x n }, т.е. .

(x 1 , p 1 ), (x 2 , p 2),…, (x n , p n) называют многоугольником (или полигоном) рас­пределения (см. рис. 17).

Случайная величина X дискретна, если существует конечное или счетное множество чисел x 1 , x 2 , ..., x n таких, что Р{Х = x i } = p i > 0 (i = 1,2,...) p 1 + p 2 + p 3 +…= 1 (32)

Суммой д. с. в. X, принимающей зна­чения x i с вероятностями p i = Р{Х = x i }, i = 1,2,3,... ,n, и д. с. в. Y, при­нимающей значения y j с вероятностями p i = Р{Y = y j }, j = 1,2,3,... ,m, называется д. с. в. Z = X + Y , принимающая значения z ij = x i + y j с вероятностями p ij = Р{ Х = x i ,Y = y j }, для всех указанных значений i и j. В случае совпадения некоторых сумм x i + y j соответствующие вероятности складываются.

Разностью д. с. в. X, принимающей зна­чения x i с вероятностями p i = Р{Х = x i }, i = 1,2,3,... ,n, и д. с. в. Y, при­нимающей значения y j с вероятностями p i = Р{Y = y j }, j = 1,2,3,... ,m, называется д. с. в. Z = X - Y, принимающая значения z ij = x i – y j с вероятностями p ij = Р{ Х = x i ,Y = y j }, для всех указанных значений i и j. В случае совпадения некоторых разностей x i – y j соответствующие вероятности складываются.



Произведением д. с. в. X, принимающей зна­чения x i с вероятностями p i = Р{Х = x i }, i = 1,2,3,... ,n, и д. с. в. Y, при­нимающей значения y j с вероятностями p i = Р{Y = y j }, j = 1,2,3,... ,m, называется д. с. в. Z = X × Y, принимающая значения z ij = x i × y j с вероятностями p ij = Р{ Х = x i ,Y = y j }, для всех указанных значений i и j. В случае совпадения некоторых произведений x i × y j соответствующие вероятности складываются.

д. с. в. сХ, с x i р i = Р{Х = x i }.

X и Y события {X = x i } = А i и {Y = y j } = В j независимы для любых i= 1,2,... ,n; j = l,2,...,m, т.е.

P{X = x i ;Y = y j } =P{X = x i } ×P {Y = y j } (33)

Пример 2. В урне 8 шаров, из которых 5 белых, остальные - чер­ные. Из нее вынимают наудачу 3 шара. Найти закон распределения числа белых шаров в выборке.

Случайная величина – это величина, которая в результате опыта принимает заранее неизвестное значение.

    Количество студентов, присутствующих на лекции.

    Количество домов, сданных в эксплуатацию в текущем месяце.

    Температура окружающей среды.

    Вес осколка разорвавшегося снаряда.

Случайные величины делятся на дискретные и непрерывные.

Дискретной (прерывной) называют случайную величину, которая принимает отдельные, изолированные друг от друга значения с определенными вероятностями.

Число возможных значений дискретной случайной величины может быть конечным или счетным.

Непрерывной называют случайную величину, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.

Очевидно, число возможных значений непрерывной случайной величины бесконечно.

В приведенных примерах: 1 и 2 – дискретные случайные величины, 3 и 4 – непрерывные случайные величины.

В дальнейшем, вместо слов «случайная величина» часто будем пользоваться сокращением с. в.

Как правило, случайные величины будем обозначать большими буквами, а их возможные значения – маленькими.

В теоретико-множественной трактовке основных понятий теории вероятностей случайная величина Х есть функция элементарного события: Х =φ(ω), где ω – элементарное событие принадлежащее пространству Ω (ω  Ω). При этом множество Ξ возможных значений с. в. Х состоит из всех значений, которые принимает функция φ(ω).

Законом распределения случайной величины называется любое правило (таблица, функция), позволяющее находить вероятности всевозможных событий, связанных со случайной величиной (например, вероятность того, что она примет какое-то значение или попадет на какой-то интервал).

Формы задания законов распределения случайных величин. Ряд распределения.

Это таблица в верхней строке которой перечислены в порядке возрастания все возможные значения случайной величины Х: х 1 , х 2 , ..., х n , а в нижней – вероятности этих значений: p 1 , p 2 , ..., p n , где p i = Р{Х = x i }.

Так как события {Х = x 1 }, {Х = x 2 }, ... несовместны и образуют полную группу, то сумма всех вероятностей, стоящих в нижней строке ряда распределения, равна единице

Ряд распеделения используется для задания закона распределения только дискретных случайных величин.

Многоугольник распределения

Графическое изображение ряда распределения называется многоугольником распределения. Строится он так: для каждого возможного значения с. в. восстанавливается перпендикуляр к оси абсцисс, на котором откладывается вероятность данного значения с. в. Полученные точки для наглядности (и только для наглядности!) соединяются отрезками прямых.

Интегральная функция распределения (или просто функция распределения).

Это функция, которая при каждом значении аргумента х численно равна вероятности того, что случайная величина  окажется меньше, чем значение аргумента х.

Функция распределения обозначается F(x): F(x) = P {X  x}.

Теперь можно дать более точное определение непрерывной случайной величины: случайную величину называют непрерывной, если ее функция распределения есть непрерывная, кусочно-дифференцируемая функция с непрерывной производной.

Функция распределения – это наиболее универсальная форма задания с. в., которая может использоваться для задания законов распределения как дискретных, так и непрерывных с. в.

Cтраница 2


Графически закон распределения дискретной величины задается в виде так называемого многоугольника распределения.  

Графическое изображение ряда распределения (см. рис. 5) называется многоугольником распределения.  

Для характеристики закона распределения прерывной случайной величины часто применяют ряд (таблицу) и многоугольник распределения.  

Для его изображения в прямоугольной системе координат строят точки (У Pi) (x - i Pa) и соединяют их отрезками прямых. Многоугольник распределения дает приближенное наглядное представление о характере распределения случайной величины.  

Для наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки (х /, р, а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения.  

M (xn; pn) (лс - - возможные значения Xt pi - соответствующие вероятности) и соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения.  

Рассмотрим распределение вероятностей суммы очков на игральных костях. На рисунках ниже приведены многоугольники распределения для случая одной, двух и трех костей.  

В этом случае вместо многоугольника распределения случайной величны строится функция плотности распределения, которая получила название дифференциальной функции распределения и представляет собой дифференциальный закон распределения. В теории вероятностей под плотностью распределения случайной величины х (х Хг) понимают предел отношения вероятности попадания величины х в интервал (х, х - - Ах) к Ах, когда Ал; стремится к нулю. Кроме дифференциальной функции для характеристики распределения случайной величины применяется интегральная функция распределения, которую часто называют просто функцией распределения или интегральным законом распределения.  

При таком построении относительные частоты попадания в интервалы будут равны площадям соответствующих столбиков гистограммы, подобно тому, как вероятности равны площадям соответствующих криволинейных трапеций Если предполагаемое теоретическое распределение хорошо согласуется с опытом, то при достаточно большом п и удач - ном выборе интервалов (YJ-I, у. Иногда еще для наглядности сравнения строят многоугольник распределения, соединяя последовательно середины верхних оснований столбиков гистограммы.  

Придавая т различные значения от 0 до я, получают вероятности PQ, Р РЧ - Рп, которые наносятся на график. Дано р; я11, построить многоугольник распределения вероятностей.  

Законом распределения дискретной случайной величины называют любое соответствие между возможными ее значениями и их вероятностями. Закон можно задать таблично (ряд распределения), графически (многоугольник распределения и др.) и аналитически.  

Нахождение кривой распределения, другими словами, установление распределения самой случайной величины, дает возможность более глубоко исследовать явление, далеко не полно выражаемое данным конкретным рядом распределения. Представив на чертеже как найденную выравнивающую кривую распределения, так и многоугольник распределения, построенный на основе частичной совокупности, исследователь может ясно видеть характерные особенности, присущие изучаемому явлению. Благодаря этому статистический анализ задерживает внимание исследователя на отклонениях наблюденных данных от некоторого закономерного изменения явления, и перед исследователем возникает задача - выяснить причины этих отклонений.  

Затем из середины интервалов проводятся абсциссы (в масштабе), соответствующие числу месяцев с расходом в данном интервале. Концы этих абсцисс соединяются и, таким образом, получается полигон, или многоугольник распределения.  

Точки, дающие графическое представление закона распределения дискретной случайной величины на координатной плоскости значения величины - вероятность значений, обычно соединяют отрезками прямых и называют получающуюся при этом геометрическую фигуру многоугольником распределения. На рис. 3 в таблице 46 (а также на рисунках 4 и 5) как раз изображены многоугольники распределений.  

Дискретной называют случайную величину, которая может принимать отдельные, изолированные значения с определенными вероятностями.

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно:

Р(0) = ; Р(1) = ; Р(2) = ; Р(3) = .

ПРИМЕР 2. Число отказавших элементов в приборе, состоящем из пяти элементов. Возможные значения: 0, 1, 2, 3, 4, 5; их вероятности зависят от надежности каждого из элементов.

Дискретная случайная величина Х может быть задана рядом распределения или функцией распределения (интегральным законом распределения).

Рядом распределения называется совокупность всех возможных значений х i и соответствующих им вероятностей р i = Р ( Х = х i ), он может быть задан в виде таблицы:

х i

х n

р i

р n

При этом вероятности р i удовлетворяют условию

р i = 1 , потому, что

где число возможных значений n может быть конечным или бесконечным.

Графическое изображение ряда распределения называется многоугольником распределения . Для его построения возможные значения случайной величины (х i ) откладываются по оси абсцисс, а вероятности р i - по оси ординат; точки А i c координатами ( х i ,р i ) соединяются ломаными линиями.

Функцией распределения случайной величины Х называется функция F (х ), значение которой в точке х равно вероятности того, что случайная величина Х будет меньше этого значения х , то есть

F (х) = Р (Х< х).

ФункцияF (х ) для дискретной случайной величины вычисляется по формуле

F (х)= р i , (1.10.1)

где суммирование ведется по всем значениям i , для которых х i < х.

ПРИМЕР 3. Из партии, содержащей 100 изделий, среди которых имеется 10 дефектных, выбраны случайным образом пять изделий для проверки их качества. Построить ряд распределений случайного числа Х дефектных изделий, содержащихся в выборке.

Решение . Так как в выборке число дефектных изделий может быть любым целым числом в пределах от 0 до 5 включительно, то возможные значения х i случайной величины Х равны:

х 1 = 0, х 2 = 1, х 3 = 2, х 4 = 3, х 5 = 4, х 6 = 5.

Вероятность Р (Х = k ) того, что в выборке окажется ровно k (k = 0, 1, 2, 3, 4, 5) дефектных изделий, равна

Р (Х = k ) = .

В результате расчетов по данной формуле с точностью 0,001 получим:

р 1 = Р (Х = 0) @ 0,583; р 2 = Р (Х = 1) @ 0,340; р 3 = Р (Х = 2) @ 0,070;

р 4 = Р (Х = 3) @ 0,007; р 5 = Р (Х = 4) @ 0; р 6 = Р (Х = 5) @ 0.

Используя для проверки равенство р k =1, убеждаемся, что расчеты и округление произведены правильно (см. табл.).

х i

р i

ПРИМЕР 4. Дан ряд распределения случайной величины Х :

х i

р i

Найти функцию распределения вероятности F (х ) этой случайной величины и построить ее.

Решение . Если х £ 10, то F ( х ) = Р (Х < х ) = 0;

если 10 < х £ 20 , то F ( х ) = Р (Х <х ) = 0,2 ;

если 20 < х £ 30 , то F ( х ) = Р ( Х < х ) = 0,2 + 0,3 = 0,5 ;

если 30 < х £ 40 , то F ( х ) = Р (Х < х ) = 0,2 + 0,3 + 0,35 = 0,85 ;

если 40 < х £ 50 , то F ( х ) = Р (Х < х ) = 0,2 + 0,3 + 0,35 + 0,1=0,95 ;

если х > 50 , то F ( х ) = Р ( Х < х ) = 0,2 + 0,3 + 0,35 + 0,1 + 0,05 = 1.