Сколько марсоходов находится на марсе. Марсоходы, орбитальные станции — первооткрыватели на Красной планете

MarsExplorationRover– это знаменитая программа NASA, направленная на всестороннее исследование планеты Марс. В рамках данной программы практически одновременно на поверхность «красной планеты» были доставлены два марсохода – Spirit и Opportunity. В 2012 году, в связи с выходом из строя аппарата Spirit и с постановкой новых научных задач, NASA доставляет на поверхность планеты марсоход нового поколения Curiosity, который ощутимо больше и тяжелее своих предшественников.

Первые шаги по планете Марс: Spirit и Opportunity

Марсоход Spirit опустился на поверхность Марса 3 января 2004 года. Opportunity присоединился к нему уже 25 января того же года. Что касается третьего всемирно известного марсохода Curiosity, то он достиг поверхности Марса 6 августа 2012 года, и сразу же приступил к работе.


Нужно сказать, что Spirit осуществил ряд интересных открытий. В частности, по результатам проб марсианского грунта, сделанных этим аппаратом, учёные смогли выдвинуть гипотезу о том, что в прошлом на Марсе были отличные условия для жизни микроорганизмов. Не смотря на то, что миссия этого марсохода должна была продлиться 90 дней, его использовали свыше шести лет. Связь со Spirit прервалась 23 июля 2010 года.


Opportunity, прибывший на три недели позже, чем Spirit работает до сих пор. Нужно отметить, что именно Opportunity смог найти на Марсе следы целого пересохшего океана. Кроме того, ему принадлежат очень точные измерения различных параметров марсианской атмосферы.

Исследование Марса Curiosity

Марсоход Curiosity – это не просто прекрасный марсианский вездеход нового поколения, но ещё и довольно крупная автономная химическая лаборатория. Основной задачей использования данного аппарата является проведение целого ряда глубоких исследований грунта и атмосферы. Сейчас марсоход занимается изучением геологической истории «красной планеты» в кратере Гейла, где есть возможность работать с глубинными грунтами.


Марсоход, который весит на Земле 900 кг 3 метра длины и 2,7 метра ширины, имеет 3 пары колес диаметром 50 см, способен передвигаться в любом направлении и передавать на Землю данные о проб грунта, снимки с поверхности планеты и другую ценную информацию. Ожидаемое время миссии 1 марсианский год, что равно 687 земных дней.

Первая цель после посадки, которую NASA Curiosity благополучно совершил 6 августа этого года в кратер Гейла диаметром в 150 км, стало путешествие к подножью горы Шарпа. Сама гора имеет высоту 5,5 км. Задача изучить версию воздействия водных потоков, которыми когда-то подвергались склоны горы Шарпа, но на данный момент марсоход на месте посадки обнаружил не так много воды, как того ожидалось по расчетам, всего 1,5%. А ведь предполагали ее наличие от 5,6 до 6,5%.

Основные результаты работы Curiosity состоят в том, что им была определена двухслойность марсианского грунта. Первый, так называемый сухой слой, практически не содержит воды. В то же время, на глубине свыше 40 см. содержание воды составляет порядка 4%.


И вот, получены качественные при помощи наложенных фильтров снимки с марса, который передал марсоход Curiosity. На одном из снимков виднеется подножье горы Шарпа к которой следует Curiosity.



Тем не менее, первые данные настоящей хроники с Марса получены. Температура окружающего воздуха +3 градуса по Цельсию и несколько любопытных снимков, на одном из них хорошо видна гора Шарпа к которой движется марсоход. Правда, достигнет ее он только к новому году на земле, ведь его скорость очень низкая, всего 0,14 км/ч.

(Видео поверхности планеты Марс, переданное марсоходом Curiosity)

Перед тем, как направиться к горе, марсоход NASA Curiosity проверил всю аппаратуру, сделал множество снимков, пошевелил буром и опробовал лазерную пушку, назначение которой не защита от марсиан, а сбор анализа образцов почвы и воздуха на расстоянии.


На данный момент из трёх марсоходов, запущенных в период с 2003 года, на Марсе работают два. За это время сделано множество научных открытий разных масштабов.


Ведущие мировые эксперты полагают, что основой успеха американских марсоходов является умение их создателей учиться на собственных ошибках. Соответственно, каждый новый аппарат становится более совершенным, чем его предшественники.

Любопытный факт. Сотрудники Nasa предусмотрели вариант первого знакомства с "марсианами". Так после приземления, марсоход первым делом обратился с приветствием к пустынной планете голосом директора NASA Чарльза Болдена и переслал на землю песню Will.I.Am.

6 августа 2012 года марсоход Curiosity после восьмимесячного перелета в районе кратера Гейла на Марсе, сообщает НАСА.

10 октября 1960 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Молния 8К78", которая должна была вывести на траекторию полета к Марсу советскую автоматическую межпланетную станцию (АМС) "Марс" (1960А). Это была первая в истории человечества попытка достичь поверхности Марса. Из‑за аварии ракеты‑носителя (РН) пуск закончился неудачей.

14 октября 1960 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Молния 8К78", которая должна была вывести на траекторию полета к Марсу советскую АМС "Марс" (1960В). Программа полета предусматривала достижение станцией поверхности Марса. Из‑за аварии РН пуск закончился неудачей .

24 октября 1962 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Молния 8К78", которая вывела на околоземную орбиту советскую АМС "Марс‑1С" ("Спутник‑22").

Старт станции в сторону Марса не состоялся из‑за взрыва последней ступени ракеты‑носителя.

1 ноября 1962 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Молния 8К78", которая вывела на траекторию полета к Марсу советскую АМС "Марс‑1". Первый успешный пуск в сторону Марса. Сближение АМС "Марс‑1" с Марсом наступило 19 июня 1963 года (от Марса около 197 тысяч километров, по баллистическим расчетам), после чего станция вышла на траекторию движения вокруг Солнца. Связь с АМС была потеряна.

4 ноября 1962 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Молния 8К78", которая вывела на околоземную орбиту советскую АМС "Марс‑2А" ("Спутник‑24"). Старт станции в сторону Марса не состоялся.

5 ноября 1962 года спутник "Марс‑2А" прекратил существование, войдя в плотные слои атмосферы.

5 ноября 1964 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Atlas Agena‑D, которая вывела на траекторию полета к Марсу американскую АМС Mariner‑3. Станция была выведена на нерасчетную траекторию и в район Марса не попала . Mariner‑3 находится на солнечной орбите.

28 ноября 1964 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Atlas Agena‑D, которая вывела на траекторию полета к Марсу американскую АМС Mariner‑4. Станция была предназначена для исследования Марса с пролетной траектории.

14 июля 1965 года станция Mariner‑4 совершила пролет около Марса, пройдя на расстоянии 9920 километров от его поверхности. Аппарат передал 22 крупных плана поверхности Марса, а так же подтвердил предположение о том, что тонкая атмосфера Марса состоит из углекислого газа, давлением 5‑10 миллибар. Было зафиксировано наличие у планеты слабого магнитного поля. Станция продолжала функционировать до конца 1967 года. Сейчас Mariner 4 находится на солнечной орбите.

30 ноября 1964 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Молния 8К78", которая вывела на траекторию полета к Марсу советскую АМС "Зонд‑2". Контакт со станцией был потерян 4‑5 мая 1965 года.

27 марта 1969 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя (РН) "Протон‑К / Д", которая должна была вывести на траекторию полета к Марсу АМС "Марс". Из‑за аварии РН пуск закончился неудачей.

24 февраля 1969 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Atlas SLV‑3C Centaur‑D, которая вывела на траекторию полета к Марсу автоматическую межпланетную станцию Mariner‑6. 31 июля 1969 года станция Mariner‑6 пролетела на высоте 3437 километров над экваториальной областью Марса . Сейчас Mariner‑6 находится на солнечной орбите.

27 марта 1969 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Atlas SLV‑3C Centaur‑D, которая вывела на траекторию полета к Марсу американскую АМС Mariner‑7. 5 августа 1969 года станция Mariner‑7 пролетела на высоте 3551 километров над южным полюсом Марса.

Mariner-6 и Mariner-7 произвели измерения температуры поверхности и атмосферы, анализ молекулярного состава поверхности и давления атмосферы. Кроме этого, было получено около 200 изображений. Была измерена температура южной полярной шапки, которая оказалась очень низкой ‑125° С. Сейчас Mariner‑7 находится на солнечной орбите.

27 марта 1969 года при запуске советской АМС "Марс 1969А" произошла авария на участке выведения на околоземную орбиту.

2 апреля 1969 года при запуске советской АМС "Марс 1969В" произошла авария на участке выведения на околоземную орбиту.

8 мая 1971 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Atlas SLC‑3C Centaur‑D, которая должна была вывести на траекторию полета к Марсу американскую АМС Mariner‑ 8. Космический аппарат не смог покинуть земной орбиты. Из‑за сбоя в работе второй ступени ракетоносителя аппарат упал в Атлантический океан примерно в 900 милях от мыса Канаверал.

10 мая 1971 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на околоземную орбиту спутник "Космос‑419", однако на траекторию полета к Марсу космический аппарат не перешел. 12 мая 1971 года аппарат вошел в плотные слои земной атмосферы и сгорел.

19 мая 1971 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на траекторию полета к Марсу советскую АМС "Марс‑2". Однако, на заключительном этапе полета из‑за программной ошибки бортовая ЭВМ спускаемого аппарата дала сбой, в результате чего угол его входа в марсианскую атмосферу оказался больше расчетного, и 27 ноября 1971 года он разбился о поверхность Марса . На борту аппарата был закреплен вымпел СССР.

28 мая 1971 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на траекторию полета к Марсу советскую АМС "Марс‑3". 2 декабря 1971 года спускаемый аппарат АМС "Марс‑ 3" совершил мягкую посадку на поверхность Марса. После посадки станция была приведена в рабочее состояние и начала передавать на Землю видеосигнал. Передача продолжалась 20 секунд и резко прекратилась. Орбитальный космический аппарат передавал данные на Землю до августа 1972 года.

30 мая 1971 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Atlas SLV‑3C Centaur‑D, которая вывела на траекторию полета к Марсу американскую АМС Mariner‑9. Космический аппарат (КА) прибыл к Марсу 3 ноября 1971 года и вышел на орбиту 24 ноября 1971 года. КА были сделаны первые снимки спутников Марса Фобоса и Деймоса в высоком разрешении. На поверхности планеты были обнаружены рельефные образования, напоминающие реки и каналы. Mariner‑9 все еще находится на орбите Марса. с 13 ноября 1971 года по 27 октября 1972 года передал 7329 снимков.

21 июля 1973 года в СССР с космодрома Байконур, был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на траекторию полета к Марсу советскую АМС "Марс‑4" . 10 февраля 1974 года станция подошла к Марсу, однако корректирующая двигательная установка не включилась. Поэтому аппарат пролетел на высоте 1844 километров над средним радиусом Марса (5238 километров от центра). Единственное, что он успел сделать, это по команде с Земли включить свою фототелевизионную установку с короткофокусным объективом "Вега‑3МСА". Был проведен один 12‑кадровый цикл съемки Марса на дальностях 1900‑2100 километров. Однострочные оптико‑механические сканеры передали также две панорамы планеты (в оранжевом и красно‑инфракрасном диапазонах). Станция, пройдя мимо планеты, вышла на гелиоцентрическую орбиту.

25 июля 1973 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на траекторию полета к Марсу советскую АМС "Марс‑5". 12 февраля 1974 года АМС "Марс‑5" была выведена на орбиту вокруг Марса. Со станции были переданы фототелевизионные изображения Марса с разрешением до 100 метров, проведены серии исследований поверхности и атмосферы планеты. Всего со станции "Марс‑5" было получено 15 нормальных снимков с помощью фототелевизионного устройства (ФТУ) с короткофокусным объективом "Вега‑3МСА" и 28 снимков с помощью ФТУ с длиннофокусным объективом "Зуфар‑2СА". Удалось получить 5 телепанорам. Последний сеанс связи с АМС, в котором была передана телепанорама Марса, состоялся 28 февраля 1974 года.

5 августа 1973 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на траекторию полета к Марсу АМС "Марс‑6" . |

12 марта 1974 года станция "Марс‑6" совершила пролет мимо планеты Марс, пройдя на расстоянии 1600 километров от поверхности планеты. Непосредственно перед пролетом от станции был отделен спускаемый аппарат, который вошел в атмосферу планеты и на высоте порядка 20 километров в действие была введена парашютная система. В непосредственной близости от поверхности планеты Марс радиосвязь со спускаемым аппаратом прекратилась. Спускаемый аппарат достиг поверхности планеты в точке с координатами 24 градусов южной широты и 25 градусов западной долготы.

Информация со спускаемого аппарата во время его снижения принималась космическим аппаратом "Марс‑6", продолжавшим движение по гелиоцентрической орбите с минимальным расстоянием от поверхности Марса ‑ 1600 километров, и ретранслировалась на Землю.

9 августа 1973 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на траекторию полета к Марсу советскую АМС "Марс‑7".

9 марта 1974 года (раньше, чем "Марс‑6") станция "Марс‑7" совершила пролет мимо планеты Марс, пройдя на расстоянии 1300 километров от его поверхности. При приближении к планете от станции отделился спускаемый аппарат. Программа полета предусматривала совершение посадки на поверхность Марса. Из‑за нарушения в работе одной из бортовых систем, спускаемый аппарат прошел мимо планеты и вышел на гелиоцентрическую орбиту. Целевая задача станцией не была выполнена.

Проект Национального управления по воздухоплаванию и исследованию космического пространства (НACA, США) 1975 года - "Викинг‑1" (Viking‑1) и " Викинг‑2" (Viking‑2) ‑ включал в себя запуск с разницей в несколько недель двух летательных аппаратов, состоящих из орбитального и посадочного модулей. Впервые в истории американской космонавтики они, достигнув Марса, совершили посадку на его поверхность.

20 августа 1975 года с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя "Titan‑3E", которая вывела на орбиту американский КА Viking‑1. Космический аппарат вышел на орбиту Марса 19 июня 1976 года . Спускаемый аппарат осуществил посадку на Марс 20 июля 1976 года . Был отключен 25 июля 1978 года, когда иссякло топливо для коррекции высоты полета орбитального модуля.

9 сентября 1975 года с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя "Титан‑3E‑Центавр", которая вывела на орбиту американский КА Viking‑2. Космический аппарат вышел на орбиту Марса 24 июля 1976 года. Спускаемый аппарат осуществил посадку 7 августа 1976 года на Равнине Утопия.

7 июля 1988 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон 8К82К" с разгонным блоком "Д2", которая вывела на траекторию полета к Марсу советскую АМС "Фобос‑1" для исследования спутника Марса Фобоса. 2 сентября 1988 года "Фобос‑1" был утерян на пути к Марсу в результате ошибочной команды.

12 июля 1988 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон 8К82К" с разгонным блоком "Д2", которая вывела на траекторию полета к Марсу советскую АМС "Фобос‑2". Основная задача ‑ доставка на поверхность Фобоса спускаемых аппаратов (СКА) для изучения спутника Марса.

"Фобос‑2" вышел на орбиту Марса 30 января 1989 года. Было получено 38 изображений Фобоса с разрешением до 40 метров, измерена температура поверхности Фобоса. Связь с аппаратом была потеряна 27 марта 1989 года. СКА доставить не удалось.

25 сентября 1992 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Titan‑3, которая вывела на траекторию полета к Марсу американскую АМС Mars Observer с модулем USS Thomas O.Paine, предназначенную для проведения научных наблюдений в течение четырехлетнего нахождения на орбите Марса. Контакт с Mars Observer был потерян 21 августа 1993 года, когда ему оставалось всего три дня до выхода на орбиту. Точная причина не известна, предположительно КА взорвался во время повышения давления в топливных баках при подготовке к выходу на орбиту.

7 ноября 1996 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Delta‑2‑7925A / Star‑48B, которая вывела на околомарсианскую орбиту американскую исследовательскую станцию Mars Global Surveyor. КА был предназначен для сбора информации о характере поверхности Марса, ее геометрии, составе, гравитации, динамики атмосферы и магнитном поле.

4 декабря 1996 года в США по программе НАСА по изучению Марса с помощью ракеты‑носителя "Дельта‑2" был запущен аппарат Mars Pathfinder. Помимо научного оборудования и систем связи на борту спускаемого модуля находился небольшой марсоход Sojourner.

8 ноября 2011 года с помощью ракеты‑носителя "Зенит‑2 SБ" стартовала российская АМС "Фобос‑Грунт", предназначенная для доставки образцов грунта с естественного спутника Марса, Фобоса, на Землю. В результате нештатной ситуации не смогла покинуть окрестности Земли, оставшись на низкой околоземной орбите. 15 января 2012 года сгорела в плотных слоях земной атмосферы.

26 ноября 2011 года с помощью ракеты‑носителя Atlas V стартовал исследовательский марсоход Curiosity (США) - ключевое звено "Марсианской научной лаборатории" (Mars Science Laboratory). Аппарат должен будет за несколько месяцев пройти от 5 до 20 километров и провести полноценный анализ марсианских почв и компонентов атмосферы.

Планируется, что марсоход Curiosity проживет на поверхности планеты один марсианский год ‑ 687 земных дней или 669 марсианских.

Материал подготовлен на основе информации РИА Новости и открытых источников

Это чтобы было понятно, что мы зря на погоду жалуемся. Слева Марс ещё в сравнительно спокойном состоянии, а справа - ветерок метров до ста в секунду. На таких скоростях по поверхности носятся тучи пыли и песка, частицы размером примерно в полтора миллиметра. Марсианское лето.

Вот, к примеру, смерч, заснятый ровером Spirit в 2005-м. Такие называют пылевыми дьяволами. Если налетит - во-первых, ничего не видно, во-вторых, от такого трения корпус марсохода заискрит. А в-третьих, вихрь может просто снести всю исследовательскую миссию.

С прогнозами погоды, как известно, у нас, землян, всегда было не очень. Пожалуйста: , что к концу ноября Московский регион накроет снегом. Что уж говорить о марсианской метеорологии 1970-х годов.

В свете всего этого представьте себе, что на дворе 1971 год и к Красной планете летит сразу две межпланетные станции - и у каждой при себе спускаемый аппарат. Это были советские "Марс-2" и "Марс-3". "Марс-1" тоже был, ещё в 1960-е, но тогда не было задачи высадить аппарат, надо было лишь пролететь мимо планеты. Так вот, в мае 1971-го с интервалом в десять дней одну за другой запустили две разработки НПО имени Семёна Алексеевича Лавочкина. Обе многотонные, а точнее, четыре тонны 625 килограммов каждая. Кстати говоря, до них такие тяжёлые штуки к Марсу ещё не летали.

Проходит пять месяцев, полёт нормальный, траекторию по плану скорректировали, остаются какие-то четыре-пять недель до прибытия на Марс - и вдруг учёные узнают, что там начинается пылевая буря. Она разыгралась в области Noachis Terra (Земля Ноя по-латыни), а через неделю охватила всю южную полярную шапку. Вот смотрите: справа внизу, собственно, Noachis Terra, то есть эпицентр стихии, а выше и левее - Xanthe Terra, Земля Ксанфа. Там 27 ноября пытается приземлиться "Марс-2". Происходит неполадка, аппарат снижается под слишком большим углом - и тормоза просто не могут с этим справиться. Марсоход разбивается. Он стал первым, в принципе оказавшимся на Марсе.

А теперь смотрим налево. Там написано Terra Sirenum, Земля сирен. Тоже, знаете ли, не самое безопасное расстояние от охваченного штормом "Ноева ковчега". Там находится кратер Птолемей - место приземления аппарата "Марс-3" 2 декабря. На этот раз система не подвела: и радиодатчик определения высоты, и тормозной двигатель, и парашют сработали. Удалось совершить мягкую посадку, за полторы минуты развернуть нужную аппаратуру и даже начать трансляцию. Но она, к сожалению, продлилась всего 14,5 секунды и больше не возобновилась. Вот что он успел передать.

На первый взгляд, помехи, в которых ничего не разберёшь. Но эксперты понимают, что это была попытка прислать на Землю примерно следующую картинку. Это пейзаж Луны, если что - изображение с аппарата "Луна-9". Просто для наглядного примера.

Ну что ж, самое время окинуть взглядом пройденный с тех пор путь, то есть карту Марса с отмеченными на ней местами посадки роверов. Отрадно, что про советский аппарат не забыли. Только, кажется, локацию "Марса-2" неправильно указали, Земля Ксанфа не там.

Фото © NASA

И, конечно, нельзя не упомянуть, что до недавнего времени ни в одном космическом агентстве не могли точно сказать, где именно покоится "Марс-3". Но нашёлся искренний поклонник космонавтики по имени Виталий Егоров, который целыми днями рассматривал максимально увеличенные изображения с марсианских карт, а заодно и "трудоустроил" своих подписчиков в соцсетях. В итоге они выбрали самые похожие объекты, связались с учёными и даже добились того, чтобы орбитальный аппарат NASA Mars Reconnaissance Orbiter ещё раз поснимал нужную область поверхности. И в итоге сказали: мол, да, действительно, похоже на "Марс-3".

А скоро - как обещают, летом 2020 года - на картах Марса появится ещё одна точка: место посадки аппарата "

Вот и пришло время для возрождения «Познавательного Космоddрома». По многочисленным просьбам речь сегодня пойдет о роверах, которые ученые забросили на марсианские просторы. Так что, если слово «марсоход» вызывает у вас интерес, то смело можно жать «под кат»!

Пролог

Начнем, пожалуй, с определений. Сегодня мы смотрим на марсоходы - устройства, посланные на другую планету с целью спуска и дальнейшего перемещения по поверхности планеты для подробного изучения. Помимо подобных устройств на поверхность Марса также спускались так называемые АМС, автоматические межпланетные станции. Их отличие от марсоходов заключается в том, что они лишены возможности передвижения и собирают информацию, которая доступна исключительно в точке посадки.

Всего три страны смогли отправить космический аппарат на поверхность Марса, причем одна из этих стран уже не существует. СССР послал «Марс-2», «Марс-3» и «Марс-6», Великобритания - «Бигль-2», а остальные же 8 аппаратов являлись собственностью США. Кстати, британский аппарат хоть и совершил успешную посадку, на связь с Землей так и не вышел. Вообще за все то недолгое время, что человек осваивает Красную Планету, из 12 попыток посадки только 9 смогли избежать крушения при контакте с поверхностью и лишь 7 из них смогли передать обратно в командный пункт какую-либо информацию.

Но давайте говорить про марсоходы, потому что АМС, как мне кажется, не настолько интересны. Всего к Марсу было запущено 6 марсоходов, из которых только 4 успешно работали хотя бы какое-то время. Посмотрим на них в хронологическом порядке.

ПрОП-М

Два идентичных советских аппарата, называемые изобилующей согласными аббревиатурой ПрОП-М (Прибор Оценки Поверхности — Марс), входили в состав миссий «Марс-2» и «Марс-3» в 1971 году. Обе эти миссии закончились неудачно: первый аппарат не смог осуществить мягкую посадку, при этом вписав себя в историю как первый антропогенный механизм, достигший поверхности Марса; второй хоть и смог сесть, не разбившись, передавал сигнал в виде серого фона и то только в течение недолгих 14,5 секунд, после чего контакт с ним был потерян.

Хоть советские планетоходы так и не стали первыми рабочими аппаратами в своем классе, это вовсе не значит, что в них не было ничего интересного. В отличие от своих последующих американских «коллег», они были оснащены не уже привычными нам колесами, а шагающими «лыжами», которые располагались по бокам. Данная конструкция была не так эффективна, как, например, гусеницы или колеса, но была выбрана из-за недостаточной изученности поверхности планеты на момент разработки аппарата.

Размеры ПрОП-М-ов составляли всего 25 х 22 х 4 см, а вес - 4,5 кг. По плану они могли отдаляться от своих неподвижных станций на дину кабеля, которым были к ней привязаны, т.е. на 15 метров.

Sojourner

Первым работающим марсоходом был аппарат Sojourner, который входил в состав американской миссии Mars Pathfinder. Название «Соджорнер» (буквально: «проезжий», «пришелец» ) появилось в результате конкурса, который проводило NASA. Победителем стал 12-летний мальчик, который, собственно, и придумал имя покорителю Марса, назвав его в честь женщины-борца против негритянского рабства — Соджорнер Трут.

Посадка миссии Mars Pathfinder успешно прошла 4 июля 1997 года, а контакт с ровером продлился до 27 сентября этого же года.

Панорама, снятая посадочной станцией. «Соджорнер» виден справа (кликабельно).

Аппарат представлял собой «машинку на радиоуправлении» размерами 65 х 48 х 30 см и весом в 10,6 кг (что на Марсе ровнялось примерно 4 кг), почти всю верхнюю панель которого занимала солнечная батарея. Из оборудования на борту имелось:

  • Три камеры, две из которых были спаренными, образовывая стереосистему, и смотрели вперед, а одна - назад.
  • Альфа-протон-рентгеновский спектрометр (APXS) для определения химического состава изучаемых пород.
  • Антенна для связи с посадочной станцией, способная передавать сигнал на расстояние до 500 метров.
  • Солнечная батарея, которая питала аккумулятор емкостью от 24 до 36 Ач (в зависимости от температуры).

Думаю, что многим нашим читателям будет особо интересно почитать о бортовых компьютерах, установленных на марсоходах. В случае с «Соджорнером» это был 8-разрядный камень Intel 80С85, работавшего на частоте 2 МГц, оперативная память объемом 512 КБ и твердотельный флеш-накопитель на 176 КБ. Напомню, что такая начинка была в 1997 году. Бортовое ПО умело составлять 3D-карты местности и выбирать наиболее короткие и безопасные маршруты до указанной точки.

Если вы крайне удивлены тем фактом, что столь передовой научный инструмент как марсоход обладает настолько слабыми техническими характеристиками, то спешу разъяснить. Космическая IT-инфраструктура довольно значительно отличается от земной и просто не успевает за темпами ее развития. Дело в том, что помимо необходимости простой надежности техники (любой глюк, баг или отказ может стоить миллиарды), космическая среда крайне агрессивна. Даже на Марсе, где есть какое-никакое, а магнитное поле, которое защищает поверхность от радиационного излучения, оно слабее земного примерно в 800 раз. Доза радиации, получаемая на поверхности планеты, составит 0,2-0,3 Гр/год, что примерно равно дозе облучения при нахождении на МКС. А во время полета к Марсу эта доза может быть в 2-3 раза выше. А раз эту дозу получает техника, это увеличивает необходимый запас ее прочности по сравнению с земными собратьями во много раз. Я когда-то даже слышал миф, что нельзя брать фотоаппараты в самолет (на высоту около 10 км), потому что там матрица может выгореть из-за космического излучения. Представьте, что тогда может произойти хотя бы немного выше.

Возвращаемся к «Соджорнеру». Примерно за 83 сол (марсианских суток) он проделал путь вокруг своей посадочной станции длиной около 100 метров. Это стало значительным достижением, особенно учитывая тот факт, что изначально планировалось, что «Соджорнер» «проживет» не более 7 сол. За время своих исследований марсоход подробно изучил несколько камней, которым даже дали имена: «Барнакл Билл», «Йоги», «Скуби-Ду», «Моу».

В результате миссии Mars Pathfinder ученые смогли выяснить очень многое про химический состав грунта и пыли, а также подтвердить теорию о том, что раньше Марс был более теплым и влажным. Контакт с «Соджорнером» был потерян в 10:23 (UTC) 27 сентября 1997 года, когда посадочная станция перестала подавать и принимать сигнал. Через некоторое время безуспешных попыток восстановить связь миссия была официально признана оконченной. Точное место остановки «Соджорнера» на данный момент не известно, однако этот пробел будет восстановлен с запуском сверхточных камер на орбиту Марса в будущем.

Spirit и Opportunity

В 2004 году в рамках миссии Mars Exploration Rover (MER) на Марс были отправлены два идентичных марсохода под названиями «Спирит» и «Оппортьюнити». 4 января 2004 года мягкую посадку в Кратере Гусева совершил «Спирит», а через несколько дней, 25 января подобное повторил и «Оппортьюнити», но на Плато Меридиана.

Как и в случае с миссией Pathfinder, для определения названий марсоходов был проведен конкурс под эгидой NASA. Выиграла его 9-летняя американская девочка с русскими корнями, Софи Коллиз.

Оба аппарата MER были значительно больше, тяжелее и продвинутее в техническом и научном планах, чем их предшественник. При размерах в 1,6 х 2,3 х 1,5 м их вес составлял 185 кг (~70 кг на Марсе). Как и «Соджорнер», марсоходы обладали 6 колесами (диаметром 26 см каждое) и большими солнечными батареями. В конструкцию были добавлены такие элементы, как мачта, на которой располагались камеры, и другие инструменты, а также рука-манипулятор с прикрепленным к ней буром и еще одной камерой.

Из аппаратуры на «Спирите» и «Оппортьюнити» можно было найти следующее:

  • PanCam, панорамную камеру, делавшую цветные снимки с разрешением 1024 х 1024. Используется для изучения текстуры, цвета и структуры поверхности Марса.
  • NavCams, камеру с широкоугольной линзой относительно низкого разрешения, которая используется для навигации.
  • Микрокамеру (MI), способную делать снимки камней и пород с близкого расстояния в высоком разрешении (1024 x 1024) для их подробного изучения.
  • HazCams, система из двух черно-белых камер с углом обзора в 120 градусов, используемых для обнаружения и определения препятствий.
  • Три спектрометра: Mini-TES, MIMOS II, APXS, которые нужны для анализа химического состава изучаемого грунта.
  • Магниты, используемые для сбора пыли и определяющие таким образом ее магнитные свойства.
  • Инструмент для бурения, способный высверливать отверстия в скальных породах диаметром 45 мм и глубиной 5 мм.

Что до компьютеров марсоходов, которым мы договорились уделять особое внимание, то в близнецах MER использовались устройства на базе камня RAD6000 производства IBM, работавшего на частоте 20 МГц, 128 МБ оперативной памяти и 256 МБ твердотельного флеш-накопителя. Такая начинка стала значительным шагом вперед по сравнению с предшественником, однако даже на 2004 год это было не «топ-ов-зэ-шелф». Причины этому все те же.

«Спирит»

Марсоход «Спирит», сев на поверхность Марса 4 января 2004 года в Кратере Гусева, проработал вместо запланированных 90 сол целых 2210 сол, из которых 1892 сол он мог двигаться. Проехав в общей сложности около 7,7 км, 1 мая 2009 года он застрял в мягком грунте Красной Планеты, из которого так и не смог выбраться, несмотря на отчаянные попытки NASA решить данную ситуацию. После этого миссия продолжалась до 22 марта 2010 года, когда состоялся последний контакт «Спирита» с Землей. Все время «простоя» он продолжал изучать окружающую среду, хоть и не мог двигаться.

Закат Солнца в Кратере Гусева, Spirit (кликабельно).

«Оппортьюнити»

«Оппортьюнити» был посажен на Марс 25 января 2004 года на Плато Меридиана, при этом оказавшись значительно удачливее своего чуть более старшего брата-близнеца. Запланированный срок службы также составлял 90 сол, но это не мешает «Оппортьюнити» работать и до сегодняшнего дня. Он является вторым планетоходом в истории по пройденному пути, покрыв за срок своей службы более чем в 36 км, уступая пока только «Луноходу-2», при этом продолжая наращивать данный показатель даже прямо сейчас, пока вы читаете данную статью. Так что в ближайшее время у него есть все шансы догнать и перегнать «Луноход-2». Не так давно «Оппортьюнити» отметил невероятную дату в 10 земных лет с момента посадки.

Результаты

Анализ информации с марсоходов сложно переоценить в научном плане. В результате полученных данных ученые смогли в очередной раз подтвердить теорию о том, что ранее Марс был более теплым и влажным. Более того, исследования камня под названием «Эсперанс-6», найденного «Оппортьюнити», доказали, что он долгое время находился в потоках жидкости, которая была не чем иным, как пресной водой, пригодной для существования в ней живых организмов.

Curiosity

6 августа 2012 года на Марс успешно сел марсоход Curiosity (англ. любопытство). Хотя он был значительно больше своих предшественников - 899 кг (~340 кг на Марсе) с параметрами 3,1 х 2,7 х 2,1 м - и значительно лучше оснащен в плане аппаратуры, цели его были примерно такими же: изучать поверхность Марса и искать свидетельства воды и, может, даже жизни.

«Кьюриосити» - самый современный планетоход на момент написания данной статьи. Он настолько современный, что у него есть собственный твиттер , в котором он рассказывает об открытиях, постит фотографии Марса и жалуется на свою тяжелую долю. Есть и русский аналог , если кто-то из читателей не знает английского. Советую всем, кто еще не подписан на него, побыстрее сделать это.

Наверное, у вас уже возник вполне логичный вопрос, глядя на «Кьюриосити» в сравнении с предшественниками: от чего же он питается, ведь на нем нет больших солнечных батарей? Ответ прост - на его борту есть свой собственный радиоизотопный термоэлектрический реактор, подобный тем, что были на аппаратах «Викинг-1» и «Викинг-2». Использование реактора позволяет получать постоянный ток в течение всего марсианского года и независимо от метеоусловий.

Давайте пройдемся по аппаратуре, установленной на марсоходе, коей, к слову, немало:

  • MastCam , камера, установленная на мачте, которая на самом деле состоит из двух камер. Обе имеют матрицу с разрешением 2 МП, способны делать снимки 1600 х 1200 в реальном цвете. Разница между двумя камерами системы состоит в фокусном расстоянии - 100 мм с углом зрения в 5,1 градус и 34 мм с углом зрения в 15 градусов. Ранее для них разрабатывались объективы с зумом, но разработчики не успели доделать систему поддержания смазки в жидком состоянии, и от зумов пришлось отказаться. Минимальное расстояние фокусировки составляет 2,1 м, а пишутся изображения в RAW на флеш-память объемом 8 ГБ.
  • Mars Hand Lens Imager (MAHLI) , камера, располагающаяся на руке-манипуляторе, основная цель которой — снимать изучаемый объекты вблизи. Матрица идентична той, что используется в MastCam, при этом она способна детализировать объекты от 14 мкм (тоньше человеческого волоса). Есть белая и ультрафиолетовая подсветки. Последняя необходима для вызова излучения минералов, наличие которых говорит о присутствии воды.
  • MSL Mars Descent Imager (MARDI) , еще одна камера, расположенная на корпусе марсохода. Матрица идентична двум предыдущим. При посадке «Кьюриосити» на Марс MARDI сделала 4000 цветных снимков с частотой 3 fps.
  • NavCams , система из 4 камер, располагающихся на мачте, служащих для помощи в навигации и позиционировании манипулятора.
  • HazCams , система из 8 камер с широкоугольными объективами (угол обзора 120 градусов), расположенных впереди и сзади аппарата, при этом направленных вниз. Используются для обнаружения препятствий и последующего их избегания.
  • ChemCam, камера-спектрометр, расположенная на мачте. Работая в паре с импульсным лазером, система испаряет кусок изучаемого объекта для проведения спектрального анализа на расстоянии. Такой подход позволяет не прибегать к использованию манипулятора, сохраняя время и энергию.
  • APXS, спектрометр, облучающий образцы альфа-частицами.
  • CheMin, мини-лаборатория, которая анализирует порошок, полученный при бурении и собранный ковшом CHIMRA.
  • SAM, еще один инструмент для анализа твердых пород.
  • RAD, детектор радиации, собирающий данные о фоне на Марсе. Его показания будут очень полезными для последующих человеческих экспедициях на Марс.
  • DAN, инструмент для поиска водорода и водяного льда.
  • REMS, мини-метеорологическая станция, исследующая атмосферные условия на Марсе.

Как и договаривались, об установленном компьютере поговорим отдельно. На Curiosity установлено два идентичных компьютера (один основной, один запасной) с процессорами RAD750 с частотой в 200 МГц, 256 кБ EEPROM, 256 МБ DRAM и аж 2 ГБ флеш-накопителя. За время работы на Марсе на первом компьютере произошел сбой, после чего пришлось полностью перейти на запасной аппарат. Сейчас работоспособность первого компьютера была восстановлена, однако перебираться на него обратно командный пункт не торопится.

Одной из самых впечатляющих фотографий, сделанных «Кьюриосити», однозначно является селфи на фоне Марса (кликабельно).

Эффект присутствия фотографирующего создан за счет того, что в вышеупомянутой фотографии было использовано 55 снимков, склеенных воедино. При этом рука-манипулятор, с помощью которой и было сделано данное фото, аккуратно вырезана. NASA даже выпустило специальный ролик, объясняющий, как все было сделано.

Для более полного эффекта можете надеть красно-синие очки и насладиться стереопарой.

«Кьюриосити» успешно продолжает исследовать Марс и по сей день. Не обходится и без технических проблем, как вышеупомянутые сбои основного компьютера. Совсем недавно начали проявляться и проблемы с износом колес, а буквально на днях в твиттере «Кьюриосити» показал довольно большую дырку в них.

Для исследования космических объектов, помимо телескопов и орбитальных станций, применяются планетоходы. Эти устройства доставляются на поверхность другой планеты, собирать информацию о составе грунта или атмосферы. Всего, начиная с середины 1960 годов, к Марсу было отправлено 14 марсоходов. Но свою миссию выполнили не все.


Кто на орбите Марса

Марс – объект пристального изучения учёными. Для того, что бы узнать больше о Красной планете, люди отправили множество разных зондов и орбитальных станций. Такие аппараты позволили многое узнать о рельефе, атмосфере, магнитном поле Марса. А один марсианский зонд ищет следы метана в атмосфере Марса.

Неудачные миссии для орбиты

Не все запуски орбитальных аппаратов к Марсу были удачными. Первые пять космических аппаратов были отправлены к Марсу СССР. И ни одну из миссий нельзя считать успешной. Марс 1960А, Марс 1960В, Марс 1962А и Марс 1962В не смогли даже выйти на орбиту Земли. Аппарат Марс-1 достиг Марса, но вследствие технических проблем больше не вышел на связь.

Первый американский спутник Mariner 3, отправленный в сторону Марса, так же не добрался до пункта назначения. Солнечные батареи не раскрылись, и полёт был завершен. Такая же неудача постигла советский аппарат Зонд-2.

В 1969 году СССР осуществило запуск ещё двух исследовательских зондов, Марс 1969А и Марс 1969 В. Попытка оказалась неудачной, так как при выводе на орбиту Земли случилась авария. Впрочем, такая же участь постигла и Mariner 8.

Отечественные зонды Космос 419 и Марс 2 не смогли добраться до красной планеты, по причине ошибки в программировании систем управления. А аппараты Фобос 1 и Фобос Грунт не выполнили миссию по причине неверной навигационной команды и срыве запуска маршевых двигателей соответственно.

Первый Японский космический аппарат, отправленный на Марс, из-за ошибки в маневрировании сошёл с курса и раньше времени закончил свою работу.

Станция Polar Lander должна была приземлиться на поверхность Марса, но после вхождения в атмосферу, связь была потеряна.

Спутники, работающие сегодня

В настоящее время на орбите красной планеты работает 6 космических станций и зондов, непрерывно ведущих работу по изучению Марса. Самый старый из находящихся на орбите — Mars Odyssey, запущенный в 2001 году и призванный изучить геологическое строение.

Mars Express – спутник Европейского Космического Агентства, и запущенный с космодрома Байконур в 2003 году. Оборудование на борту станции позволило обнаружить под поверхностью планеты жидкую воду.

Mars Reconnaissance Orbiter – аппарат, созданный для создания карты поверхности Марса. Запущен в космос в 2006 году.

Mars Orbiter Mission (Мангальян) – спутник, созданный в Индии, и запущенный в 2013 году. Основное предназначение – сбор информации об атмосфере и ландшафте Марса.

Maven – запущенный в 2013 году, должен прийти на замену Mars Odyssey и стать новым ретранслятором данных с аппаратов, на поверхности Марса.

Самым современным и новым на орбите четвертой планеты является Trace Gas Orbiter. Эта станция отправлена в космос в 2016 году. Главная цель – «продукт» биологической или геологический активности. В первую очередь это газ Метан.

Какие марсоходы были отправлены на поверхность планеты

Неудачные миссии

Неудачи в отправке марсоходов преследовали, как и СССР, и США, и даже Великобританию. Первые марсоходы отправились на Марс с территории СССР. Это были Марс-1 и Марс-2. Если Марс-2 смог проработать чуть более 14 секунд, то Марс-1 разбился при посадке.

Первый США – Mars Surveyor 98. В одной миссии было собрано несколько разных станций, но все разбились из-за аварии.

В 2003 году неудача постигла и аппарат Бигль, запущенный Великобританией. Судя по фотографиям с орбиты, у него не раскрылись солнечные батареи.

Завершенные миссии на поверхности.

Помимо орбитальных станций и зондов, на Марс были отправлены аппараты для работы на поверхности планеты:

Mars Pathfinder – аппарат, доставивший на поверхность первый марсоход «Соджорнер». Этот аппарат изучал химический состав грунта, атмосферу и метеорологические особенности Марса. Был оснащен камерой, и передавал панорамные снимки поверхности.

Spirit (MER-A) – марсоход. Изучал грунт и атмосферу. Фото Спирита позволили предположить существование на Марсе пресной воды в древности.

Phoenix – станция, призванная изучать геологию Марса, а так же искать признаки существования жизни.

Текущие миссии на поверхности Марса

На поверхности Марса и сейчас работают аппараты, доставляющие на Землю бесценную информацию о Красной планете. Один из них — Марсоход Opportunity, запущенный аэрокосмическим агентством NASA в 2004 году. Основная цель аппарата – изучить осадочные породы в местах, где по предположениям учёных, в древности находилось море или озеро. В процессе работы Opportunity должен был искать и классифицировать горные породы и минералы, фиксировать их распространение и состав. Так же марсоход проводил химический анализ грунта. Это делалось с целью найти элементы, которые могли образоваться с участием воды.

Opportunity изначально был рассчитан на 90 марсианских дней работы. Но по ряду успешно функционирует уже 13 лет с момента посадки. За это время на Землю было передано огромное количество информации, а сам ровер преодолел более 45 километров по поверхности Марса.

На сегодняшний день, связь с марсоходом потеряна. Причиной тому – мощнейшая пылевая буря, бушующая на планете. Учёные ждут окончания бури, и надеются на возобновление работы марсохода и продолжение миссии.

Марсианский ровер – второй работающий и четвёртый успешный марсоход. Он же последний, на сегодняшний день. Это самый современный и большой из отправленных на Марс аппаратов. Его масса на Земле составляет 900 кг. Такой вес – следствие огромного количества различной исследовательской аппаратуры на борту. По факту, Curiosity везёт на себе целую химическую лабораторию.

Этот марсианский ровер совершил успешную посадку на поверхность Марса 6 августа 2012 года. Мягкое приземление было обеспечено использованием нового способа, названного «небесный кран». Такой способ значительно сложнее, чем использование подушек безопасности, как на предыдущих миссиях. Но зато скорость посадки была настолько мала, что удар был поглощён шасси марсохода, не имеющим каких либо дополнительных средств амортизации.

Основными целями космической миссии Curiosity является сбор сведений о климате и геологии Марса. Поиск признаков, говорящих о благоприятных условиях жизни на Марсе в прошлом, и подготовиться к высадке человека.

Одним из важнейших открытий на Марсе, сделанных с помощью Curiosity, можно считать обнаружение на Марсе гальки, образованной потоками жидкой воды. Так же проводя исследования, марсоход Кьюриосити нашёл водяной лёд под слоем грунта.

Места посадок марсоходов на Марсе

Марсоход Кьюриосити совершил посадку в кратере Гейла. Место было выбрано не случайно. В этом кратере марсоход сможет подробно изучить геологическую историю Марса, ведь здесь отчетливо видны слои марсианского грунта. Дальнейшей целью Кьюриосити станет изучение горы Шарпа, и воздействием воды на подножия этой горы.

Марсоход Оппортьюнити совершил посадку в кратере Игл, находящийся на плато Меридиана. По данным исследований, это плато в древности было дном марсианского океана.

Марсианский ровер Спирит приземлился и изучал кратер Гусева. По мнениям учёных, этот кратер в прошлом был озером, и как раз по этой причине туда был доставлен космический аппарат. Учёные надеялись исследовать глубинные слои грунта в ударных кратерах. Но надежды не оправдались.

Последней из космических станций, доставленных на Марс, является спускаемый аппарат Скиапарелли. Это результат работы Европейских и российских учёных, запущенный в 2016 году с космодрома Байконур. Основной цель запуска стала отработка методов входа в атмосферу и посадки на поверхность Марса. К сожалению, аппарат разбился о поверхность планеты, из-за сбоя в работе оборудования.

Будущие проекты

NASA планирует в будущем отправить на Марс новый ровер. Под. Планируется, что называться он будет Марс 2020, а за основу будет взята платформа Кьюриосити. Этот шаг позволит значительно сэкономить на разработке новых решений. Шасси и конструкцию в целом доработают, с учётом новых данных о нахождении марсохода на красной планете.
Остальное оборудование будет другим, более современным и ориентированным на иной подход к работе. В этот раз ставка будет сделана на визуальное наблюдение. С этой целью на Марс 2020 установят 23 камеры, в том числе с функцией записи звука.

В 2020 году также планируется отправка китайского марсохода на Марс. Названия аппарат ещё не имеет. Цель полёта – сбор информации о грунте и атмосфере.

Совместный проект Европейского космического агентства и российского Роскосмоса – ЕкзоМарс, предполагает отправку в 2020 году на Красную планету марсохода. В 2016 году первая часть миссии пошла не по плану, когда спускаемый аппарат Скиапарелли разбился о поверхность Марса.