Свойства и определение обратной функции. Взаимно обратные функции, их графики

2.Теория обратных функций

Обратные тригонометрические функции

Определение обратной функции

Определение. Если функция f(x) задает взаимно однозначное соответствие между своей областью определения X и своей областью значений У (иными словами, если любым различным значениям аргумента соответствуют различные значения функции), то говорят, что функция f(x) имеет обратную функцию или что функция f (x ) обратима.

Определение. Обратная функция - это правило, которое каждому числу у є У сопоставляет число х є X , причем y=f(x). Область определения обратной

функции есть множество У, область значений - X.

Теорема о корне. Пусть функция f возрастает (или убывает) на промежутке I, число а - любое из значений, принимаемых f на этом промежутке. Тогда уравнение f(x)=a имеет единственный корень в промежутке I.

Доказательство. Рассмотрим возрастающую функцию f (в случае убывающей функции рассуждения аналогичны). По условию в промежутке I существует такое число b, что f(b)=a. Покажем, что b - единственный корень уравнения f(x)=a.

Допустим, что на промежутке I есть еще число с≠ Ь, такое что f(c)=a. Тогда или сb. Но функция f возрастает на промежутке I, поэтому соответственно либо f(c)f(b). Это противоречит равенству f(c)= f(b)=a. Следовательно, сделанное предположение неверно и в промежутке I, кроме числа b, других корней уравнения f(x)=a нет.

Теорема об обратной функции. Если функция f возрастает (или убывает) на промежутке I, то она обратима. Обратная к f функция g, определенная в области значений f также является возрастающей (соответственно убывающей).

Доказательство. Положим для определенности, что функция f возрастает. Обратимость функции f - очевидное следствие теоремы о корне. Поэтому остается доказать, что функция g, обратная к f, возрастает на множестве E(f).

Пусть х 1 и х 2 - произвольные значения из E(f), такие, что х 2 > х 1 и пусть y 1 = g (х 1), у 2 = g(х 2 ). По определению обратной функции х 1 = f(y 1) и х 2 = f(y 2).

Воспользовавшись тем условием, что f - возрастающая функция, находим, что допущение y 1≥ y 2 приводит к выводу f(y 1) > f(y 2), то есть х 1 > х 2 . Это

противоречит предположению х 2 > х 1 Поэтому, y 1 > y 2 , то есть из условия х 2 > х 1 следует, что g(x 2)> g(х 1). Что и требовалось доказать.

Исходная функция и обратная ей являются взаимно обратными.

Графики взаимно обратных функций

Теорема. Графики взаимно обратных функций симметричны относительно прямой у=х.

Доказательство. Заметим, что по графику функции f можно найти числовое значение обратной к f функции g в произвольной точке а. Для этого нужно взять точку с координатой а не на горизонтальной оси (как это обычно делается), а на вертикальной. Из определения обратной функции следует, что значение g(a) равно b.

Для того, чтобы изобразить график g в привычной системе координат, надо отразить график f относительно прямой у=х.

Алгоритм составления обратной функции для функции y=f(x), x X.

1 .Убедиться в том, что функция y=f(x) обратима на X.

2.Из уравнения y=f(x) х выразить через у, учитывая при этом, что х є X.

З.В полученном равенстве поменять местами х и у.

2.2.Определение, свойства и графики обратных тригонометрических

функций

Арксинус

Функция синус возрастает на отрезке и принимает все значения от -1 до 1. Следовательно, по теореме о корне для любого числа а, такого, что
, в промежутке существует единственный корень уравнения sin x = a. Это число и называют арксинусом числа а и обозначают arcsin а.

Определение. Арксинусом числа а, где , называется такое число из отрезка, синус которого равен а.

Свойства.

    D(у) = [ -1;1 ]

    Е(у) = [-π/2;π/2]

    у (-х) = arcsin(-х) = - arcsin х – функция нечетная, график симметричен относительно точки О(0;0).

    arcsin х = 0 при х = 0.

    arcsin х > 0 при х є (0;1]

arcsin х < 0 при х є [-1;0)

    у = arcsin х возрастает при любом х є [-1;1]

1 ≤ х 1 < х 2 ≤ 1 <=> arcsin х 1 < arcsin х 2 – функция возрастающая.

Арккосинус

Функция косинус убывает на отрезке и принимает все значения от -1 до 1. Поэтому для любого числа а, такого, что |а|1, на отрезке существует единственный корень в уравнении cosx=a. Это число в называют арккосинусом числа а и обозначают arcos а.

Определение . Арккосинусом числа а, где -1 а 1, называется такое число из отрезка , косинус которого равен а.

Свойства.

  1. Е(у) =

    у(-х) = arccos(-х) = π - arccos х – функция не является ни четной, ни нечетной.

    arccos х = 0 при х = 1

    arccos х > 0 при х є [-1;1)

arccos х < 0 – нет решений

    у = arccos х убывает при любом х є [-1;1]

1 ≤ х 1 < х 2 ≤ 1 <=> arcsin х 1 ≥ arcsin х 2 – убывающая.

Арктангенс

Функция тангенс возрастает на отрезке -
, следовательно, по теореме о корне уравнение tgx=a, где а - любое действительное число, имеет единственный корень х на интервале -. Этот корень называют арктангенсом числа а и обозначают arctga.

Определение. Арктангенсом числа a R называется такое число х , тангенс которого равен а.

Свойства.

    Е(у) = (-π/2;π/2)

    у(-х) = у = arctg(-х) = - arctg х – функция является нечетной, график симметричен относительно точки О(0;0).

    arctg х = 0 при х = 0

    Функция возрастает при любом х є R

-∞ < х 1 < х 2 < +∞ <=> arctg х 1 < arctg х 2

Арккотангенс

Функция котангенс на интервале (0;) убывает и принимает все значения из R. Поэтому для любого числа а в интервале (0;) существует единственный корень уравнения ctg х = а. Это число а называют арккотангенсом числа а и обозначают arcctg а.

Определение. Арккотангенсом числа а, где а R, называется такое число из интервала (0;), котангенс которого равен а.

Свойства.

    Е(у) = (0;π)

    у(-х) = arcctg(-х) = π - arcctg х – функция не является ни четной, ни нечетной.

    arcctg х = 0 – не существует.

    Функция у = arcctg х убывает при любом х є R

-∞ < х 1 < х 2 < + ∞ <=> arcctg х 1 > arcctg х 2

    Функция непрерывна при любом х є R.

2.3 Тождественные преобразования выражений, содержащих обратные тригонометрические функции

Пример 1 . Упростить выражение:

а)
где

Решение. Положим
. Тогда
и
Чтобы найти
, воспользуемся соотношением
Получаем
Но . На этом отрезке косинус принимает только положительные значения. Таким образом,
, то есть
где
.

б)

Решение.

в)

Решение. Положим
. Тогда
и
Найдем сначала , для чего воспользуемся формулой
, откуда
Так как и на этом интервале косинус принимает только положительные значения, то
.

Соответственные выражения, которые обращаются друг в друга. Чтобы разобраться в том, что это означает, стоит рассмотреть конкретный пример. Допустим, имеем y = cos(x). Если взять от аргумента косинус, то можно найти значение y. Очевидно, для этого необходимо иметь икс. Но что если изначально дан игрек? Именно тут дело доходит до сути вопроса. Для решения задачи требуется использование обратной функции. В нашем случае это арккосинус.

После всех преобразований получим: x = arccos(y).

То есть, чтобы найти функцию, обратную данной, достаточно просто выразить из нее аргумент. Но это работает только при условии, если полученный результат будет иметь единственное значение (об этом дальше).

В общем виде можно записать этот факт так: f(x) = y, g(y) = x.

Определение

Пусть f - функция, областью определения которой является множество X, а областью значений - множество Y. Тогда, если существует g, чьи области выполняют противоположные задачи, то f является обратимой.

Кроме того, в таком случае g - единственна, что означает, что существует ровно одна функция, удовлетворяющая этому свойству (не более, не менее). Тогда ее называют обратной функцией, и на письме обозначают так: g(x) = f -1 (x).

Другими словами, их можно рассматривать как двоичное отношение. Обратимость имеет место быть только тогда, когда одному элементу множества соответствует одно значение из другого.

Не всегда существует обратная функция. Для этого каждый элемент y є Y должен соответствовать не более чем одному x є X. Тогда f называется взаимно-однозначной или инъекцией. Если f -1 принадлежит Y, то каждый элемент этого множества должен соответствовать некоторому x ∈ X. Функции с таким свойством называются сюръекциями. Оно выполняется по определению, если Y - изображение f, но это не всегда так. Чтобы быть обратной, функция должна быть как инъекцией, так и сюръекцией. Такие выражения называются биекциями.

Пример: квадратные и корневые функции

Функция определена на }