Скругления переменного радиуса. Радиус закругления

Радиус закругления

Стоя близ одного из таких закруглений, могли бы вы определить величину его радиуса? Это не так легко, как найти радиус дуги, начерченной на бумаге. На чертеже дело просто: вы проводите две произвольные хорды и из середин их восставляете перпендикуляры: в точке их пересечения лежит, как из-вестно, центр дуги; расстояние его от какой-либо точки кривой и есть искомая длина радиуса.

Но сделать подобное же построе-ние на местности было бы, конечно, очень неудобно: ведь центр закруг-ления лежит в расстоянии 1-2 км от дороги, зачастую в недоступном ме-сте. Можно было бы выполнить по-строение на плане, но снять закругле-ния на план - тоже нелегкая работа.

Все эти затруднения устраняются, если прибегнуть не к построению, а вычислению радиуса. Для этого можно воспользоваться следующим приемом. Дополним (рис. 84) мысленно дугу АВ закругления до окружности. Соединив произвольные точки С и D дуги закругления, измеряем хорду CD , а также «стрелку» EF (т, е, высоту сегмента CED ). По этим двум данным уже нетрудно вычислить искомую длину радиуса. Рас-сматривая прямые CD и диаметр круга как пересекающиеся хорды, обозначим длину хорды через а , длину стрелки через h , радиус через R ; имеем:

и искомый радиус 1)

Например, при стрелке в 0,5 м и хорде 48 м искомый радиус

Это вычисление можно упростить, если считать 2 R -h равным 2 R - вольность позволительная, так как h весьма мало по сравнению с R (ведь R - сотни метров, а h - единицы их). Тогда получается весьма удобная для вычислений приближен-ная формула

Применив ее в сейчас рассмотренном случае, мы получили бы ту же величину

R = 580.

Вычислив длину радиуса закругления и зная, кроме того, что центр закругления находится на перпендикуляре к середине хорды, вы можете приблизительно наметить и то место, где должен лежать центр кривой части дороги.

Если на дороге уложены рельсы, то нахождение радиуса закругления упрощается. В самом деле, натянув веревку по касательной к внутреннему рельсу, мы получаем хорду дуги наружного рельса, стрелка которой h (рис. 85) равна ширине колеи-1,52 м. Радиус закругления в таком случае (если a -длина хорды) равен приближенно

При а=120м радиус закругления равен 1200 м 2).

1) То же могло быть получено и иным путем - из прямоугольного треугольника COF , где OC = R , CF =а/2 , OF = R - h ,

По теореме Пифагора

2 ) На практике способ этот представляет то неудобство, что ввиду большого радиуса закругления веревка для хорды требуется очень длинная.

Рис. 85. К вычислению радиуса железнодорожного закругления

Создает скругление со значениями переменного радиуса. Используйте контрольные точки для более простого определения скругления.

Пример точек управления для переменных радиусов
Без точек управления
Точки управления для переменных радиусов С точками управления

Скруглить элементы

Некоторые поля, которые предусматривают ввод цифровых значений, позволяют создавать уравнение посредством ввода знака равно (=) и выбора глобальных переменных, функций и свойств файла в раскрывающемся списке. См. раздел Ввод уравнений напрямую .

В графической области выберите объекты, которые необходимо скруглить.
Распространить вдоль линий перехода Скругление распространяется на все грани, расположенные касательно к выбранной грани. Пример: Распространить вдоль линий перехода
Полный предв. просмотр Отображает предварительный вид скругления всех кромок.
Частичный предв. просмотр Отображает предварительный вид скругления только одной кромки. Нажмите клавишу A для последовательного предварительного просмотра каждого скругления.
Нет предв. просмотра Уменьшает время перестроения моделей со сложными поверхностями.

Настройки перемен. радиуса

Радиус Устанавливает радиус скругления.
Присоединенные радиусы Список вершин кромок, выбранных в разделе Скруглить элементы , для параметра Кромки, грани, элементы и петли , а также список управляющих точек, выбранных в графической области.
Настроить неуказанные Применение текущего радиуса ко всем элементам, для которых не назначены радиусы в разделе Присоединенные радиусы .
Настроить все Применение текущего радиуса ко всем элементам в разделе Присоединенные радиусы .
Количество экземпляров Задает число управляющих точек на кромках.
Плавный переход Создает скругление, плавно изменяющееся от одного радиуса к другому при согласовании кромки скругления со смежной гранью.
Линейный переход Создание скругления, линейно изменяющегося от одного радиуса к другому, без согласования касательности кромки со смежным скруглением.

Параметры для уменьшенного скругления

При использовании этих параметров можно создавать плавный переход между смежными поверхностями, включая кромку детали, в скругляемом угле. Можно выбрать вершину и радиус, а затем назначить одинаковые расстояния уменьшенного скругления для каждой кромки. Уменьшенное расстояние - это точка вдоль каждой кромки, в которой начинается скругление на три грани, которые сходятся в одной вершине. Пример: Предварительный просмотр уменьшенного скругления

Прежде чем задать Параметры для уменьшенного скругления , в разделе Скруглить элементы выполните следующие действия.

Расстояние Устанавливает уменьшенное расстояние скругления, измеряемого от вершины.
Уменьшенные скругления Выберите одну или несколько вершин в графической области. Кромки уменьшенных скруглений соединяются в выбранных вершинах.
Расстояние Список номеров кромок с соответствующими значениями уменьшенного расстояния . Чтобы применить различные уменьшенные расстояния к кромкам, выберите кромку в поле Уменьшения . Затем задайте расстояние и нажмите клавишу Enter .
Настроить неуказанные Применение текущего расстояния ко всем кромкам, для которых не назначены расстояния в разделе Расстояние .
Настроить все Применение текущего расстояния ко всем кромкам в разделе Расстояние .

Параметры скругления

Выбрать сквозь грани Дает возможность выбирать кромки сквозь грани, которые эти кромки скрывают.
Тип перекрытия Управляет поведением скруглений на отдельных замкнутых кромках (например, окружностях, сплайнах, эллипсах) при соединении с кромками. Пример: Тип перекрытия . Выберите один из указанных ниже параметров:

Многие моделируемые детали имеют скругления, поэтому при построении тел требуется выполнять операцию скругления ребер тела. Рассмотрим построение поверхности, которая в дальнейшем будет использоваться для скругления ребер тел. Пока будем строить поверхности скругления, не связывая их с телами.

Пусть имеются две пересекающиеся поверхности, описываемые радиус-векторами . Вблизи линии пересечения пространство делится поверхностями на четыре сектора.

Сектор 1: перпендикуляры, восстановленные от поверхностей к точкам первого сектора, имеют направление, совпадающее с нормалями обеих поверхностей.

Сектор 2: перпендикуляр, восстановленный от первой поверхности к точкам второго сектора, совпадает по направлению с нормалью первой поверхности, а перпендикуляр, восстановленный от второй поверхности к точкам второго сектора, противоположен по направлению нормали второй поверхности.

Сектор 3: перпендикуляры, восстановленные от поверхностей к точкам третьего сектора, противоположны по направлению нормалям обеих поверхностей.

Сектор 4: перпендикуляр, восстановленный от первой поверхности к точкам четвертого сектора, противоположен по направлению нормали первой поверхности, а перпендикуляр, восстановленный от второй поверхности к точкам четвертого сектора, совпадает по направлению с нормалью ко второй поверхности.

Построим поверхность скругления, представляющую собой след от качения сферы радиуса , касающейся одновременно двух поверхностей.

Рис. 4.10.1. Скругление плоских граней

Сфера будет двигаться около линии пересечения поверхностей в одном из четырех упомянутых секторов. На рис. 4.10.1 показано сечение поверхностей и сферы.

Частные случаи.

Если скругляемыми поверхностями являются плоскости, то угол а между поверхностями остается постоянным при движении вдоль линии их пересечения. Пусть радиус скругления остается постоянным и равным р. В этом случае линии перехода с поверхности скругления на сопрягаемые плоскости можно получить как эквидистантные линии к линии пересечения.

Имея согласованные по параметру линии перехода и линию пересечения плоскостей 1 (i), поверхность скругления можно представить в виде (3.10.3)

Линии перехода построим в виде линий на поверхностях. Каждая из них представляет собой двухмерную линию и поверхность (в данном случае - плоскость). Двухмерные линии могут быть получены как эквидистантные линии к линии пересечения плоскостей , отстоящие от нее на расстоянии . Знак d зависит от ориентации линии пересечения и от сектора, в котором строится поверхность скругления. Область определения параметра t поверхности скругления зависит от дальнейшего ее использования. Полученная поверхность скругления по форме совпадает с частью цилиндрической поверхности. Как правило, в рассмотренном случае строится именно часть цилиндрической поверхности. Аналогичным образом в качестве поверхности скругления между цилиндрической поверхностью и ортогональной ее оси плоскостью может быть использована часть поверхности тора.

Общий случай.

Рассмотрим построение поверхности скругления в общем случае. Построим точки касания катящейся сферы радиуса с поверхностями. Продолжение нормалей к поверхностям в точках касания пересекутся в центре катящейся сферы. Обозначим нормали (1.7.18) поверхностей через , а проекции на эти нормали векторов из точек касания до центра сферы - через соответственно. Величины по модулю равны радиусу сферы , но имеют знак, характеризующий упомянутый сектор. Параметры точек касания сферы связаны уравнением

Это векторное уравнение содержит три скалярных уравнения для компонент нормалей поверхностей и четыре искомых параметра , v, а, b. Построение поверхности скругления по уравнению (4.10.1) сходно с задачей построения линии пересечения поверхностей. В обоих случаях результатом решения являются две двухмерные линии на соответствующих поверхностях.

Переменный радиус скругления.

Пусть требуется построить поверхность скругления переменного радиуса. Для этого нам потребуется кривая пересечения поверхностей. Величины радиуса скругления будем считать функциями длины дуги s линии пересечения скругляемых поверхностей. В данном случае катящаяся сфера будет иметь переменный радиус. Кроме того, положение центра катящейся сферы связано с точкой на линии пересечения. Расположим центр катящейся сферы в нормальной плоскости кривой пересечения. Нормальная плоскость ортогональна касательному вектору кривой. Вместо векторного уравнения (4.10.1) параметры точек касания сферы свяжем уравнениями

Эти уравнения содержат четыре скалярных уравнения относительно четырех искомых параметров . Параметр s линии пересечения является известной величиной. По текущему параметру s мы вычислим радиусы точку и касательный вектор кривой в ней Решив систему уравнений (4.10.2) и (4.10.3), получим параметры , касания катящейся сферы и поверхностей.

Система уравнений (4.10.2), (4.10.3) может быть использована вместо системы уравнений (4.10.1) для построения поверхности скругления постоянного радиуса. В этом случае необязательно в качестве параметра кривой пересечения использовать длину ее дуги.

Результатом решения системы уравнений (4.10.1) или системы уравнений (4.10.2) и (4.10.3) являются две двухмерные линии на поверхностях

на соответствующих поверхностях. В общем случае линии могут быть получены как сплайны, проходящие через заданные точки. Пространственные линии, построенные по этим линиям на поверхностях, обозначим соответственно через

(4.10.5)

Они определяют края поверхности скругления, полученной качением сферы одновременно по двум поверхностям.

По двум кривым на поверхностях (4.10.5) и (4.10.6), являющимися следами касания катящейся сферы, построим поверхность скругления. Первый параметр поверхности скругления совместим с параметром t граничных кривых (4.10.5) и (4.10.6). При движении вдоль второго параметра поверхности скругления при фиксированном первом параметре должна быть описана дуга окружности. Построим эту дугу окружности в виде рациональной кривой Безье (2.6.16). Для этого при каждом значении параметра кривых на поверхности нужно знать радиус-вектор средней точки и ее вес. Вес средней точки рациональной кривой Безье (2.6.16) равен косинусу половины угла между векторами .

где вес w(t) и радиус-вектор определяются равенствами (4.10.7) и (4.10.8), а через z обозначен второй параметр поверхности. Рассмотренная поверхность скругления не имеет четких границ в направлении первого параметра. Эти границы будут определены при дальнейшем использовании поверхности для скругления ребер тел. На рис. 4.10.2 приведен пример поверхности скругления. В зависимости от замкнутости скругляемых поверхностей и линий (4.10.5) и (4.10.6) поверхность скругления может быть замкнутой или незамкнутой.

При решении системы уравнений (4.10.1) и (4.10.2) требуется вычислять производные нормалей поверхностей по параметрам. Эти производные дают формулы Вейнгартена (1.7.26).

Рис. 4.10.2. Поверхность скругления

Радиус-вектор точки поверхности за ее пределами может быть вычислен по одной из формул (3.14.8)-(3.14.10) в зависимости от замкнутости поверхности. Эти же формулы позволяют определить нормали поверхности и их производные за пределами поверхности.

Радиусы закругления назначают для предупреждения образования усадочных трещин, возникающих вследствие неравномерности кристаллизации (рис.13).

Рис.13. Влияние радиуса сопряжения стенок на качество отливок.

Кроме внутренних сопрягают также и внешние острые кромки для предупреждения образования трещин в формах. Острые кромки допускают только на плоскостях разъема. Величина рекомендуемых внутренних и внешних радиусов сопряжения отливок зависит от способа литья:

Таблица 3. Зависимость радиусов скругления от способа литья.

Плавные переходы. Переходы от толстых сечений к тонким для предупреждения образования трещин в граничных зонах при охлаждении отливки должны быть выполнены постепенно (рис.14).

Рис. 14 Плавные переходы от толстых к тонким сечениям отливки

Величину участка сопряжения определяет соотношение толщин стенок.

Уклоны (конусность) необходимы на поверхностях, расположенных плоскости разъема формы, для обеспечения удаления модели (отливки) из формы. Уклоны на внутренние поверхности больше уклонов на наружные поверхности (рис.15).

Рис. 15. Уклоны на наружные и внутренние поверхности.

Величина уклона также зависит от способа литья.

Таблица4. Зависимость уклонов от способа литья

Отверстия отливают всегда с целью предупреждения вскрытия усадочных раковин и пористости в сплошной отливке, уменьшения объема последующей обработки, уменьшения массы. Минимальная величина диаметра и максимальная длина отверстия зависят от способа литья и сплава.

Таблица 5. Зависимость параметров отверстий от способа литья.

Способ литья и сплав

Минимальный диаметр, мм

Отношение глубины отверстия к диаметру

Шаг резьбы

Диаметр резьбы, мм

несквозного

сквозного

наружный

внутренний

Под давлением сплава:

цинкового

магниевого

алюминиевого

В разовые формы при толщине стенки:

Расстояние от отверстия до края литой детали должно быть более (рис.16) 1.2 d, где d - диаметр отверстия.

Рис. 16. Расстояние до края детали.

Армирование - это процесс заливки в полости отливки металлических деталей, улучшающих свойства отливки. Заливаемые металлические детали называют арматурой в должны иметь сравнимые величины усадки при охлаждении. Армирование наиболее широко применяют при литье под давлением для уменьшения объема последующей сборки, для создания специальных физических свойств (заливка медных трубок циркуляции охлаждающей жидкости, заливка бронзовых втулок в корпус ин цинкового сплава уменьшает трение) или для исключения усадочных раковин. (рис.17)

0,5; 0,8; 1; 1,2; 1,5; 1,8; 2; 2,2; 2,5; 2,8; 3; 3,5; 4; 4,5; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21;22; 23; 24; 25; 26; 28; 30; 32; 34; 35; 36; 38; 40; 42; 44; 45; 46; 48; 50; 52; 55; 58; 60; 62; 65; 68; 70; 72; 75; 78; 80; 82; 85; 88; 90; 92; 95; 98; 100; 105; 110; 115; 120; 125; 130; 135; 140; 145; 150; 155; 160; 165; 170; 175; 180; 185; 190; 200; 210; 220; 230; 240; 250; 260; 270; 280; 290; 300; 310; 320; 330; 340; 350; 360; 370; 380; 390; 400; 410; 420; 430; 440; 450; 460; 470; 480; 500.

4.5. Нанесение размера радиуса дуги окружности. Нормальные радиусы скруглений

При нанесении размера радиуса перед размерным числом помещают прописную букву высотой, равной высоте размерного числа.

Если надо указать размеры, определяющие положение центра дуги окружности, то размерную линию радиуса окружности проводят между дугой или её продолжением и центром. Последний в этом

случае изображают пересечением ()

выносных (рис. 4.21, размер

R 1 ) или центровых линий (рис. 4.22).Размерная линия радиуса

имеет только одну стрелку.

При нанесении размеров

положения вершины скругленного

угла или центра дуги скругления

выносные линии

проводят от

точек пересечения

сторон угла

от центра

дуги скругления

При проведении нескольких радиусов из

одного центра их размерные линии не должны

располагаться на одной прямой (рис. 4.22).

При большой величине радиуса центр дуги окружности допускается приближать к дуге, а размерную линию проводить с изломом под углом 90О (рис. 4.23).

Если не требуется указывать

размеры, определяющие

положение

центра дуги окружности , то размер-

ную линию допускается не доводить

до центра и смещать относительно

его (рис. 4.24).

совпадении

нескольких

радиусов их

размерные

линии допускается не доводить до

центра, кроме крайних (рис. 4.25).

Размеры радиусов

наружных

скруглений наносят, как показано на

рис. 4.26а, а внутренних скруглений -

на рис. 4.26б. Следует избегать сов-

падения направления размерной линии радиуса с направлением штриховки. И в этом случае способ нанесения размерных чисел при различных положениях размерных линий определяется наибольшим удобством чтения чертежа.

Радиусы скруглений , раз-

мер которых в масштабе чертежа

1мм и менее, на чертеже не

изображают, нанося только

размер дуги с её внешней

стороны (рис. 27а).

Размеры одинаковых

радиусов допускается указывать

на общей полке (рис. 4.27б).

Ниже приводятся нормальные радиусы скруглений по ГОСТ

10948-64*: 0,2; 0,3; 0,4; 0,5; 0,6; 0,8; 1; 1,2; 1,6; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20; 25; 32; 40; 50; 60; 80; 100; 125; 160; 200; 250.

Если радиусы скруглений, сгибов и т.п. на всем чертеже одинаковы или какой-то радиус является преобладающим, то вместо нанесения размеров этих радиусов на изображении рекомендуется в технических требованиях делать запись типа: “Радиусы скруглений 4 мм ”, “Внутренние радиусы сгибов 10 мм ”, “Неуказанные радиусы 8 мм ” и т.п.

Если дуга окружности на чертеже больше 180 О , то принанесении её размера указывают диаметр окружности, а для дуги

окружности, не превышающей 180 О ,указывают её радиус .

Размер окружности, даже преры-

вающейся, но имеющей противолежащие

точки на диаметре, всегда следует

задавать диаметром (рис. 4.28).

Допускается не наносить на чертеже

радиуса дуги

окружности

сопрягающихся параллельных линий (рис.

4.29). Тем самым на чертеже контура

призматической шпонки с закругленными

торцами и паза под такую шпонку

допускается наносить

только два

размера: длину и ширину .

4.6 .Нанесение длины дуги окружности

При нанесении размера

дуги окружности

размерную

линию проводят

концентрично дуге, выносные

линии - параллельно биссект-

рисе угла, а над размерным

(рис. 4.30а).

охватывает

большой угол, то выносные

линии должны выходить за

7min пределы размерных на 1...5 мм; расстояние от контурной линии

до ближайшей размерной должно быть не менее 10 мм, а между параллельными размерными

линиями - не менее 7 мм ;

шахматный порядок нанесения размерных чисел при наличии нескольких концентричных размерных дуг.

Правила нанесения размерных чисел угловых размеров иллюстрирует рис. 4.33. Размерные числа, расположенные выше горизонтальной линии , помещают над размерными линиями со стороны их выпуклос-

ти, а расположенные ниже горизонтальной

линии - со стороны вогнутости размерных линий. В заштрихо-

ванной зоне размерные числа указывают на горизонтально нанесенных полках линий-выносок.