Атомная физика.

· Рентгеноспектральный анализ · Радиоспектроскопия ·

Атомная физика - раздел физики, изучающий строение и свойства атомов . Атомная физика возникла в конце XIX - начале XX века в результате экспериментов, установивших, что атом представляет собой систему из положительно заряженного ядра и отрицательно заряженных электронов, и получила своё развитие в связи с созданием квантовой механики , объяснившей структуру атома. Строение атомного ядра изучается в ядерной физике .

Общие сведения [ | ]

В основе современной атомной физики лежит квантово-механическая теория, которая описывает физические явления на атомно-молекулярном уровне. Атомная физика рассматривает атом, как систему из положительно заряженного ядра и отрицательно заряженных электронов . Свойства этой системы и элементарные процессы протекающие в ней, определяются электромагнитным взаимодействием , в отличие от ядерной физики и физики элементарных частиц , где фундаментальную роль играют сильное взаимодействие и слабое взаимодействие .

История [ | ]

Планетарная модель атома

Идея о существовании мельчайших неделимых частиц - атомов, впервые была сформулирована древнегреческими философами Левкиппом , Демокритом и Эпикуром . В XVII веке эта идея получила продолжение в трудах французских философов П. Гассенди и Р. Декарта , английского химика Р. Бойля . Атомистика этого периода носила скорее умозрительный характер, представления об атомах были, как о постоянных, неделимых частицах, разнообразных размеров и форм, лишённых химических и физических свойств, из сочетания которых состоят все материальные тела. В работах И. Ньютона и М. В. Ломоносова высказывались предположения о возможности соединения атомов в более сложные структуры - корпускулы .

Важнейшими вехами в истории атомной физики были открытие электрона в 1897 английским физиком Дж. Дж. Томсоном и радиоактивного распада французскими учёными М. Склодовской-Кюри и П. Кюри , они изменили представление об атоме как о системе взаимодействующих заряженных частиц, согласно теории голландского физика Х. Лоренца . На основании этих исследований, Томсон предложил в 1903 году модель атома в виде сферы с положительным зарядом, с вкраплениями небольших по размеру частиц с отрицательным зарядом - электронов, удерживающихся в атоме за счёт равенства силы притяжения положительного заряда силам взаимного отталкивания электронов. Дальнейшие изучения радиоактивности Ф. Содди привели к открытию изотопов , тем самым разрушив научные представления об абсолютной идентичности всех атомов одного химического элемента. Важную роль сыграло также исследование А. Г. Столетовым фотоэффекта и дальнейшее объяснение этого явления А.Эйнштейном .

Планетарная модель атома обладала рядом недостатков, из которых самым существенным был связан с теоретически верной потерей энергии электрона: так как электрон вращается вокруг атома, то на него действует центростремительное ускорение, а согласно формуле Лармора любая заряженная частица, движущаяся с ускорением, излучает энергию. Если электрон теряет энергию, то в конце концов он должен упасть на ядро , чего в реальности не происходит. Уточнение модели атома стало возможным только с позиции совершенно новых представлений об атоме, открытых немецким физиком

АТОМНАЯ ФИЗИКА, раздел физики, в котором изучают строение и свойства атомов и элементарные процессы, связанные с ними. Атом - система электрически заряженных частиц, поэтому его строение и свойства определяются в основном электромагнитными взаимодействиями между частицами, действующими на расстояниях порядка 10 -8 см с энергией порядка 1 эВ.

Первые представления о существовании атомов как мельчайших неделимых и неизменных частицах вещества высказаны в 5-3 веках до нашей эры в Древней Греции (Демокрит, Эпикур и др.). В 17-18 веках, в период становления точного естествознания, атомистические представления развивали И. Кеплер, П. Гассенди, Р. Декарт, Р. Богинь, И. Ньютон, М. В. Ломоносов и др. Однако лишь в конце18 - начале 19 века экспериментальные исследования привели к созданию первых атомистических теорий. На основе количественных химических законов и законов идеальных газов в начале 19 века стала развиваться химическая атомистика (Дж. Дальтон, А. Авогадро, И. Берцелиус), а к середине 19 века были разграничены понятия атома и молекулы (С. Канниццаро). В 1869 году Д. И. Менделеев открыл периодический закон и создал периодическую систему химических элементов, носящую его имя. Атомистические представления легли в основу молекулярной физики, в частности кинетической теории газов (середина 19 века), и статистической физики (Р. Клаузиус, Дж. К. Максвелл, Л. Больцман, Дж. У. Гиббс). Одновременно развивалось учение о внутреннем атомном строении кристаллов и их симметрии (Р. Гаюи, О. Браве, Е.С. Фёдоров, немецкий кристаллограф А. Шёнфлис).

Построению современной атомной физики в начале 20 века предшествовали открытия электрона (1897, Дж. Дж. Томсон) и радиоактивности (1895, А. Беккерель), которые опровергли мнение о неделимости атома. Важнейшим событием в атомной физике явилось открытие Э. Резерфордом в 1911 году атомного ядра, обладающего малыми по сравнению с атомом размерами и сосредоточившего в себе основную массу и положительный заряд атома. Резерфорд предложил так называемую планетарную модель атома: вокруг положительно заряженного массивного ядра двигаются по орбитам лёгкие отрицательно заряженные электроны. Однако в соответствии с законами классической электродинамики такой атом был бы неустойчивым, так как электроны при этом непрерывно излучали бы электромагнитную энергию и за доли секунды упали на ядро. В 1913 году Н. Бор создал теорию устойчивого атома, положив в её основу эмпирически введённые им квантовые постулаты (Бора постулаты).

1) атом может существовать только в дискретных стационарных состояниях, характеризуемых определёнными внутренними энергиями, причём, находясь в этих состояниях (на определённом уровне энергии), атом устойчив и не испускает электромагнитную энергию;

2) переходы между стационарными состояниями происходят скачкообразно (т.е. его энергия меняется не непрерывно, а скачкообразно); при таком переходе (квантовом переходе) атом поглощает или испускает определённую порцию электромагнитной энергии - квант энергии Е =hv ik , где h - постоянная Планка, a v ik - так называемая частота квантового перехода, определяемая энергиями стационарных состояний i и к, между которыми совершается переход.

Теория атома Н. Бора позволила объяснить не только устойчивость атома, но и линейчатость атомных спектров, наблюдавшиеся закономерности оптических и рентгеновских спектров, а также периодический закон Менделеева. Для определения возможных дискретных значений энергии атома водорода Бор предположил, что при очень малых v квантовые и классические результаты должны совпадать (так называемый соответствия принцип), и применил для описания движения электрона и вычисления его энергии классические законы электродинамики. Однако теория Бора оказалась неприменимой к атому гелия и более сложным атомам.

В 1923 году Л. де Бройль выдвинул гипотезу корпускулярно-волнового дуализма: всем частицам материи присущи свойства, как частицы, так и волновые свойства, каждой частице материи можно поставить в соответствие определённую длину волны. Идея де Бройля позволила объяснить существование стационарных состояний атома: возможны лишь такие из них, при которых длина волны электрона укладывается на его орбите целое число раз. Таким образом, электрон в определённом состоянии аналогичен стоячей волне с длиной λ, определяющей его энергию Е = hc/λ (где с - скорость света) и импульс ρ = h/λ. Развитие идеи де Бройля привело к созданию квантовой механики (В. Гейзенберг, М. Борн, Э. Шрёдингер), на основе которой была создана последовательная теория атома. В соответствии с этой теорией каждое стационарное состояние атома описывается волновой функцией, которая является решением Шрёдингера уравнения. Представления о движении электронов по определённым орбитам оказалось неправильным, так как невозможно одновременно точно указать координаты нахождения электрона в данной точке пространства и значение его импульса (неопределённостей соотношение, введённое В. Гейзенбергом в 1927). Можно лишь говорить о распределении электронной плотности или вероятности нахождения электрона в данный момент времени в данной точке пространства, что и определяет его волновая функция.

В 1925 году в теорию была введена (Дж. Уленбек и С. Гаудсмит) новая физическая величина - спин электрона - его собственный механический момент, с которым связан собственный магнитный момент электрона. Оказалось, что спином обладают и другие атомные частицы, и атом в целом. Учёт спина позволил объяснить расщепление уровней энергии и спектральных линий атома в электрическом и магнитных полях (Зеемана эффект и Штарка эффект), уяснить порядок расположения электронов в атомах различных химических элементов (смотри Паули принцип, Числа заполнения).

Квантовая механика объяснила образование ковалентной химической связи (1927, В.Гайтлер, Ф. Лондон), связь атомов в кристаллах, влияние на них внутрикристаллического поля (1929, Х. Бете), межатомные взаимодействия и так далее.

В 1930-х годах выяснилось, что в атомном ядре между входящими в него частицами действует не электромагнитное взаимодействие, а новый тип взаимодействия - сильное взаимодействие. Физика атомного ядра выделилась в самостоятельную область - ядерную физику. В 1940-50-х годах сформировались физика элементарных частиц и физика плазмы. Современная атомная физика включает теорию и экспериментальные методы исследования атомных спектров в оптическом, рентгеновском и радиодиапазонах. Она позволяет получать точные значения энергий стационарных состояний, моментов количества движения и других характеристик атомов, изучает механизмы их возбуждения, столкновительные и внутренние процессы. Эти данные необходимы для создания различных типов лазеров, для физики плазмы, решения астрофизической и космологической задач, для изучения электрических, магнитных и других свойств вещества. Уширение и сдвиг спектральных линий позволяет судить о локальных полях в конденсированных средах, вызвавших эти изменения, о температуре и плотности среды, измерять высокие давления и т.п. Распределение электронной плотности в конденсированных средах, которые определяют, например, методами рентгеновского структурного анализа, позволяет устанавливать характер межатомных связей.

Для определения точных значений атомных характеристик необходимо устранить влияние на атом окружающей среды и «остановить» его, так как движение атомов искажает их спектры (например, вызывает доплеровское уширение спектральных линий). Развитие методов изучения «холодных» (остановленных) атомов позволяет получать атомные спектры с шириной спектральных линий, близкой к естественной. Важным достижением науки явилось получение реального изображения отдельных атомов с помощью сканирующего туннельного микроскопа и атомно-силового микроскопа.

Литературу смотри при статье Атом.

В.И. Балыкин. М. А. Ельяшевич.

Атомная физика

раздел физики, в котором изучают строение и состояние атомов. А. ф. возникла в конце 19 - начале 20 вв. В 10-х гг. 20 в. было установлено, что атом состоит из ядра и электронов, связанных электрическими силами. На первом этапе своего развития А. ф. охватывала также вопросы, связанные со строением атомного ядра. В 30-х гг. выяснилось, что природа взаимодействий, имеющих место в атомном ядре, иная, чем во внешней оболочке атома, и в 40-х гг. ядерная физика выделилась в самостоятельную область науки. В 50-х гг. от неё отпочковалась физика элементарных частиц, или физика высоких энергий.

Предыстория атомной физики: учение об атомах в 17-19 вв. Мысль о существовании атомов как неделимых частиц материи возникла ещё в древности; идеи Атомизм а впервые были высказаны древнегреческими мыслителями Демокритом и Эпикуром. В 17 в. они были возрождены французским философом П. Гассенди и английским химиком Р. Бойлем.

Представления об атомах, господствовавшие в 17-18 вв., были малоопределёнными. Атомы считались абсолютно неделимыми и неизменными твёрдыми частицами, различные виды которых отличаются друг от друга по размеру и форме. Сочетания атомов в том или ином порядке образуют различные тела, движения атомов обусловливают все явления, происходящие в веществе. И. Ньютон, М. В. Ломоносов и некоторые другие учёные полагали, что атомы могут сцепляться в более сложные частицы - «корпускулы». Однако атомам не приписывали определённых химических и физических свойств. Атомистика ещё носила абстрактный, натурфилософский характер.

В конце 18 - начале 19 вв. в результате быстрого развития химии была создана основа для количественной разработки атомного учения. Английский учёный Дж. Дальтон впервые (1803) стал рассматривать атом как мельчайшую частицу химического элемента, отличающуюся от атомов других элементов своей массой. По Дальтону, основной характеристикой атома является атомная масса. Химические соединения представляют собой совокупность «составных атомов», содержащих определённые (характерные для данного сложного вещества) числа атомов каждого элемента. Все химические реакции являются лишь перегруппировками атомов в новые сложные частицы. Исходя из этих положений, Дальтон сформулировал свой закон кратных отношений (см. Кратных отношений закон). Исследования итальянских учёных А. Авогадро (1811) и, в особенности, С. Канниццаро (1858) провели чёткую грань между атомом и молекулой. В 19 в. наряду с химическими свойствами атомов были изучены их оптические свойства. Было установлено, что каждый элемент обладает характерным оптическим спектром; был открыт спектральный анализ (немецкие физики Г. Кирхгоф и Р. Бунзен, 1860).

Т. о., атом предстал как качественно своеобразная частица вещества, характеризуемая строго определёнными физическими и химическими свойствами. Но свойства атома считались извечными и необъяснимыми. Полагали, что число видов атомов (химических элементов) случайно и что между ними не существует никакой связи. Однако постепенно выяснилось, что существуют группы элементов, обладающих одинаковыми химическими свойствами - одинаковой максимальной валентностью, и сходными законами изменения (при переходе от одной группы к другой) физических свойств - температуры плавления, сжимаемости и др. В 1869 Д. И. Менделеев открыл периодическую систему элементов (См. Периодическая система элементов). Он показал, что с увеличением атомной массы элементов их химические и физические свойства периодически повторяются (рис. 1 и 2 ).

Периодическая система доказала существование связи между различными видами атомов. Напрашивался вывод, что атом имеет сложное строение, изменяющееся с атомной массой. Проблема раскрытия структуры атома стала важнейшей в химии и в физике (подробнее см. Атомизм).

Возникновение атомной физики. Важнейшими событиями в науке, от которых берёт начало А. ф., были открытия электрона и радиоактивности. При исследовании прохождения электрического тока через сильно разреженные газы были открыты лучи, испускаемые катодом разрядной трубки (катодные лучи) и обладающие свойством отклоняться в поперечном электрическом и магнитном полях. Выяснилось, что эти лучи состоят из быстро летящих отрицательно заряженных частиц, названных электронами. В 1897 английский физик Дж. Дж. Томсон измерил отношение заряда е этих частиц к их массе m. Было также обнаружено, что металлы при сильном нагревании или освещении светом короткой длины волны испускают электроны (см. Термоэлектронная эмиссия , Фотоэлектронная эмиссия). Из этого было сделано заключение, что электроны входят в состав любых атомов. Отсюда далее следовало, что нейтральные атомы должны также содержать и положительно заряженные частицы. Положительно заряженные атомы - ионы - были действительно обнаружены при исследовании электрических разрядов в разреженных газах. Представление об атоме как о системе заряженных частиц объясняло, согласно теории голландского физика Х. Лоренц а, саму возможность излучения атомом света (электромагнитных волн): электромагнитное излучение возникает при колебаниях внутриатомных зарядов; это получило подтверждение при исследовании действия магнитного поля на атомные спектры (см. Зеемана явление). Выяснилось, что отношение заряда внутриатомных электронов к их массе е/m, найденное Лоренцом в его теории явления Зеемана, в точности равно значению е/m для свободных электронов, полученному в опытах Томсона. Теория электронов и её экспериментальное подтверждение дали бесспорное доказательство сложности атома.

Представление о неделимости и непревращаемости атома было окончательно опровергнуто работами французских учёных М. Склодовской-Кюри (См. Склодовская-Кюри) и П. Кюри (См. Кюри-Склодовская). В результате изучения радиоактивности было установлено (Ф. Содди), что атомы испытывают превращения двух типов. Испустив α-частицу (ион гелия с положительным зарядом 2e ), атом радиоактивного химического элемента превращается в атом другого элемента, расположенного в периодической системе на 2 клетки левее, например атом полония - в атом свинца. Испустив β-частицу (электрон) с отрицательным зарядом -е, атом радиоактивного химического элемента превращается в атом элемента, расположенного на 1 клетку правее, например атом висмута - в атом полония. Масса атома, образовавшегося в результате таких превращений, оказывалась иногда отличной от атомного веса того элемента, в клетку которого он попадал. Отсюда следовало существование разновидностей атомов одного и того же химического элемента с различными массами; эти разновидности в дальнейшем получили название изотопов (т. е. занимающих одно и то же место в таблице Менделеева). Итак, представления об абсолютной тождественности всех атомов данного химического элемента оказались неверными.

Результаты исследования свойств электрона и радиоактивности позволили строить конкретные модели атома. В модели, предложенной Томсоном в 1903, атом представлялся в виде положительно заряженной сферы, в которую вкраплены незначительные по размеру (по сравнению с атомом) отрицательные электроны (рис. 3 ).

Они удерживаются в атоме благодаря тому, что силы притяжения их распределённым положительным зарядом уравновешиваются силами их взаимного отталкивания. Томсоновская модель давала известное объяснение возможности испускания, рассеяния и поглощения света атомом. При смещении электронов из положения равновесия возникает «упругая» сила, стремящаяся восстановить равновесие; эта сила пропорциональна смещению электрона из равновесного положения и, следовательно, дипольному моменту (См. Дипольный момент) атома. Под действием электрических сил падающей электромагнитной волны электроны в атоме колеблются с той же частотой, что и электрическая напряжённость в световой волне; колеблющиеся электроны, в свою очередь, испускают свет той же частоты. Так происходит рассеяние электромагнитных волн атомами вещества. По степени ослабления светового пучка в толще вещества можно узнать общее число рассеивающих электронов, а зная число атомов в единице объёма, можно определить число электронов в каждом атоме.

Создание Резерфордом планетарной модели атома. Модель атома Томсона оказалась неудовлетворительной. На её основе не удалось объяснить совершенно неожиданный результат опытов английского физика Э. Резерфорда и его сотрудников Х. Гейгера и Э. Марсдена по рассеянию α-частиц атомами. В этих опытах быстрые α-частицы были применены для прямого зондирования атомов. Проходя через вещество, α-частицы сталкиваются с атомами. При каждом столкновении α-частица, пролетая через электрическое поле атома, изменяет направление движения - испытывает рассеяние. В подавляющем большинстве актов рассеяния отклонения α-частиц (углы рассеяния) были очень малы. Поэтому при прохождении пучка α-частиц через тонкий слой вещества происходило лишь небольшое размытие пучка. Однако очень малая доля α-частиц отклонялась на углы более 90°. Этот результат нельзя было объяснить на основе модели Томсона, т.к. электрическое поле в «сплошном» атоме недостаточно сильно, чтобы отклонить быструю и массивную α-частицу на большой угол. Чтобы объяснить результаты опытов по рассеянию α-частиц, Резерфорд предложил принципиально новую модель атома, напоминающую по строению Солнечную систему и получившую название планетарной. Она имеет следующий вид. В центре атома находится положительно заряженное ядро, размеры которого (Атомная физика10 -12 см ) очень малы по сравнению с размерами атома (Атомная физика10 -8 см ), а масса почти равна массе атома. Вокруг ядра движутся электроны, подобно планетам вокруг Солнца; число электронов в незаряженном (нейтральном) атоме таково, что их суммарный отрицательный заряд компенсирует (нейтрализует) положительный заряд ядра. Электроны должны двигаться вокруг ядра, в противном случае они упали бы на него под действием сил притяжения. Различие между атомом и планетной системой состоит в том, что в последней действуют силы тяготения, а в атоме - электрические (кулоновские) силы. Вблизи ядра, которое можно рассматривать как точечный положительный заряд, существует очень сильное электрическое поле. Поэтому, пролетая вблизи ядра, положительно заряженные α-частицы (ядра гелия) испытывают сильное отклонение (см. рис. 4 ). В дальнейшем было выяснено (Г. Мозли), что заряд ядра возрастает от одного химического элемента к другому на элементарную единицу заряда, равную заряду электрона (но с положительным знаком). Численно заряд ядра атома, выраженный в единицах элементарного заряда е, равен порядковому номеру соответствующего элемента в периодической системе.

Для проверки планетарной модели Резерфорд и его сотрудник Ч. Дарвин подсчитали угловое распределение α-частиц, рассеянных точечным ядром - центром кулоновских сил. Полученный результат был проверен опытным путём - измерением числа α-частиц, рассеянных под разными углами. Результаты опыта в точности совпали с теоретическими расчётами, блестяще подтвердив тем самым планетарную модель атома Резерфорда.

Однако планетарная модель атома натолкнулась на принципиальные трудности. Согласно классической электродинамике, заряженная частица, движущаяся с ускорением, непрерывно излучает электромагнитную энергию. Поэтому электроны, двигаясь вокруг ядра, т. е. ускоренно, должны были бы непрерывно терять энергию на излучение. Но при этом они за ничтожную долю секунды потеряли бы всю свою кинетическую энергию и упали бы на ядро. Другая трудность, связанная также с излучением, состояла в следующем: если принять (в соответствии с классической электродинамикой), что частота излучаемого электроном света равна частоте колебаний электрона в атоме (т. е. числу оборотов, совершаемых им по своей орбите в одну секунду) или имеет кратное ей значение, то излучаемый свет по мере приближения электрона к ядру должен был бы непрерывно изменять свою частоту, и спектр излучаемого им света должен быть сплошным. Но это противоречит опыту. Атом излучает световые волны вполне определённых частот, типичных для данного химического элемента, и характеризуется спектром, состоящим из отдельных спектральных линий - линейчатым спектром. В линейчатых спектрах элементов был экспериментально установлен ряд закономерностей, первая из которых была открыта швейцарским учёным И. Бальмером (1885) в спектре водорода. Наиболее общая закономерность - комбинационный принцип - была найдена австрийским учёным В. Ритцем (1908). Этот принцип можно сформулировать следующим образом: для атомов каждого элемента можно найти последовательность чисел T 1 , T 2 , T 3 ,... - т. н. спектральных термов, таких, что частота v каждой спектральной линии данного элемента выражается в виде разности двух термов: v = T k - T i . Для атома водорода терм T n = R/n 2 , где n - целое число, принимающее значение n = 1, 2, 3,..., a R - т. н. постоянная Ридберга (см. Ридберга постоянная).

Т. о., в рамках модели атома Резерфорда не могли быть объяснены устойчивость атома по отношению к излучению и линейчатые спектры его излучения. На её основе не могли быть объяснены и законы теплового излучения, и законы фотоэлектрических явлений, которые возникают при взаимодействии излучения с веществом. Эти законы оказалось возможным объяснить, исходя из совершенно новых - квантовых- представлений, впервые введённых немецким физиком М. Планк ом (1900). Для вывода закона распределения энергии в спектре теплового излучения - излучения нагретых тел - Планк предположил, что атомы вещества испускают электромагнитную энергию (свет) в виде отдельных порций - квантов света, энергия которых пропорциональна v (частоте излучения): E = hv, где h - постоянная, характерная для квантовой теории и получившая название Планка постоянной (См. Планка постоянная). В 1905 А. Эйнштейн дал квантовое объяснение фотоэлектрических явлений, согласно которому энергия кванта hv идёт на вырывание электрона из металла -Работа выхода Р - и на сообщение ему кинетическую энергии Т кин; hv = Р + T кин. При этом Эйнштейн ввёл понятие о квантах света как особого рода частицах; эти частицы впоследствии получили название Фотон ов.

Противоречия модели Резерфорда оказалось возможным разрешить, лишь отказавшись от ряда привычных представлений классической физики. Важнейший шаг в построении теории атома был сделан датским физиком Н. Бором (1913).

Постулаты Бора и модель атома Бора . В основу квантовой теории атома Бор положил 2 постулата, характеризующих те свойства атома, которые не укладывались в рамки классической физики. Эти постулаты Бора могут быть сформулированы следующим образом:

1. Существование стационарных состояний. Атом не излучает и является устойчивым лишь в некоторых стационарных (неизменных во времени) состояниях, соответствующих дискретному (прерывному) ряду «дозволенных» значений энергии E 1 , E 2 , E 3 , E 4 ,... Любое изменение энергии связано с квантовым (скачкообразным) переходом из одного стационарного состояния в другое.

2. Условие частот излучения (квантовых переходов с излучением). При переходе из одного стационарного состояния с энергией E i в другое с энергией E k атом испускает или поглощает свет определённой частоты v в виде кванта излучения (фотона) hv, согласно соотношению hv = E i - E k . При испускании атом переходит из состояния с большей энергией E i в состояние с меньшей энергией E k , при поглощении, наоборот, из состояния с меньшей энергией E k в состояние с большей энергией E i .

Постулаты Бора сразу позволяют понять физический смысл комбинационного принципа Ритца (см. выше); сравнение соотношений hv = E i - E k и v = T k - T i показывает, что спектральные термы соответствуют стационарным состояниям, и энергия последних должна равняться (с точностью до постоянного слагаемого) E i = - hT i , E k =- hT k .

При испускании или поглощении света изменяется энергия атома, это изменение равно энергии испущенного или поглощённого фотона, т. е. имеет место закон сохранения энергии. Линейчатый спектр атома является результатом дискретности возможных значений его энергии.

Для определения дозволенных значений энергии атома - квантования его энергии - и для нахождения характеристик соответствующих стационарных состояний Бор применил классическую (ньютоновскую) механику. «Если мы желаем вообще составить наглядное представление о стационарных состояниях, у нас нет других средств, по крайней мере сейчас, кроме обычной механики», - писал Бор в 1913 («Три статьи о спектрах и строении атомов», М.-Л., 1923, с. 22). Для простейшего атома - атома водорода, состоящего из ядра с зарядом +е (протона) и электрона с зарядом -e , Бор рассмотрел движение электрона вокруг ядра по круговым орбитам. Сравнивая энергию атома Е со спектральными термами T n = R/n 2 для атома водорода, найденными с большой точностью из частот его спектральных линий, он получил возможные значения энергии атома E n = -hT n = -hR/n 2 (где n = 1, 2, 3,...). Они соответствуют круговым орбитам радиуса а n = а 0 n 2 , где a 0 = 0,53·10 -8 см - боровский радиус - радиус наименьшей круговой орбиты (при n = 1). Бор вычислил частоты обращения v электрона вокруг ядра по круговым орбитам в зависимости от энергии электрона. Оказалось, что частоты излучаемого атомом света не совпадают с частотами обращения v n , как этого требует классическая электродинамика, а пропорциональны, согласно соотношению hv = E i - E k , разности энергий электрона на двух возможных орбитах.

Для нахождения связи частоты обращения электрона по орбите и частоты излучения Бор сделал предположение, что результаты квантовой и классической теорий должны совпадать при малых частотах излучения (для больших длин волн; такое совпадение имеет место для теплового излучения, законы которого были выведены Планком). Он приравнял для больших n частоту перехода v = (E n+1 - E n)/h частоте обращения v n по орбите с данным n и вычислил значение постоянной Ридберга R, которое с большой точностью совпало со значением R, найденным из опыта, что подтвердило боровское предположение. Бору удалось также не только объяснить спектр водорода, но и убедительно показать, что некоторые спектральные линии, которые приписывались водороду, принадлежат гелию. Предположение Бора о том, что результаты квантовой и классической теорий должны совпадать в предельном случае малых частот излучения, представляло первоначальную форму т. н. принципа соответствия. В дальнейшем Бор успешно применил его для нахождения интенсивностей линий спектра. Как показало развитие современной физики, принцип соответствия оказался весьма общим (см. Соответствия принцип).

В теории атома Бора квантование энергии, т. е. нахождение её возможных значений, оказалось частным случаем общего метода нахождения «дозволенных» орбит. Согласно квантовой теории, такими орбитами являются только те, для которых момент количества движения электрона в атоме равен целому кратному h/2π. Каждой дозволенной орбите соответствует определённое возможное значение энергии атома (см. Атом).

Основные положения квантовой теории атома - 2 постулата Бора - были всесторонне подтверждены экспериментально. Особенно наглядное подтверждение дали опыты немецких физиков Дж. Франка и Г. Герца (1913-16). Суть этих опытов такова. Поток электронов, энергией которых можно управлять, попадает в сосуд, содержащий пары ртути. Электронам сообщается энергия, которая постепенно повышается. По мере увеличения энергии электронов ток в гальванометре, включенном в электрическую цепь, увеличивается; когда же энергия электронов оказывается равной определённым значениям (4,9; 6,7; 10,4 эв ), ток резко падает (рис. 5 ). Одновременно можно обнаружить, что пары ртути испускают ультрафиолетовые лучи определённой частоты.

Изложенные факты допускают только одно истолкование. Пока энергия электронов меньше 4,9 эв, электроны при столкновении с атомами ртути не теряют энергии - столкновения имеют упругий характер. Когда же энергия оказывается равной определённому значению, именно 4,9 эв, электроны передают свою энергию атомам ртути, которые затем испускают её в виде квантов ультрафиолетового света. Расчёт показывает, что энергия этих фотонов равна как раз той энергии, которую теряют электроны. Эти опыты доказали, что внутренняя энергия атома может иметь только определённые дискретные значения, что атом поглощает энергию извне и испускает её сразу целыми квантами и что, наконец, частота испускаемого атомом света соответствует теряемой атомом энергии.

Дальнейшее развитие А. ф. показало справедливость постулатов Бора не только для атомов, но и для других микроскопических систем - для молекул и для атомных ядер. Эти постулаты следует рассматривать как твёрдо установленные опытные квантовые законы. Они составляют ту часть теории Бора, которая не только сохранилась при дальнейшем развитии квантовой теории, но и получила своё обоснование. Иначе обстоит дело с моделью атома Бора, основанной на рассмотрении движения электронов в атоме по законам классической механики при наложении дополнительных условий квантования. Такой подход позволил получить целый ряд важных результатов, но был непоследовательным: квантовые постулаты были присоединены к законам классической механики искусственно. Последовательной теорией явилась созданная в 20-х гг. 20 в. Квантовая механика . Её создание было подготовлено дальнейшим развитием модельных представлений теории Бора, в ходе которого выяснились её сильные и слабые стороны.

Развитие модельной теории атома Бора. Весьма важным результатом теории Бора было объяснение спектра атома водорода. Дальнейший шаг в развитии теории атомных спектров был сделан немецким физиком А. Зоммерфельдом. Разработав более детально правила квантования, исходя из более сложной картины движения электронов в атоме (по эллиптическим орбитам) и учитывая экранирование внешнего (т. н. валентного) электрона в поле ядра и внутренних электронов, он сумел дать объяснение ряда закономерностей спектров щелочных металлов.

Теория атома Бора пролила свет и на структуру т. н. характеристических спектров рентгеновского излучения. Рентгеновские спектры атомов так же, как и их оптические спектры, имеют дискретную линейчатую структуру, характерную для данного элемента (отсюда и название). Исследуя характеристические рентгеновские спектры различных элементов, английский физик Г. Мозли открыл следующую закономерность: квадратные корни из частот испускаемых линий равномерно возрастают от элемента к элементу по всей периодической системе Менделеева пропорционально атомному номеру элемента. Интересно то обстоятельство, что закон Мозли полностью подтвердил правоту Менделеева, нарушившего в некоторых случаях принцип размещения элементов в таблице по возрастающему атомному весу и поставившего некоторые более тяжёлые элементы впереди более лёгких.

На основе теории Бора удалось дать объяснение и периодичности свойств атомов. В сложном атоме образуются электронные оболочки, которые последовательно заполняются, начиная от самой внутренней, определёнными числами электронов (физическая причина образования оболочек стала ясна только на основании принципа Паули, см. ниже). Структура внешних электронных оболочек периодически повторяется, что обусловливает периодическая повторяемость химических и многих физических свойств элементов, расположенных в одной и той же группе периодической системы. На основе же теории Бора немецким химиком В. Косселем были объяснены (1916) химического взаимодействия в т. н. гетерополярных молекулах.

Однако далеко не все вопросы теории атома удалось объяснить на основе модельных представлений теории Бора. Она не справлялась со многими задачами теории спектров, позволяла получать лишь правильные значения частот спектральных линий атома водорода и водородоподобных атомов, интенсивности же этих линий оставались необъяснёнными; Бору для объяснения интенсивностей пришлось применить принцип соответствия.

При переходе к объяснению движений электронов в атомах, более сложных, чем атом водорода, модельная теория Бора оказалась в тупике. Уже атом гелия, в котором вокруг ядра движутся 2 электрона, не поддавался теоретической интерпретации на её основе. Трудности при этом не исчерпывались количественными расхождениями с опытом. Теория оказалась бессильной и в решении такой проблемы, как соединение атомов в молекулу. Почему 2 нейтральных атома водорода соединяются в молекулу водорода? Как вообще объяснить природу валентности? Что связывает атомы твёрдого тела? Эти вопросы оставались без ответа. В рамках боровской модели нельзя было найти подхода к их решению.

Квантовомеханическая теория атома. Ограниченность боровской модели атома коренилась в ограниченности классических представлений о движении микрочастиц. Стало ясно, что для дальнейшего развития теории атома необходимо критически пересмотреть основные представления о движении и взаимодействии микрочастиц. Неудовлетворительность модели, основанной на классической механике с добавлением условий квантования, отчётливо понимал и сам Бор, взгляды которого оказали большое влияние на дальнейшее развитие А. ф. Началом нового этапа развития А. ф. послужила идея, высказанная французским физиком Л. де Бройлем (1924) о двойственной природе движения микрообъектов, в частности электрона (см. Волны де Бройля). Эта идея стала исходным пунктом квантовой механики (См. Квантовая механика), созданной в 1925-26 трудами В. Гейзенберга и М. Борна (Германия), Э. Шрёдингера (Австрия) и П. Дирака (Англия), и разработанной на её основе современной квантовомеханической теории атома.

Представления квантовой механики о движении электрона (вообще микрочастицы) коренным образом отличаются от классических. Согласно квантовой механике, электрон не движется по траектории (орбите), подобно твёрдому шарику; движению электрона присущи также и некоторые особенности, характерные для распространения волн. С одной стороны, электрон всегда действует (например, при столкновениях) как единое целое, как частица, обладающая неделимым зарядом и массой; в то же время электроны с определённой энергией и импульсом распространяются подобно плоской волне, обладающей определённой частотой (и определённой длиной волны). Энергия электрона Е как частицы связана с частотой v электронной волны соотношением: E=hv, а его импульс р - с длиной волны λ соотношением: р = h/λ.

Устойчивые движения электрона в атоме, как показал Шрёдингер (1926), в некотором отношении аналогичны стоячим волнам (См. Стоячие волны), амплитуды которых в разных точках различны. При этом в атоме, как в колебательной системе, возможны лишь некоторые «избранные» движения с определёнными значениями энергии, момента количества движения и проекции момента электрона в атоме. Каждое стационарное состояние атома описывается при помощи некоторой волновой функции (См. Волновая функция), являющейся решением волнового уравнения особого типа - уравнения Шрёдингера; волновой функции соответствует «электронное облако», характеризующее (в среднем) распределение плотности электронного заряда в атоме (см. Атом , там же на рис. 3 показаны проекции «электронных облаков» атома водорода). В 20-30-х гг. были разработаны приближённые методы расчёта распределения плотности электронного заряда в сложных атомах, в частности метод Томаса - Ферми (1926, 1928). Эта величина и связанное с ней значение т. н. атомного фактора (См. Атомный фактор) важны при исследовании электронных столкновений с атомами, а также рассеяния ими рентгеновских лучей.

На основе квантовой механики удалось путём решения уравнения Шрёдингера правильно рассчитать энергии электронов в сложных атомах. Приближённые методы таких расчётов были разработаны в 1928 Д. Хартри (Англия) и в 1930 В. А. Фоком (СССР). Исследования атомных спектров полностью подтвердили квантовомеханическую теорию атома. При этом выяснилось, что состояние электрона в атоме существенно зависит от его Спин а - собственного механического момента количества движения. Было дано объяснение действия внешних электрических и магнитных полей на атом (см. Штарка явление (См. Штарка эффект), Зеемана явление). Важный общий принцип, связанный со спином электрона, был открыт швейцарским физиком В. Паули (1925) (см. Паули принцип), согласно этому принципу, в каждом электронном состоянии в атоме может находиться только один электрон; если данное состояние уже занято каким-либо электроном, то последующий электрон, входя в состав атома, вынужден занимать другое состояние. На основе принципа Паули были окончательно установлены Числа заполнения электронных оболочек в сложных атомах, определяющие периодичность свойств элементов. Исходя из квантовой механики, немецкие физики В. Гейтлер и Ф. Лондон (1927) дали теорию т. н. гомеополярной химической связи двух одинаковых атомов (например, атомов водорода в молекуле H 2), не объяснимой в рамках боровской модели атома.

Важными применениями квантовой механики в 30-х гг. ив дальнейшем были исследования связанных атомов, входящих в состав молекулы или кристалла. Состояния атома, являющегося частью молекулы, существенно отличаются от состояний свободного атома. Существенные изменения претерпевает атом также в кристалле под действием внутрикристаллического поля, теория которого была впервые разработана Х. Бете (1929). Исследуя эти изменения, можно установить характер взаимодействия атома с его окружением. Крупнейшим экспериментальным достижением в этой области А. ф. было открытие Е. К. Завойским в 1944 электронного парамагнитного резонанса (См. Электронный парамагнитный резонанс), давшего возможность изучать различные связи атомов с окружающей средой.

Современная атомная физика. Основными разделами современной А. ф. являются теория атома, атомная (оптическая) спектроскопия, рентгеновская спектроскопия, радиоспектроскопия (она исследует также и вращательные уровни молекул), физика атомных и ионных столкновений. Различные разделы спектроскопии охватывают разные диапазоны частот излучения и, соответственно, разные диапазоны энергий квантов. В то время как рентгеновская спектроскопия изучает излучения атомов с энергиями квантов до сотен тыс. эв, радиоспектроскопия имеет дело с очень малыми квантами - вплоть до квантов менее 10 -6 эв.

Важнейшая задача А. ф. - детальное определение всех характеристик состояний атома. Речь идёт об определении возможных значений энергии атома - его уровней энергии, значений моментов количества движения и других величин, характеризующих состояния атома. Исследуются тонкая и сверхтонкая структуры уровней энергии (см. Атомные спектры), изменения уровней энергии под действием электрических и магнитного полей - как внешних, макроскопических, так и внутренних, микроскопических. Большое значение имеет такая характеристика состояний атома, как время жизни электрона на уровне энергии. Наконец, большое внимание уделяется механизму возбуждения атомных спектров.

Области явлений, исследуемых разными разделами А. ф., перекрываются. Рентгеновская спектроскопия измерением испускания и поглощения рентгеновских лучей позволяет определить главным образом энергии связи внутренних электронов с ядром атома (энергии ионизации), распределение электрического поля внутри атома. Оптическая спектроскопия изучает совокупности спектральных линий, испускаемых атомами, определяет характеристики уровней энергии атома, интенсивности спектральных линий и связанные с ними времена жизни атома в возбуждённых состояниях, тонкую структуру уровней энергии, их смещение и расщепление в электрическом и магнитном полях. Радиоспектроскопия детально исследует ширину и форму спектральных линий, их сверхтонкую структуру, сдвиг и расщепление в магнитном поле, вообще внутриатомные процессы, вызываемые очень слабыми взаимодействиями и влияниями среды.

Анализ результатов столкновений быстрых электронов и ионов с атомами даёт возможность получить сведения о распределении плотности электронного заряда («электронного облака») внутри атома, об энергиях возбуждения атома, энергиях ионизации.

Результаты детального исследования строения атомов находят самые широкие применения не только во многих разделах физики, но и в химии, астрофизике и других областях науки. На основании изучения уширения и сдвига спектральных линий можно судить о местных (локальных) полях в среде (жидкости, кристалле), обусловливающих эти изменения, и о состоянии этой среды (температуре, плотности и др.). Знание распределения плотности электронного заряда в атоме и её изменений при внешних взаимодействиях позволяет предсказать тип химических связей, которые может образовывать атом, поведение иона в кристаллической решётке. Сведения о структуре и характеристиках уровней энергии атомов и ионов чрезвычайно важны для устройств квантовой электроники (См.

Исследования в ядерной физике после ВОВ.

После окончания войны с фашистской Германией и Японией, исследования в области ядерной физики в СССР получили дальнейшее развитие. Они позволили Советскому Союзу в короткий срок ликвидировать монополию США на ядерное оружие и приступить к использованию атомной энергии в промышленности и сельском хозяйстве, в медицине, науке и технике.

В СССР широким фронтом проводятся исследования по изучению атомного ядра, взаимодействий ядерных частиц, ядерных реакций, по синтезу новых элементов и т. д. В самостоятельные области выделились нейтронная физика, физика ядерных реакторов и изотопная технология. Исследования в области физики реакторов, начатые на первых реакторах на медленных (тепловых) нейтронах, стали развиваться применительно к реакторам на промежуточных и быстрых нейтронах с расширенным воспроизводством ядерного горючего. Для проведения этих исследований и решения прикладных задач, необходимых для освоения физики атомных реакторов, используется большое число так называемых физических сборок - моделей реакторов, многочисленные экспериментальные реакторы, на которых определяют критические массы ядерного горючего, распределение нейтронных потоков и пр.

В результате исследований по ядерной физике открыты новые элементарные частицы, изменившие ранее существовавшее представление о структуре атомного ядра; разработаны теории, позволяющие предсказывать некоторые свойства ядерных частиц при их взаимодействии; синтезированы новые химические элементы, открыт новый вид радиоактивности, развиты и приобрели самостоятельное значение исследования по регулируемому термоядерному синтезу. Созданы и успешно применяются уникальные экспериментальные установки для обработки опытных данных, специальные автоматические или полуавтоматические просмотровые устройства, а также быстродействующие электронно-вычислительные машины.

Закончим этот раздел словами Игоря Васильевича Курчатова: «Необходимо и дальше развивать атомную теоретическую науку с тем, чтобы были надежно освещены пути будущей атомной техники. Перед нами пример работы по решению советскими учеными и инженерами задачи использования атомной энергии урана и других тяжелых элементов. Наши успехи в этом деле были в значительной мере обусловлены тем, что в институтах все время шла упорная теоретическая работа по изучению законов строения атома, законов цепной реакции, законов строения атомного ядра, теоретическая работа, которая определила развивающиеся у нас сейчас пути атомной техники...».

Это выступление И. В. Курчатова как бы подводило итог поистине огромной творческой работы, проделанной советскими учеными и инженерами. Эту работу продолжают и сейчас многочисленные коллективы ученых в научно-исследовательских институтах.

Вклад ученых в развитие ядерной физики и освоение атомной энергии.

В 1896 г. Антуан Анри Беккерель открыл, что урановая руда испускает какие-то невидимые с большой проникающей способностью (позднее это явление было названо радиоактивностью).

В 1898 г. Мария Склодовская и Пьер Кюри выделили несколько сотых грамма нового вещества - элемента, который излучал -частицы. Они назвали его полонием. В декабре того же года они открыли новый элемент - радий.

В 1911 г. Эрнест Резерфорд предложил планетарную модель атома. Он же доказал, что почти вся атома сосредоточена в его ядре.

В 1913 г. Нильс Бор создал модель атома водорода и теорию строения атома. С этого времени и началось быстрое развитие квантовой механики, фактическое рождение ядерной физики.

В 1932 г. Джеймс Чедвик обнаружил не имеющую электрического заряда нейтральную ядерную частицу - нейтрон, будущий микроключ к большой атомной энергетике.

В 1932 г. Дмитрий Дмитриевич Иваненко предложил гипотезу строения атомного ядра из протонов и нейтронов.

В 1933 г. Ирен Кюри и Фредерик Жолио открыли искусственную бэтта-радиоактивность, т.е, новый вид радиоактивности. Это сыграло исключительную роль в создании новых радиоактивных элементов.

В 1934 г. Энрико Ферми обнаружил, что при бомбардировке урана нейтронами образуются радиоактивные элементы. Итальянские исследователи приняли их за элементы более тяжелые, чем уран, и назвали трансурановыми.

В 1934 г. Павел Алексеевич Черенков и Сергей Иванович Вавилов открыли одно из фундаментальных физических явлений - свечение жидкости при движении в ней электронов со скоростью, превышающей фазовую скорость в ней.

В 1935 г. Игорь Васильевич Курчатов с группой сотрудников открыли явление ядерной изомерии искусственных радиоактивных атомных ядер и разработали теорию этого явления.

В 1936 г. Яков Ильич Френкель предложил капельную модель ядра и ввел термодинамические понятия в ядерную физику, выдвинул первую теорию ядерного деления.

В 1938 г. Отто Ган и Ф. Штрассман, повторяя опыты Ферми, обнаружили, что в облученном нейтронами уране появляются элементы, стоящие в середине периодической системы элементов Дмитрия Ивановича Менделеева.

В 1938 г. Фредерик Жолио-Кюри также установил, что при попадании нейтрона в ядро урана ядро разваливается - делится на два меньших ядра.

В 1939 г. Юлий Борисович Харитон и Яков Борисович Зельдович теоретически показали возможность осуществления цепной реакции деления ядер урана-235.

В 1940 году Георгий Николаев Флёров и К. А. Петржак открыли спонтанное ядер урана, т.е, доказали, что ядра урана могут самопроизвольно распадаться. Когда подсчитали энергию, которую можно получить при расщеплении 1 кг урана, то оказалось, что она равна количеству энергии, которое выделяется при сжигании 2 300 000 кг самого лучшего каменного угля.

В 1940 году Юлий Борисович Харитон и Яков Борисович Зельдович предложили расчет цепной реакции деления ядер урана, установив, таким образом, принципиальную возможность ее осуществления.

Перечень научных открытий в области ядерной физики можно было бы и продолжить. Все это можно найти в различных научных и научно-популярных книгах.

Практическое задание.

Внимательно изучите презентацию. Ваша задача заключается в следующем определиться с темой своей презентации, возможно аналогичной, а может быть и чем-то уникальной в своём роде. Сегодня в течение данного урока вам предстоит создать или начать создавать презентацию по физике, а если быть точным вы должны посвятить её одному из важнейших и фундаментальных разделов этой прекрасной науки «Физика атома и атомного ядра».

Ваша работа будет поделена на несколько этапов:

    Вы должны выбрать тему, которую будете разрабатывать – либо это будет презентация, посвящённая какому-либо из учёных, внёсших колоссальный вклад в эту науку; а может вы выберете - теоретической аспект этой науки или практический и освятите один из них. Презентация «Физика атома и атомного ядра» несомненно, должна помочь вам в этом.

    Затем вам (речь идёт конечно же о тех, кто забыл как работать в программе Microsoft PowerPoint2007 ) стоит ознакомиться с презентацией PowerPoint2007, которая очень подробно расскажет о том, как с ним работать.


2 1. Введение 1.1. Предмет атомной физики, её краткая история развития, цели и задачи 1.2. Основные определения. Электрон, протон, нейтрон, атом, ион, молекула, нуклид, атомное ядро, химический элемент, изотопы 1.3. Ядерные и оболочечные свойства атома 1.4. Единицы измерения физических величин в атомной физике. Электрон-вольт. Моль, постоянная Авогадро, атомная единица массы, относительная атомная масса. Масштабы энергий, длин, частот, масс в атомной и ядерной физике 1.5. Классическая, релятивистская и квантовая физика. Импульс и энергия 1.6. Фотон. Шкала энергий фотонов (шкала электромагнитного излучения)


3 Физика атома Атомная физика (физика атома и атомных явлений) это раздел физики, изучающий строение и свойства атомов, а также элементарные процессы, в которых атомы принимают участие Объектами исследования атомной физики являются как атомы, так и молекулы, атомные и молекулярные ионы, экзотические атомы и другие микрочастицы В явлениях, изучаемых в рамках атомной физики, основную роль играют электромагнитные взаимодействия Результаты исследований в области атомной физики служат основой понимания химической связи, оптических и туннельных явлений, процессов в плазме, нейтральных жидкостях, твёрдых телах (в т. ч. полупроводниках и наноматериалах) Теоретической основой самой атомной физики являются квантовая теория и квантовая электродинамика Чёткой границы между атомной физикой и другими разделами физики не существует, и в соответствии с международной классификацией, атомная физика включена в область атомной, молекулярной физики и оптики


4 Краткая история развития атомной физики Понятие «атом» употреблялось древнегреческими учеными (V – II веках до н. э.) для обозначения наименьших, неделимых частиц, из которых состоит всё существующее в мире Экспериментальные подтверждения атомистических представлений были получены в XIX века в химических и физических исследованиях Представление о том, что атом состоит из положительно и отрицательно заряженных частей, было обосновано во второй половине XIX-го века В 1897 г. Дж.Дж. Томсоном был открыт электрон, и вскоре доказано, что он является составной частью всех атомов Представление об атоме как о системе, состоящей из ядра атомного и электронной оболочки, было обосновано Э. Резерфордом в 1911 году После того, как это представление стало общепринятым, из атомной физики выделилась ядерная физика и, несколько позже, физика элементарных частиц


5 Краткая история развития атомной физики Основы современной атомной физики были заложены в начале XX-го века, когда на основе модели атома Э. Резерфорда и развития квантовых представлений М. Планка (1900) и А. Эйнштейна (1905) Н. Бором были даны объяснения ряда важнейших свойств атома (1913) и выдвинуты два «квантовых» постулата Согласно первому из них, существуют особые (стационарные) состояния атома, в которых последний не излучает энергии, хотя входящие в его состав заряженные частицы (электроны) совершают ускоренное движение Согласно второму постулату, излучение атома происходит при переходе из одного стационарного состояния в другое, а частота ν этого излучения определяется из условия h = E – E (правила частот Бора), где h постоянная Планка, E и E значения энергии атома в начальном и конечном состояниях Первый постулат отражает факт устойчивости атома, второй дискретность частот в атомных спектрах


6 Краткая история развития атомной физики На смену теории Бора, которая оказалась не в состоянии исчерпывающим образом объяснить свойства атомов и молекул, пришла последовательная квантовая теория, созданная в 20-х – 30-х годах XX-го века (В. Гейзенберг, Э. Шрёдингер, П. Дирак) Тем не менее, постулаты Бора по-прежнему сохраняют свою значимость и неотъемлемым образом входят в основы физики микроскопических явлений В рамках современной квантовой теории дано максимально полное объяснение свойств атома: принципы формирования оптических и рентгеновских спектров, поведение атомов в магнитных (эффект Зеемана) и электрических (эффект Штарка) полях, получили теоретическое обоснование периодическая система элементов и природа химической связи, были разработаны методы расчёта электронной структуры атомов, молекул и твёрдых тел (метод самосогласованного поля Хартри – Фока), созданы новые устройства для изучения структуры и свойств вещества (электронный микроскоп) Развитие идей квантовой теории (гипотеза спина, принцип Паули и др.), в свою очередь, опиралось на экспериментальные исследования в области атомной физики (линейчатые спектры атомов, фотоэффект, тонкая и сверхтонкая структура спектральных линий, опыты Франка и Герца, Дэвиссона и Джермера, Штерна и Герлаха, эффект Комптона, открытие дейтерия и других изотопов, эффект Оже и др.)


7 Краткая история развития атомной физики Во второй трети XX-го века в рамках атомной физики и на основе идей квантовой теории были разработаны новые экспериментальные методы физических исследований: электронный парамагнитный резонанс (ЭПР), фотоэлектронная спектроскопия (ФЭС), спектроскопия электронного удара (СЭУ), созданы устройства для их осуществления (мазер, лазер и др.) Непосредственное экспериментальное подтверждение получили фундаментальные принципы квантовой теории (интерференция квантовых состояний, лэмбовский сдвиг уровней и др.), предложены новые методы расчёта электронной структуры вещества (теория функционала плотности), предсказаны новые физические явления (сверхизлучение) Разработаны методы экспериментальных исследований процессов, происходящих с одиночными атомами, ионами и электронами, удерживаемыми электрическим и магнитным полями специальной конфигурации (атомными и ионными «ловушками»)


8 Краткая история развития атомной физики Новые результаты в области атомной физики последней трети XX-го – начала XXI века в основном связаны с использованием лазеров В научной практике широко применяются методы лазерной спектроскопии, в т. ч. нелинейной, на основе которых появилась возможность осуществлять спектроскопические измерения с одиночными атомами и молекулами, определять характеристики высоковозбуждённых состояний атомов, исследовать динамику внутриатомных и внутримолекулярных процессов длительностью до нескольких фемтосекунд (10 –15 с) С помощью лазеров удалось осуществить и детально исследовать многофотонные процессы взаимодействия излучения с атомными системами (многофотонный фотоэффект, умножение частоты), а также охлаждение отдельных атомов до сверхнизких температур Теоретические исследования последних десятилетий в области атомной физики связаны со стремительным прогрессом вычислительной техники и направлены на разработку эффективных методов и средств расчёта электронной структуры и свойств многоэлектронных атомных систем с учётом энергии электронной корреляции, релятивистских квантово-механических и квантово- электродинамических поправок


9 Атомная физика Исследования в области атомной физики нашли множество научных и практических применений В промышленных целях для определения элементного состава вещества используются методы атомного спектрального анализа, включая ЭПР, ФЭС и СЭУ Для решения геологических, биологических и медицинских задач используются методы дистанционного и локального лазерного спектрального атомного анализа, в промышленных и технических целях осуществляется лазерное разделение изотопов Экспериментальные и теоретические методы атомной физики находят применение в астрофизике (определение состава и физических характеристик вещества звёзд и межзвёздной среды, исследование ридберговских атомов), метрологии (атомные часы) и других областях науки и техники


10 Цели и задачи курса атомной физики Основная цель дисциплины «Физика атома и атомных явлений», как части курса общей физики, заключается в формировании базовых знаний по физике микроскопических явлений на атомно-молекулярном уровне и умения применять их для решения прикладных проблем Для достижения этой цели решаются следующие задачи: – анализ развития атомистических и становления квантовых представлений; – изучение важнейших экспериментальных фактов атомной физики и их взаимосвязи; – выявление специфики микроявлений и несостоятельности классической теории для их объяснения; – изучение основ квантовой механики и методов решения квантово- механических задач; – систематическое изучение и объяснение на основе квантовой теории строения и свойств атомов и молекул, их поведения во внешних полях и во взаимодействии друг с другом




12 Электрон Электрон стабильная элементарная частица с отрицательным электрическим зарядом Абсолютная величина заряда электрона равна элементарному заряду q e = –e –1.610 –19 Кл Масса электрона m e = m –31 кг Спин электрона равен ½ Магнитный момент электрона по модулю примерно равен магнетону Бора μ e –μ Б – –4 эВ/Тл Для обозначения электрона используются символ e или e – Электроны образуют электронные оболочки всех атомов и ионов Электрон имеет античастицу позитрон (e +)






15 Протон Протон стабильная элементарная частица с положительным электрическим зарядом Заряд протона равен элементарному заряду q p = e –19 Кл Масса протона m p 1836m e –27 кг Спин протона равен ½ Магнитный момент протона μ p –8 эВ/Тл Протон обозначается символом p или p + Протон имеет античастицу антипротон (p –)


16 Аннигиляция антипротона Антипротон (голубой трек) сталкивается с протоном в пузырьковой камере В результате возникают четыре положительных пиона (красные треки) и четыре отрицательных (зелёные треки) Жёлтый трек принадлежит мюону, который рождается в результате распада пиона


17 Нейтрон Нейтрон элементарная частица с нулевым электрическим зарядом Время жизни нейтрона в свободном состоянии составляет примерно 886 с Масса нейтрона m n 1839m e –27 кг Спин нейтрона равен ½ Несмотря на отсутствие электрического заряда, нейтрон обладает магнитным моментом μ n – –8 эВ/Тл Нейтрон обозначается символом n или n 0 Нейтрон имеет античастицу антинейтрон Протоны и нейтроны объединяют общим названием нуклоны Атомные ядра состоят из протонов и нейтронов


18 Нейтрон Поскольку нейтроны не имеют электрического заряда, они не оставляют треков в камерах-детекторах частиц Тем не менее нейтроны можно обнаружить по результатам их взаимодействия с другими, заряженными, частицами Расцвеченное изображение показывает треки частиц в камере Вильсона, наполненной смесью газообразного водорода, этилового спирта и воды Пучок нейтронов проникает в камеру снизу и вызывает трансмутации атомов кислорода и углерода, входящих в состав молекул этилового спирта


19 Атом Атом микрочастица, состоящая из атомного ядра и окружающих его электронов (электронной оболочки) Положительно заряженное ядро удерживает отрицательно заряженные электроны силами электрического притяжения Поскольку ядро атома состоит из протонов и нейтронов, и при этом электрический заряд нейтрона равен нулю, протона элементарному заряду e, заряд электрона равен e, то при числе электронов в оболочке, равном числу протонов в ядре, суммарный электрический заряд атома равен нулю Размеры ядра (~ 10 –15 – 10 –14 м) крайне малы по сравнению с размерами атома (~10 –10 м), однако из-за того, что масса протона (как и нейтрона) почти в 2 тысячи раз больше массы электрона, практически вся масса атома () сосредоточена в ядре


20 Атом золота Au Изображение отдельного атома золота получено с помощью просвечивающего электронного микроскопа Увеличение в раз до размера в 35 мм


22 Атомы кремния Si Расцвеченное изображение атомов кремния получено с помощью просвечивающего электронного микроскопа Показана элементарная ячейка кристалла. Также видны связи между атомами Увеличение в раз до размера в 35 мм




24 Атомы урана U Расцвеченное изображение атомов урана получено с помощью просвечивающего электронного микроскопа Маленькие точки правильной формы – отдельные атомы, более крупные образования – кластеры, состоящие из 2–20 атомов Размер поля зрения – примерно 100 Å. Увеличение в раз до размера в 35 мм


25 Микрокристаллы уранила UO 2 2+ Расцвеченное изображение микрокристаллов уранила получено с помощью просвечивающего электронного микроскопа Каждое пятнышко представляет собой отдельный атом урана Увеличение в раз до размера в 35 мм




27 Химический элемент, нуклид, изотопы Атомы с определенным числом протонов Z в ядре принадлежат одному и тому же химическому элементу. Число Z называется атомным номером химического элемента. Совокупность атомов с определенным числом протонов Z и нейтронов N в ядре называется нуклидом. Нуклиды обозначают, добавляя к названию элемента значение массового числа А, равного сумме Z + N (например, кислород-16, уран-235), или помещая число А возле символа элемента (16 О, 235 U). Нуклиды одного и того же элемента называются изотопами. Масса самого легкого атома атома водорода, состоящего из одного протона и одного электрона, равна m H 1.67·10 –27 кг. Массы остальных атомов приближенно в А раз больше, чем m H. В природе встречается 90 химических элементов и более 300 различных нуклидов; 270 из них стабильны, остальные радиоактивны. Около радиоактивных нуклидов получено искусственным путем.






31 Ионы Процесс удаления или присоединения электронов к атому называют ионизацией При числе электронов в оболочке, меньшем Z, получается положительный атомный ион, при большем, чем Z отрицательный Таким образом, ион это электрически заряженный атом (или молекула), который образуется при отрыве или присоединении одного или нескольких электронов к нейтральному атому (или молекуле)


32 Ионы Положительно заряженные ионы называются катионами, отрицательно заряженные анионами. Ионы обозначаются химическим символом с индексом, который указывает кратность (величину заряда в единицах элементарного заряда) и знак иона: H –, Na +, UO 2 2+ Ионы могут представлять собой как устойчивые образования (как правило, в растворах или кристаллах), так и неустойчивые (в газах при обычных условиях) Атомные катионы могут быть получены вплоть до заряда +(Z – 1). Так, на ускорителях ионов получены, например, U 90+ и U 91+ Атомные анионы с зарядом 2 и более в свободном состоянии не существуют




34 Молекула Молекула это наименьшая устойчивая частица вещества, состоящая более чем из одного атома Молекула характеризуется определённым составом атомных ядер, числом электронов и пространственной структурой Для обозначения количественного и качественного состава молекул используются химические формулы: O 2 (молекула кислорода), H 2 O (молекула воды), CH 4 (молекула метана), C 6 H 6 (молекула бензола), C 60 (молекула фуллерена)










39 Молекула ДНК Расцвеченное изображение молекулы ДНК получено при помощи просвечивающего электронного микроскопа В камере с высоким вакуумом образец ДНК покрывают тонким слоем платины Металлическое покрытие даёт контрастное изображение в электронном микроскопе


40 Ядерные и оболочечные свойства атома Ядерные свойстваОболочечные свойства Определяются составом ядра: радиоактивность, способность участвовать в ядерных реакциях и т. п. Определяются строением электронной оболочки: химические, физические (электрические, магнитные, оптические и т. д.) 42 Энергия Единицей энергии в СИ является джоуль (Дж), однако для величин энергии объектов и явлений атомной физики такая единица используется редко Более употребительной является внесистемная единица энергии, называемая электрон-вольтом (эВ, eV) Электрон-вольт это энергия, которую приобретает заряженная частица с элементарным зарядом, проходя ускоряющую разность потенциалов в 1 вольт: 1 эВ = Дж Для измерения энергий в атомной и ядерной физике используются кратные (кэВ, 1 кэВ = 10 3 эВ, МэВ, 1 МэВ = 10 6 эВ) и дольные (мкэВ, 1 мкэВ = 10 –6 эВ) единицы электрон-вольта, а также некоторые другие: ридберг (Rydberg, Ry), хартри (hartree, Ha, или атомная единица, а. е.) Ридберг численно равен энергии ионизации атома водорода из основного состояния в приближении бесконечной массы ядра: 1 Ry эВ Хартри равен абсолютной величине потенциальной энергии электрона в основном состоянии атома водорода в приближении бесконечной массы ядра: 1 Ha = 2 Ry эВ Энергии состояний атомных систем, а также переходов между состояниями могут измеряться и в других единицах


43 Масса Единицей массы в СИ является килограмм (кг), однако для измерения масс объектов атомной физики используется внесистемная единица измерения, называемая атомной единицей массы (а. е. м.) Атомная единица массы равна 1/12 массы несвязанного невозбуждённого атома углерода-12 (12 С): 1 а. е. м кг 1 а. е. м. приблизительно равна массе одного протона или нейтрона Относительная атомная масса масса атома, выраженная в а. е. м. Постоянная Авогадро N A физическая константа, численно равная количеству атомов в 12 г чистого изотопа углерода-12: N A моль –1 Моль (единица количества вещества в СИ) по определению содержит N A структурных элементов (атомов, молекул, ионов).


44 Длина Единицей длины в СИ является метр (м). 1 метр равен расстоянию, которое проходит свет в вакууме за промежуток времени, равный 1/ секунды. За исключением измерений длин волн электромагнитного излучения радиодиапазона, такая единица длины редко применяется в атомной физике, а вместо неё для измерения линейных размеров, а также длин волн используются дольные единицы метра: сантиметр (см, 1 см = 10 –2 м), миллиметр (мм, 1 мм = 10 –3 м), микрометр (мкм, μм, 1 мкм = 10 –6 м), нанометр (нм, 1 нм = 10 –9 м), пикометр (пм, 1 пм = 10 –12 м) и другие, а также внесистемные единицы: ангстрем (Å, 1 Å = 0.1 нм = 10 –10 м), бор (или боровский радиус) (1 бор Å)


45 Время Единицей длительности промежутков времени в СИ является секунда (с) В настоящее время секунда определяется на основе т. н. атомного эталона времени: одна секунда (или атомная секунда) равна периодам электромагнитного излучения, соответствующего энергетическому переходу между двумя уровнями сверхтонкой структуры основного состояния изотопа 133 Cs (цезия-133) Длительности быстропротекающих процессов в атомной физике принято измерять в дольных единицах секунды: нано-, пико- или фемтосекундах (нс, пс, фс, 1 фс = 10 –15 с)


46 Масштабы физических величин в атомной и ядерной физике Для явлений атомной физики характерны размеры от 10 –12 м (внутренние подоболочки тяжелых атомов) до десятых долей нанометра (размеры атомов и небольших молекул), энергии от 10 –6 эВ (сверхтонкая структура уровней) до 10 5 эВ (энергии связи электронов внутренних подоболочек), времена от десятков фемтосекунд (длительности сверхкоротких лазерных импульсов) до тысяч секунд (времена жизни метастабильных состояний атомов) Типичные размеры молекул составляют 0.1–1 нм. Межъядерное расстояние у наименьшей молекулы (H 2) равно нм Макромолекулы ДНК и многих полимеров могут иметь макроскопические размеры. Так, длина развёрнутой спирали ДНК может достигать нескольких сантиметров при ширине примерно 2 нм.


47 Фотон Фотон, или квант электромагнитного излучения (поля), безмассовая элементарная частица, не имеющая электрического заряда В вакууме фотон движется со скоростью c Фотон имеет спин, равный 1 Проекции спина на направления, перпендикулярные направлению распространению фотона, определяют состояние его поляризации Фотон обозначается символом γ