Слабые электролиты в растворе диссоциируют на ионы. Электролитическая диссоциация

Водные растворы некоторых веществ являются проводниками электрического тока. Эти вещества относятся к электролитам. Электролитами являются кислоты, основания и соли, расплавы некоторых веществ.

ОПРЕДЕЛЕНИЕ

Процесс распада электролитов на ионы в водных растворах и расплавах под действием электрического тока называется электролитической диссоциацией .

Растворы некоторых веществ в воде не проводят электрический ток. Такие вещества называют неэлектролитами. К ним относятся многие органические соединения, например сахар и спирты.

Теория электролитической диссоциации

Теория электролитической диссоциации была сформулирована шведским ученым С. Аррениусом (1887 г.). Основные положения теории С. Аррениуса:

— электролиты при растворении в воде распадаются (диссоциируют) на положительно и отрицательно заряженные ионы;

— под действием электрического тока положительно заряженные ионы движутся к катоду (катионы), а отрицательно заряженные – к аноду (анионы);

— диссоциация – обратимый процесс

КА ↔ К + + А −

Механизм электролитической диссоциации заключается в ион-дипольном взаимодействии между ионами и диполями воды (рис. 1).

Рис. 1. Электролитическая диссоциация раствора хлорида натрия

Легче всего диссоциируют вещества с ионной связью. Аналогично диссоциация протекает у молекул, образованных по типу полярной ковалентной связи (характер взаимодействия – диполь-дипольный).

Диссоциация кислот, оснований, солей

При диссоциации кислот всегда образуются ионы водорода (H +), а точнее – гидроксония (H 3 O +), которые отвечают за свойства кислот (кислый вкус, действие индикаторов, взаимодействие с основаниями и т.д.).

HNO 3 ↔ H + + NO 3 −

При диссоциации оснований всегда образуются гидроксид-ионы водорода (OH −), ответственные за свойства оснований (изменение окраски индикаторов, взаимодействие с кислотами и т.д.).

NaOH ↔ Na + + OH −

Соли – это электролиты, при диссоциации которых образуются катионы металлов (или катион аммония NH 4 +) и анионы кислотных остатков.

CaCl 2 ↔ Ca 2+ + 2Cl −

Многоосновные кислоты и основания диссоциируют ступенчато.

H 2 SO 4 ↔ H + + HSO 4 − (I ступень)

HSO 4 − ↔ H + + SO 4 2- (II ступень)

Ca(OH) 2 ↔ + + OH − (I ступень)

+ ↔ Ca 2+ + OH −

Степень диссоциации

Среди электролитов различают слабые и сильные растворы. Чтобы охарактеризовать эту меру существует понятие и величина степени диссоциации (). Степень диссоциации – отношение числа молекул, продиссоциировавших на ионы к общему числу молекул. часто выражают в %.

К слабым электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации меньше 3%. К сильным электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации больше 3%. Растворы сильных электролитов не содержат непродиссоциировавших молекул, а процесс ассоциации (объединения) приводит к образованию гидратированных ионов и ионных пар.

На степень диссоциации оказывают особое влияние природа растворителя, природа растворенного вещества, температура (у сильных электролитов с повышением температуры степень диссоциации снижается, а у слабых – проходит через максимум в области температур 60 o С), концентрация растворов, введение в раствор одноименных ионов.

Амфотерные электролиты

Существуют электролиты, которые при диссоциации образуют и H + , и OH − ионы. Такие электролиты называют амфотерными, например: Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 , Al(OH) 3 , Cr(OH) 3 и т.д.

H + +RO − ↔ ROH ↔ R + + OH −

Ионные уравнения реакций

Реакции в водных растворах электролитов – это реакции между ионами – ионные реакции, которые записывают с помощью ионных уравнений в молекулярной, полной ионной и сокращенной ионной формах. Например:

BaCl 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaCl (молекулярная форма)

Ba 2+ + 2 Cl − + 2 Na + + SO 4 2- = BaSO 4 ↓ + 2 Na + + 2 Cl − (полная ионная форма)

Ba 2+ + SO 4 2- = BaSO 4 ↓ (сокращенная ионная форма)

Водородный показатель pH

Вода – слабый электролит, поэтому процесс диссоциации протекает в незначительной степени.

H 2 O ↔ H + + OH −

К любому равновесию можно применить закон действующих масс и записать выражение для константы равновесия:

K = /

Равновесная концентрация воды – величина постоянная, слеовательно.

K = = K W

Кислотность (основность) водного раствора удобно выражать через десятичный логарифм молярной концентрации ионов водорода, взятый с обратным знаком. Эта величина называется водородным показателем (рН).

Способностью молекул растворителя определённую роль в электролитической диссоциации играет также макроскопическое свойство растворителя - его диэлектрическая проницаемость (Схема электролитической диссоциации).

Диссоциация при плавлении

Под действием высоких температур ионы кристаллической решётки начинают совершать колебания, кинетическая энергия повышается, и наступит такой момент (при температуре плавления вещества), когда она превысит энергию взаимодействия ионов. Результатом этого является распад вещества на ионы.

Классическая теория электролитической диссоциации

Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году . Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблуков и В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита . Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс . Например, электролитическая диссоциация бинарного электролита KA выражается уравнением типа:

Константа диссоциации определяется активностями катионов , анионов и недиссоциированных молекул следующим образом:

Значение зависит от природы растворённого вещества и растворителя, а также от температуры и может быть определено несколькими экспериментальными методами. Степень диссоциации (α ) может быть рассчитана при любой концентрации электролита с помощью соотношения:

,

где - средний коэффициент активности электролита.

Слабые электролиты

Слабые электролиты - химические соединения, молекулы которых даже в сильно разбавленных растворах незначительно диссоциированны на ионы , которые находятся в динамическом равновесии с недиссоциированными молекулами. К слабым электролитам относится большинство органических кислот и многие органические основания в водных и неводных растворах.

Слабыми электролитами являются:

  • почти все органические кислоты и вода;
  • некоторые неорганические кислоты: HF, HClO, HClO 2 , HNO 2 , HCN, H 2 S, HBrO, H 3 PO 4 ,H 2 CO 3 , H 2 SiO 3 , H 2 SO 3 и др.;
  • некоторые малорастворимые гидроксиды металлов: Fe(OH) 3 , Zn(OH) 2 и др.

Сильные электролиты

Сильные электролиты - химические соединения, молекулы которых в разбавленных растворах практически полностью диссоциированы на ионы . Степень диссоциации таких электролитов близка к 1. К сильным электролитам относятся многие неорганические соли , некоторые неорганические кислоты и основания в водных растворах, а также в растворителях, обладающих высокой диссоциирующей способностью (спирты , амиды и др.).

Классическая теория электролитической диссоциации применима лишь к разбавленным растворам слабых электролитов . Сильные электролиты в разбавленных растворах диссоциированы практически полностью, поэтому представления о равновесии между ионами и недиссоциированными молекулами лишено смысла. Согласно представлениям, выдвинутым в 20-30-х гг. 20 в. В. К. Семенченко (СССР), Н. Бьеррумом (Дания), Р. М. Фуоссом (США) и др., в растворах сильных электролитов при средних и высоких концентрациях образуются ионные пары и более сложные агрегаты. Современные спектроскопические данные показывают, что ионная пара состоит из двух ионов противоположного знака, находящихся в контакте («контактная ионная пара») или разделённых одной или несколькими молекулами растворителя («разделённая ионная пара»). Ионные пары электрически нейтральны и не принимают участия в переносе электричества. В сравнительно разбавленных растворах сильных электролитов равновесие между отдельными сольватированными ионами и ионными парами может быть приближённо охарактеризовано, аналогично классической теории электролитической диссоциации, константой диссоциации (или обратной величиной - константой ассоциации). Это позволяет использовать вышеприведённое уравнение для расчёта соответствующей степени диссоциации, исходя из экспериментальных данных.

В простейших случаях (большие одноатомные однозарядные ионы) приближённые значения константы диссоциации в разбавленных растворах сильных электролитов можно вычислить теоретически, исходя из представлений о чисто электростатическом взаимодействии между ионами в непрерывной среде - растворителе.

Примеры сильных электролитов: некоторые кислоты (HClO 4 , HMnO 4 , H 2 SO 4 , HCl, HBr; HI), гидроксиды щелочных и щёлочноземельных металлов (NaOH, KOH, Ba(OH) 2); большинство солей .

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Электролитическая диссоциация" в других словарях:

    электролитическая диссоциация - Диссоциация р р. веществ в растворе или расплаве электролитов. Тематики металлургия в целом EN electrolytic dissociation … Справочник технического переводчика

    ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ - см … Большая политехническая энциклопедия

    Полный или частичный распад молекул растворенного вещества на ионы в результате взаимодействия с растворителем. Обусловливает ионную проводимость растворов электролитов … Большой Энциклопедический словарь

    электролитическая диссоциация - – полный или частичный распад растворенного вещества на ионы. Общая химия: учебник / А. В. Жолнин … Химические термины

    Электролитическая диссоциация - – полный или частичный распад молекул растворенного вещества в результате взаимодействия с растворителем; обусловливает ионную проводимость растворов электролитов. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ… … Энциклопедия терминов, определений и пояснений строительных материалов

    Электролитическая диссоциация - ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ, полный или частичный распад растворенного вещества на ионы в результате взаимодействия с растворителем. Обусловливает электропроводность электролитов. … Иллюстрированный энциклопедический словарь

    Или ионизация (литер. Svante Arrhenius, Ueber die Dissociation der in Wasser gelösten Stoffe , Zeitschr. für physikalische Chemie , 1887; Sv. Arrhenius, La dissociation électrolytique des solutions. Rapport au Congrès internat. à Paris 1900 ; Max … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Полный или частичный распад молекул растворённого вещества на ионы в результате взаимодействия с растворителем. Обусловливает ионную проводимость растворов электролитов. * * * ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ, полный… … Энциклопедический словарь

    электролитическая диссоциация - elektrolitinė disociacija statusas T sritis chemija apibrėžtis Ištirpintos medžiagos virtimas jonais jai sąveikaujant su tirpiklio molekulėmis. atitikmenys: angl. electrolytic dissociation rus. электролитическая диссоциация … Chemijos terminų aiškinamasis žodynas

    электролитическая диссоциация - elektrolitinė disociacija statusas T sritis fizika atitikmenys: angl. electrolytic dissociation vok. elektrolytische Dissoziation, f rus. электролитическая диссоциация, f pranc. dissociation électrolytique, f … Fizikos terminų žodynas

Книги

  • Тесты по химии. Электролитическая диссоциация. Кислород и сера. 9 класс. К учебнику Г. Е. Рудзитиса, Ф. Г. Фельдмана Химия. 9 класс ,

Теория
электролитической
диссоциации

Цели. Сформировать у учащихся понятие «электролитическая диссоциация» на основе атомно-молекулярного учения, теории электролитической диссоциации С.Аррениуса и гидратной теории растворов Д.И.Менделеева. Вскрыть причину электропроводности растворов, обсудить значение и применение теории.
Оборудование и реактивы. Пробирки, два мерных цилиндра, пипетки, прибор для проверки электрической проводимости растворов, стаканы, стеклянные палочки;
вода, концентрированные серная и уксусная кислоты, твердые гидроксид натрия, хлорид натрия, сульфат меди(II), 100 мл раствора метилоранжа в ацетоне, растворы сульфата меди(II), хлорида натрия, гидроксида кальция, нитрата бария, хлорида бария, нитрата серебра, соляной кислоты, карбоната натрия, хлорида магния, хлорида алюминия, цинк гранулированный, железо – порошок, алюминий гранулированный.

План изложения темы

  • Свойства водных и неводных растворов различных классов неорганических соединений.
  • Растворение в воде с точки зрения электронной теории.
  • Диссоциация электролитов в растворе.
  • Степень электролитической диссоциации. Слабые и сильные электролиты.

ХОД УРОКА

Учитель. Известно ли вам, что вещества растворяются не только в воде, но и в других растворителях? Если да, то приведите примеры. (Учащиеся приводят примеры растворения веществ.)
Выясним, нужен ли растворитель для протекания реакции и важна ли в этом случае природа растворителя. Возьмем концентрированную серную кислоту и опустим в нее цинк. Произойдет ли реакция? (Проводит лабораторный опыт.)
Ученик. Цинк реагирует с концентрированной серной кислотой при нагревании. При этом выделяется газ SO 2 (пишут на доске уравнение реакции):

Учитель. Выделяется ли водород? А теперь перельем содержимое пробирки (из опыта) в пробирку с водой, очень осторожно. Реакция пошла, выделяется много тепла. Обратите внимание, без воды реакция почти не шла, хотя вода при обычных условиях не взаимодействует с цинком.
Проделаем еще один опыт. Смешаем сначала твердые вещества: гидроксид натрия и сульфат меди(II), а затем их растворы. Реакция между твердыми реагентами не происходит, а в растворе образуется голубой осадок. Запишите в тетрадях уравнение химической реакции:

2NaOH + CuSO 4 = Cu(OH) 2 + Na 2 SO 4 .

Из результатов опытов сделаем вывод, что вода в химических реакциях вовсе не пассивная среда. Под ее влиянием вещества испытывают изменения. Вода заставляет электролиты распадаться на ионы.
Рассмотрим процесс растворения электролитов в воде. Для этого придется вспомнить, что такое валентность и какие виды химической связи вам известны.

Ученики отвечают на поставленные вопросы. При рассмотрении ионной связи акцентируем внимание на модели кристаллической решетки хлорида натрия. Ковалентную полярную связь повторяем на примере строения молекул воды.
Учитель. В целом молекула воды не заряжена. Но внутри молекулы Н 2 О атомы водорода и кислорода располагаются так, что положительные и отрицательные заряды находятся в противоположных концах молекулы (рис. 1). Поэтому молекула воды представляет собой диполь.

Механизм электролитической диссоциации NaCl при растворении поваренной соли в воде состоит в последовательном отщеплении ионов натрия и хлора полярными молекулами воды. Вслед за переходом ионов Na + и Сl – из кристалла в раствор происходит образование гидратов этих ионов. (Далее веду объяснение по рисунку (рис. 2, см. с. 36) учебника: Фельдман Ф.Г., Рудзитис Г.Е . Химия-9. М.: Просвещение, 1999, с. 4.) А как реагируют с молекулами воды полярные молекулы электролита? Рассмотрим это на примере соляной кислоты (рис. 3 ,
см. с. 36) .

При растворении в воде соляной кислоты (в молекулах HCl cвязь между атомами ковалентная сильнополярная) происходит изменение характера химической связи. Под влиянием полярных молекул воды ковалентная полярная связь превращается в ионную. Образовавшиеся ионы остаются связанными с молекулами воды – гидратированными. Если растворитель неводный, то ионы называют сольватированными.

Наличие ионов в растворах кислот, щелочей и солей можно доказать реакциями обмена. Проведем следующие опыты:

взаимодействие сульфата меди(II) c:
а) нитратом бария;
б) хлоридом бария;
в) гидроксидом натрия;
г) гидроксидом кальция;

взаимодействие нитрата серебра с:
д) соляной кислотой;
е) хлоридом натрия.

Запишем уравнения химических реакций:

а) СuSO 4 + Ba(NO 3) 2 = Cu(NO 3) 2 + BaSO 4 ;

б) СuSO 4 + BaСl 2 = CuCl 2 + BaSO 4 ;

в) СuSO 4 + 2NaOH = Na 2 SO 4 + Cu(OH) 2 ;

г) СuSO 4 + Сa(OH) 2 = CaSO 4 + Cu(OH) 2 ;

д) AgNO 3 + HCl = HNO 3 + AgCl;

е) AgNO 3 + NaCl = NaNO 3 + AgCl.

На основании этих реакций можно сделать следующие выводы:
1) ионы металлов, гидроксильные группы и кислотные остатки реагируют в водных растворах как самостоятельно существующие частицы;
2) гидроксильные группы, кислотные остатки, атомы водорода кислот и атомы металлов солей являются теми электрически заряженными частицами, которые находятся в растворах кислот, щелочей и солей.
Запишем определение понятия: «Электролитическая диссоциация – это процесс распада электролита на ионы при растворении его в воде или расплавлении».
Поскольку число молекул воды, которое присоединяют ионы, неизвестно, то процесс диссоциации кислоты, щелочей и солей упрощенно изображают так:

HCl = H + + Cl – ,

NaOH = Na + + OH – ,

NaCl = Na + + Cl – .

Многоосновные кислоты и кислые соли диссоциируют ступенчато. Чтобы показать неполную диссоциацию молекул и ионов, не относящихся к сильным электролитам, используют знак обратимости «». Например, для H 2 SO 4 и ее кислой соли NaHSO 4:

H 2 SO 4 = H + + ,

NaHSO 4 = Na + + ,

Cледует не допускать ошибок при написании уравнений диссоциации нерастворимых и малорастворимых веществ, которые практически не диссоциируют на ионы или диссоциируют в малой степени:

CaCO 3 нет диссоциации,

СaSO 4 Ca 2+ + .

Основные термины, рассматриваемые в теории электролитической диссоциации, – это «электролиты» и «ионы».
Электролиты – это вещества, которые при растворении в воде или в расплавленном состоянии распадаются на ионы.
Ионы – это атомы или группы атомов, обладающие положительным (катионы ) или отрицательным (анионы ) зарядом. Ионы отличаются от атомов как по строению, так и по свойствам. Для примера сравним свойства атомарного и молекулярного хлора со свойствами иона. Рассмотрим их отношение к металлам, водороду, ионам серебра. Свойства металлического натрия сравним со свойствами ионов натрия.
(Ученики приводят примеры и рассказывают о свойствах атомов Cl, молекулы Cl 2 и ионов Сl – , а также о свойствах металлического Na и ионов Na + в составе солей.)

Общий и характерный признак ионов – наличие электрических зарядов. Ток проводят только те растворы, в которых содержатся ионы. Сравним электропроводность растворов кислот, щелочей, солей, сахара, спирта при помощи прибора для изучения электропроводности растворов (рис. 4). Мы видим, что диссоциация происходит не во всяком растворе. На основании ионной теории сформулируем новые определения кислот, оснований и солей как сложных веществ, образующих при диссоциации в воде особые ионы. При диссоциации кислот в качестве катионов отщепляются только ионы H + . При диссоциации оснований в качестве анионов отщепляется только ионы ОН – . Средние соли диссоциируют на катионы металлов и анионы кислотных остатков.
Попробуем ответить на такой вопрос: все ли электролиты в одинаковой степени распадаются на ионы? Сравним электропроводность концентрированных растворов хлорида натрия и уксусной кислоты. В растворе соли лампочка загорается ярко, а в уксусной кислоте – очень слабо. Разбавим растворы, добавив к ним воды. Электропроводность раствора хлорида натрия не изменяется, а в растворе уксусной кислоты лампочка горит ярче. Хлорид натрия даже в концентрированных растворах диссоциируют полностью. Молекулы же уксусной кислоты в концентрированных растворах почти не диссоциируют. При разбавлении уксусной кислоты число диссоциированных молекул увеличивается, равновесие диссоциации смещается вправо:

СН 3 СООН СН 3 СОО – + Н + .

Вещества с ионной кристаллической решеткой полностью диссоциируют на ионы в водных растворах. Отношение числа диссоциированных молекул (n) к общему числу молекул (N), находящихся в растворе, называют степенью диссоциации (). Величина может принимать значения от 0 (диссоциации нет) до 1 (диссоциация полная).
Общие свойства кислот обусловливаются наличием ионов
Н + в растворе. Активность кислоты (сильный или слабый электролит) зависит от концентрации ионов Н + в растворе.

Демонстрационный опыт. В два стакана нальем по 50 мл раствора метилоранжа в ацетоне. В первый стакан добавим 1–2 капли концентрированной серной кислоты, появляется малиновое окрашивание. Чтобы во втором стакане появилась такая же окраска, придется добавить в 10 раз больше (10–20 капель) уксусной кислоты, т.к. степень диссоциации кислоты CH 3 COOH незначительная и концентрация ионов водорода в ней невелика.
Вывод. Сила кислот и оснований определяется их степенью диссоциации.

Фундаментальной опорой химии, наравне с периодической системой Д. И. Менделеева, строением органических соединений А. М. Бутлерова, другими значимыми открытиями, является и теория электролитической диссоциации. В 1887 году она была разработана Сванте Аррениусом для объяснения специфического поведения электролитов в воде, других полярных жидкостях и расплавах. Он нашёл компромисс между двумя категорически разными, существующими на то время теориями о растворах - физической и химической. Первая утверждала, что растворённое вещество и растворитель никак друг с другом не взаимодействуют, образуя простую механическую смесь. Вторая, что между ними происходит химическая связь. Оказалось, что на самом деле растворам присущи и те, и другие свойства.

В последующих этапах развития науки многие учёные продолжали исследования и разработки в этой области, опираясь на имеющиеся сведения о строении атомов и природе химических связей между ними. В частности И. А. Каблуков занимался вопросом сольватационных процессов, В. А. Кистяковский определил зависимость поднятия столба жидкости в капилляре в условиях температуры кипения от молекулярного веса.

Современная трактовка теории

До появления данного открытия многие свойства и обстоятельства процессов расщепления были не изучены, как и сами растворы. Электролитическая диссоциация - это процесс распада вещества на составляющие его ионы в воде или других полярных жидкостях, взаимодействия частиц соединения с молекулами растворителя, появления подвижности катионов и анионов в узлах кристаллической решетки из-за расплавления. В результате этого образованные субстанции получают новое свойство - электрическую проводимость.

Ионы, находясь в свободном состоянии раствора или расплава, взаимодействуют между собой. Одноимённо заряженные отталкиваются, разноименные - притягиваются. Заряженные частицы сольватированы молекулами растворителя - каждая плотно окружена строго ориентированными диполями соответственно силам притяжения Кулона, в частном случае гидратированы, если среда водная. Катионы всегда имеют большие радиусы, чем анионы из-за специфики расположения вокруг них частиц с локализованными по краям зарядами.

Состав, классификация и названия заряженных частиц в свете электролитической диссоциации

Ионом называют атом или группу атомов, которые являются носителями положительного или отрицательного заряда. Им присуще условное подразделение на простые (К (+) , Са (2+) , Н (+) - состоящие из одного химического элемента), сложные и комплексные (ОН (-) , SO 4 (2-) , НСО 3 (-) - из нескольких). Если катион или анион связан с молекулой растворителя, он называется сольватированным, с диполем молекулы Н 2 О - гидратированным.

Когда происходит электролитическая диссоциация воды, образуется две заряженные частицы Н (+) и ОН (-) . Протон водорода принимает на вакантную орбиталь неподелённую электронную пару кислорода из другой молекулы воды, в результате чего образуется ион гидроксония Н 3 О (+) .

Основные положения открытия Аррениуса

Все представители классов неорганических соединений, кроме оксидов, в растворах ориентированных диполей жидкостей распадаются, говоря химическим языком - диссоциируют на составляющие их ионы в большей или меньшей степени. Наличия электрического тока этот процесс не требует, уравнение электролитической диссоциации является его схематической записью.

Попадая в раствор или расплав, ионы могут подвергаться действию электрического тока и направленно двигаться к катоду (отрицательному электроду) и аноду (положительному). Последние притягивают противоположно заряженные атомные агрегаты. Отсюда частицы и получили свои названия - катионы и анионы.

Параллельно и одновременно с распадом вещества идёт обратный процесс - ассоциация ионов в исходные молекулы, поэтому стопроцентного растворения вещества не происходит. Такое уравнение реакции электролитической диссоциации содержит знак равенства между правой и левой его частями. Электролитическая диссоциация, как любая другая реакция, подчиняется законам, регулирующим химическое равновесие, не является исключением и закон действующих масс. Он гласит, что скорость процесса распада на ионы пропорциональна концентрации электролита.

Классификация веществ при диссоциации

Химическая терминология подразделяет вещества на нерастворимые, малорастворимые и растворимые. Два последних - это слабые и сильные электролиты. Сведения о растворимости тех или иных соединений сведены в таблицу растворимости. Диссоциация сильных электролитов - это необратимый процесс, они нацело распадаются на ионы. Слабые - лишь частично, им присуще явление ассоциации, а следовательно, равновесность происходящих процессов.

Важно отметить, что прямой зависимости между растворимостью и силой электролита нет. У сильных она может быть слабо выражена. Так же как и слабые электролиты могут быть хорошо растворимы в воде.

Примеры соединений, растворы которых проводят электрический ток

К классу «сильные электролиты» относят все хорошо диссоциирующие кислоты, такие как азотная, соляная, бромная, серная, хлорная и другие. В одинаковой степени и щёлочи - гидроокислы щелочных и отдельные представители группы «щелочноземельные металлы». Интенсивна электролитическая диссоциация солей, кроме определённых цианатов и тиоцианатов, а также хлорида ртути (II).

Класс «слабые электролиты» представляют остальные минеральные и почти все органические кислоты: угольная, сульфидная, борная, азотистая, сернистая, кремниевая, уксусная и другие. А также малорастворимые и углеводородные основания и амфотерные гидроксиды (гидроокиси магния, бериллия, железа, цинка в степени окисления (2+)). В свою очередь, молекулы воды являются очень слабыми электролитами, но всё же распадаются на ионы.

Количественное описание диссоциирующих процессов

Степень электролитической диссоциации фактически характеризует масштабы процесса расщепления. Её можно вычислить - число расщепившихся на ионы частиц необходимо разделить на общую численность молекул растворённого вещества в системе. Обозначают эту величину буквой «альфа».

Логично, что для сильных электролитов «α» равна единице, или ста процентам, так как число распавшихся частиц равно общему их количеству. Для слабых - всегда меньше единицы. Полного распада исходных молекул на ионы в водной среде не происходит, и идёт обратный процесс.

Главные факторы, влияющие на полноту распада

На степень электролитической диссоциации влияет ряд неоспоримых факторов. В первую очередь важна природа растворителя и вещества, распадающегося в нём. Например, все сильные электролиты имеют ковалентный сильно полярный или ионный тип связи между составными частицами. Жидкости представлены диполями, в частности вода, в молекулах имеется разделение зарядов, и в результате их специфической ориентации происходит электролитическая диссоциация растворённого вещества.

На значение «альфа» обратно пропорционально влияет концентрация. При её увеличении значение степени диссоциации уменьшается, и наоборот. Сам процесс всецело эндотермический, то есть для его инициации необходимо определённое количество теплоты. Влияние температурного фактора обосновано так: чем он выше, тем больше степень диссоциации.

Второстепенные факторы

Многоосновные кислоты, такие как фосфорная, и основания в составе с несколькими гидроксильными группами, например, Fe(ОН) 3 , распадаются на ионы ступенчато. Определена зависимость - каждая последующая стадия диссоциации характеризуется степенью, которая в тысячи или десятки тысяч раз меньше предыдущей.

Изменить степень распада может и добавление в систему других электролитов, изменяющих концентрацию одного из ионов основного растворённого вещества. Это влечёт за собой смещение равновесия в сторону, которое определяется правилом Ле Шателье-Брауна - реакция протекает в том направлении, в котором наблюдается нейтрализация влияния, оказанного на систему извне.

Классическая константа равновесного процесса

Для характеристики процесса распада слабого электролита, помимо его степени, применяется константа электролитической диссоциации (К д), которая выражается отношением концентраций катионов и анионов к количественному содержанию в системе исходных молекул. По сути, она является обычной постоянной химического равновесия для обратимой реакции расщепления растворённого вещества на ионы.

Например, для процесса распада соединения на составляющие его частицы константа диссоциации (К д) будет определяться частным постоянных концентраций катионов и анионов в составе раствора, возведённых в степени, соответствующие цифрам, стоящим перед ними в химическом уравнении, и общего числа оставшихся не продиссоциировавших формульных единиц растворённого вещества. Прослеживается зависимость - чем выше (К д), тем больше число катионов и анионов в системе.

Связь концентрации слабого распадающегося соединения, степени диссоциации и константы определяется с помощью закона разведения Оствальда уравнением: К д = α 2 с.

Вода как слабо диссоциирующее вещество

Дипольные молекулы в крайне небольшой степени распадаются на заряженные частицы, так как это энергетически невыгодно. Всё же идёт расщепление на катионы водорода и гидроксильные анионы. С учётом гидратационных процессов можно говорить об образовании из двух молекул воды иона гидроксония и ОН (-) .

Постоянная диссоциация определяется отношением произведения протонов водорода и гидроксидных групп, называемого ионным произведением воды, к равновесной концентрации не распавшихся молекул в растворе.

Электролитическая диссоциация воды обуславливает наличие в системе Н (+) , которые характеризуют её кислотность, а присутствие ОН (-) - основность. Если концентрации протона и гидроксильной группы равны, такая среда называется нейтральной. Существует так называемый водородный показатель - это отрицательный логарифм от общего количественного содержания Н (+) в растворе. рН меньше 7 говорит о том, что среда кислая, больше - о её щелочности. Это очень важная величина, по её экспериментальному значению анализируют биологические, биохимические и химические реакции различных водных систем - озёр, прудов, рек и морей. Неоспорима также актуальность водородного показателя для промышленных процессов.

Запись реакций и обозначения

Уравнение электролитической диссоциации с помощью химических знаков описывает процессы распада молекул на соответствующие частицы и называется ионным. Оно в разы проще стандартного молекулярного и имеет более общий вид.

При составлении такого уравнения нужно учитывать, что вещества, осаждающиеся или удаляющиеся из реагирующей смеси в составе паров газа в ходе реакции, всегда необходимо записывать только в молекулярной форме, в отличие от соединений электролитов, сильные представители которых только в расщепившемся на ионы виде входят в состав растворов. Электролитическая диссоциация для них - необратимый процесс, так как ассоциация невозможна в силу образования не расщепляющихся веществ или газов. Для такого типа уравнения действуют те же правила, что и для прочих химических реакций - суммы коэффициентов левых и правых частей обязательно должны быть равны друг другу для соблюдения материального баланса.

Электролитическая диссоциация кислот и оснований может идти в несколько стадий, если вещества многоосновные или многокислотные. Для каждой подреакции записывается своё уравнение.

Роль в химической науке и её развитии

Величайшее значение создание теории Сванте Аррениуса имело для общего процесса становления физической и, в частности, электрохимической науки. На основе открытия такого явления, как электролитическая диссоциация, интенсивное развитие получили электродные процессы, специфика прохождения токов через различные среды, теория наведения катодно-анодных потенциалов. Кроме этого, значительно продвинулась вперёд теория растворов. Небывалые открытия ждали и химическую кинетику, область коррозии металлов и сплавов, а также работы по поиску новых средств защиты от неё.

В современном мире ещё так много нового и неизвестного. С каждым днём учёные продвигаются всё дальше в познании такой великой дисциплины, как химия. Электролитическая диссоциация, а также её создатели и последователи навсегда заняли почётное место в контексте развития мировой науки.

Растворение любого вещества в воде сопровождается образованием гидратов. Если при этом в растворе не происходит формульных изменений у частиц растворенного вещества, то такие вещества относят к неэлектролитам . Ими являются, например, газ азот N 2 , жидкость хлороформ CHCl 3 , твердое вещество сахароза C 12 H 22 O 11 , которые в водном растворе существуют в виде гидратов этих молекул.
известно много веществ (в общем виде МА), которые после растворения в воде и образования гидратов молекул МА nH 2 O претерпевают существенные формульные изменения. В результате в растворе появляются гидратированные ионы – катионы М + * nH 2 O и анионы А * nH 2 O:
МА * nH 2 O → М + * nH 2 O + А — * nH 2 O
Такие вещества относятся к электролитам.
Процесс появления гидратированных ионов в водном растворе называется электролитической диссоциацией (С. Аррениус 1887).
Электролитическая диссоциация ионных кристаллических веществ (М +)(А —) в воде является необратимой реакцией:
(М +)(А —) (т) →(М +)(А —) (р) =(М +) (р) + (А —) (р)
Такие вещества относятся к сильным электролитам , ими являются многие основания и соли, например:

NaOH = Na + + OH — K 2 SO 4 = 2K + + SO 4 —
Ba(OH) 2 = Ba 2+ + 2OH — Na 2 = 2Na + + S 2-
Электролитическая диссоциация вещества МА, состоящих из полярных ковалентных молекул, является обратимой реакцией:
(М-А) (г,ж,т) → (М-А) (р) ↔ М + (р) А — (р)
такие вещества относят к слабым электролитам, ими являются многие кислоты и некоторые основания, например:
а) HNO 2 ↔ H + + NO 2-
б) CH 3 COOH ↔ H + + CH 3 COO —
в) H 2 CO 3 ↔ H + + HCO 3 — (первая ступень)
HCO 3 — ↔ H + + CO 3 2- (вторая ступень)
г) NH 3 * H 2 O ↔ NH 4 + OH —
В разбавленных водных растворах слабых электролитов мы всегда обнаружим как исходные молекулы, так и продукты их диссоциации – гидратированные ионы.
Качественная характеристика диссоциации электролитов называется степенью диссоциации и обозначается ɑ 1 , всегда ɑ › 0.
Для сильных электролитов ɑ = 1 по определению (диссоциация таких электролитов полная).
Для слабых электролитов степень диссоциации – отношение малярной концентрации продиссоциировавшего вещества (с д) к общей концентрации вещества в растворе (с):

Степень диссоциации – это доля единицы от 100%. Для слабых электролитов ɑ ˂ С 1 (100%). Для слабых кислот H n A степень диссоциации по каждой следующей ступени резко уменьшается по сравнению с предыдущей:
H 3 PO 4 ↔ H + + H 2 PO 4 — = 23,5%
H 2 PO 4 — ↔ H + + HPO 4 2- = 3*10 -4 %
HPO 4 2- ↔ H + + PO 4 3- = 2*10 -9 %
Степень диссоциации зависит от природы и концентрации электролита, а также от температуры раствора; она растет при уменьшении концентрации вещества в растворе (т.е. при разбавлении раствора) при нагревании .
В разбавленных растворах сильных кислот H n A их гидротионы H n -1 A не существуют, например:
H 2 SO 4 = H + + (1 → 1)
= H + + SO 4 -2 (1 → 1)
В итоге: H 2 SO 4(разб.) = 2H + + SO 4 -2
в концентрированных растворах содержание гидроанионов (и даже исходных молекул) становятся заметными:
H 2 SO 4 — (конц.) ↔ H + + HSO 4 — (1 ˂ 1)
HSO 4 — ↔ H + + SO 4 2- (2 ˂ 1 ˂ 1)
(суммировать уравнения стадий обратимой диссоциации нельзя!). При нагревании значения 1 и 2 возрастают, что способствует протеканию реакций с участием концентрированных кислот.
Кислоты — это электролиты, которые при диссоциации поставляют в водный раствор катионы водорода и никаких других положительных анионов не образуют:
* буквой обозначают степень протекания любых обратимых реакций, в том числе и степень гидролиза.
H 2 SO 4 = 2H + = SO 4 2- , HF ↔ H + + F —
Распространенные сильные кислоты :
Кислородсодержащие кислоты

Бескислородные кислоты
HCl, HBr, HI, HNCS
В разбавленном водном растворе (условно до 10%-ного или 0,1-молярного) эти кислоты диссоциируют полностью. Для сильных кислот H n A в список вошли их гидротионы (анионы кислых солей), также диссоциирующие полностью в этих условиях.
Распространенные слабые кислоты :
Кислородсодержащие кислоты

Бескислородные кислоты
Основание – это электролиты, которые при диссоциации поставляют в водный раствор гидроксид-ионы и никаких других отрицательных ионов не образуют:
KOH = K + + OH — , Ca(OH) 2 = Ca 2+ + 2OH —
Диссоциация малорастворимых оснований Mg(OH) 2 , Cu(OH) 2 , Mn(OH) 2 , Fe(OH) 2 и других практического значения не имеет.
К сильным основаниям (щелочам ) относятся NaOH, KOH, Ba(OH) 2 некоторые другие. Самым известным слабым основанием является гидрат аммиака NH 3 H 2 O.
Средние соли – это электролиты, которые при диссоциации поставляют в водный раствор любые катионы, кроме H + , и любые анионы, кроме OH :
Cu(NO 3) 2 = Cu 2+ + 2NO 3 —
Al 2 (SO 4) 3 =2Al 3+ + 3SO 4 2-
Na(CH 3 COO) = Na + + CH 3 COO —
BaCl 2 = Ba 2+ + 2Cl
K 2 S = 2K + + S 2-
Mg(CN) 2 = Mg 2+ + 2CN —
речь идет не только о хорошо растворимых солях. Диссоциация малорастворимых и практически нерастворимых солей значения не имеет.
Аналогично диссоциируют двойные соли:
KAl(SO 4) 2 = K + + Al 3+ + 2SO 4 2-
Fe(NH 4) 2 (SO 4) 2 = Fe 2+ + 2NH 4 + 2SO 4 2-
Кислые соли (большинство из них растворимы в воде) диссоциируют полностью по типу средних солей:
KHSO 4 = K + + HSO 4 —
KHCr 2 O 7 = K + + HCr 2 O 7 —
KH 2 PO 4 = K + + H 2 PO 4 —
NaHCO 3 = Na + + HCO 3 —
Образующиеся гидроанионы подвергаются, в свою очередь, воздействию воды:
а) если гидроанион принадлежит сильной кислоте, то он и сам диссоциирует также полностью:
HSO 4 — = H + + HSO 4 2- , HCr 2 O 7 — = H + + Cr 2 O 7 2-
и полное уравнение реакции диссоциации запишется в виде:
KHSO 4 = K + + H + + SO 4 2-
KHCr 2 O 7 = K + + H + Cr 2 O 7 2-
(растворы этих солей обязательно будут кислыми, как и растворы соответствующих кислот);
б) если гидротион принадлежит слабой кислоте, то его поведение в воде двойственно – либо неполная диссоциация по типу слабой кислоты:
H 2 PO 4 — ↔ H + + HPO 4 2- (1)
HCO 3 — ↔ H + CO 3 2- (1)

Либо взаимодействие с водой (называемым обратимым гидролизом):
H 2 PO 4 — + H 2 O ↔ H 3 PO 4 + OH — (2)
HCO 3 — + H 2 O ↔ H 2 CO 3 + OH — (2)
При 1 2 преобладает диссоциация (и раствор будет кислым), а при 1 2 – гидролиз (и раствор соли будет щелочным). Так, кислыми будут растворы солей с анионами HSO 3 — , H 2 PO 4 — , H 2 AsO 4 — и HSeO 3 , растворы солей с другими анионами (их большинство) будут щелочными. Другими словами, название «кислые» для солей с большинством гидроанионов не предполагает, что эти анионы будут вести себя в растворе как кислоты (гидролиз гидроанионов и расчет отношения между 1 и 2 изучаются только в высшей школе)

Основные соли MgCl(OH), CuCO 3 (OH) 2 и другие в своембольшинстве практически нерастворимы в воде, и обсуждать их поведение в водном растворе невозможно.