Безопасность жизнедеятельности: Шпаргалка: Радиационная безопасность. Воздействие на организм неионизирующего излучения

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

Воздействие на организм неионизирующего излучения

Курск, 2010


Введение

2. Влияние на нервную систему

5. Влияние на половую функцию

7. Комбинированное действие ЭМП и других факторов

8. Заболевания, вызываемые воздействием неионизирующих излучений

9. Основные источники ЭМП

10. Биологическое действие неионизирующего излучения

11. Микроволны и радиочастотное излучение

12. Инженерно-технические мероприятия по защите населения от ЭМП

13. Лечебно-профилактические мероприятия

Заключение

Список использованной литературы


Введение

Известно, что излучения могут вредить здоровью человека и что характер наблюдаемых последствий зависит от типа излучения и от дозы. Влияние излучений на здоровье зависит от длины волны. Последствия, которые чаще всего имеют в виду, говоря об эффектах облучения (радиационное поражение и различные формы рака), вызываются только более короткими волнами. Эти типы излучений известны как ионизирующая радиация. В отличие от этого более длинные волны - от ближнего ультрафиолета (УФ) до радиоволн и далее - называют неионизирующим излучением, его влияние на здоровье совершенно иное. В современном мире нас окружает огромное количество источников электромагнитных полей и излучений. В гигиенической практике к неионизирующим излучениям относят также электрические и магнитные поля. Излучение будет неионизирующим в том случае, если оно не способно разрывать химические связи молекул, то есть не способно образовывать положительно и отрицательно заряженные ионы.

Итак, к неионизирующим излучениям относятся: электромагнитные излучения (ЭМИ) диапазона радиочастот, постоянные и переменные магнитные поля (ПМП и ПеМП), электромагнитные поля промышленной частоты (ЭМППЧ), электростатические поля (ЭСП), лазерное излучение (ЛИ).

Нередко действию неионизирующего излучения сопутствуют другие производственные факторы, способствующие развитию заболевания (шум, высокая температура, химические вещества, эмоционально-психическое напряжение, световые вспышки, напряжение зрения). Так как основным носителем неионизирующего излучения является ЭМИ, большая часть реферата посвящена именно этому виду излучения.


1. Последствия действия излучения для здоровья человека

В подавляющем большинстве случаев облучение происходит полями относительно низких уровней, ниже перечисленные последствия относятся к таким случаям.

Многочисленные исследования в области биологического действия ЭМП позволят определить наиболее чувствительные системы организма человека: нервная, иммунная, эндокринная и половая. Эти системы организма являются критическими. Реакции этих систем должны обязательно учитываться при оценке риска воздействия ЭМП на население.

Биологический эффект ЭМП в условиях длительного многолетнего воздействия накапливается, в результате возможно развитие отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания. Особо опасны ЭМП могут быть для детей, беременных, людей с заболеваниями центральной нервной, гормональной, сердечнососудистой системы, аллергиков, людей с ослабленным иммунитетом.

2. Влияние на нервную систему

Большое число исследований, выполненных в России, и сделанные монографические обобщения, дают основание отнести нервную систему к одной из наиболее чувствительных систем в организме человека к воздействию ЭМП. На уровне нервной клетки, структурных образований по передачи нервных импульсов (синапсе), на уровне изолированных нервных структур возникают существенные отклонения при воздействии ЭМП малой интенсивности. Изменяется высшая нервная деятельность, память у людей, имеющих контакт с ЭМП. Эти лица могут иметь склонность к развитию стрессорных реакций. Определенные структуры головного мозга имеют повышенную чувствительность к ЭМП. Особую высокую чувствительность к ЭМП проявляет нервная система эмбриона.

3. Влияние на иммунную систему

В настоящее время накоплено достаточно данных, указывающих на отрицательное влияние ЭМП на иммунологическую реактивность организма. Результаты исследований ученых России дают основание считать, что при воздействии ЭМП нарушаются процессы иммуногенеза, чаще в сторону их угнетения. Установлено также, что у животных, облученных ЭМП, изменяется характер инфекционного процесса - течение инфекционного процесса отягощается. Влияние ЭМП высоких интенсивностей на иммунную систему организма проявляется в угнетающем эффекте на Т-систему клеточного иммунитета. ЭМП могут способствовать неспецифическому угнетению иммуногенеза, усилению образования антител к тканям плода и стимуляции аутоиммунной реакции в организме беременной самки.

4. Влияние на эндокринную систему и нейрогуморальную реакцию

В работах ученых России еще в 60-е годы в трактовке механизма функциональных нарушений при воздействии ЭМП ведущее место отводилось изменениям в гипофиз-надпочечниковой системе. Исследования показали, что при действии ЭМП, как правило, происходила стимуляция гипофизарно-адреналиновой системы, что сопровождалось увеличением содержания адреналина в крови, активацией процессов свертывания крови. Было признано, что одной из систем, рано и закономерно вовлекающей в ответную реакцию организма на воздействие различных факторов внешней среды, является система гипоталамус-гипофиз-кора надпочечников. Результаты исследований подтвердили это положение.


5. Влияние на половую функцию

Нарушения половой функции обычно связаны с изменением ее регуляции со стороны нервной и нейроэндокринной систем. Многократное облучение ЭМП вызывает понижение активности гипофиза

Любой фактор окружающей среды, воздействующий на женский организм во время беременности и оказывающий влияние на эмбриональное развитие, считается тератогенным. Многие ученые относят ЭМП к этой группе факторов. Принято считать, что ЭМП могут, например, вызывать уродства, воздействуя в различные стадии беременности. Хотя периоды максимальной чувствительности к ЭМП имеются. Наиболее уязвимыми периодами являются обычно ранние стадии развития зародыша, соответствующие периодам имплантации и раннего органогенеза.

Было высказано мнение о возможности специфического действия ЭМП на половую функцию женщин, на эмбрион. Отмечена более высокая чувствительность к воздействию ЭМП яичников нежели семенников.

Установлено, что чувствительность эмбриона к ЭМП значительно выше, чем чувствительность материнского организма, а внутриутробное повреждение плода ЭМП может произойти на любом этапе его развития. Результаты проведенных эпидемиологических исследований позволят сделать вывод, что наличие контакта женщин с электромагнитным излучением может привести к преждевременным родам, повлиять на развитие плода и, наконец, увеличить риск развития врожденных уродств.

6. Другие медико-биологические эффекты

С начала 60-х годов в СССР были проведены широкие исследования по изучению здоровья людей, имеющих контакт с ЭМП на производстве. Результаты клинических исследований показали, что длительный контакт с ЭМП в СВЧ диапазоне может привести к развитию заболеваний, клиническую картину которого определяют, прежде всего, изменения функционального состояния нервной и сердечно-сосудистой систем. Было предложено выделить самостоятельное заболевание - радиоволновая болезнь. Это заболевание, по мнению авторов, может иметь три синдрома по мере усиления тяжести заболевания:

астенический синдром;

астено-вегетативный синдром;

гипоталамический синдром.

Наиболее ранними клиническими проявлениями последствий воздействия ЭМ-излучения на человека являются функциональные нарушения со стороны нервной системы, проявляющиеся прежде всего в виде вегетативных дисфункций неврастенического и астенического синдрома. Лица, длительное время находившиеся в зоне ЭМ-излучения, предъявляют жалобы на слабость, раздражительность, быструю утомляемость, ослабление памяти, нарушение сна. Нередко к этим симптомам присоединяются расстройства вегетативных функций. Нарушения со стороны сердечно-сосудистой системы проявляются, как правило, нейроциркуляторной дистонией: лабильность пульса и артериального давления, наклонность к гипотонии, боли в области сердца и др. Отмечаются также фазовые изменения состава периферической крови (лабильность показателей) с последующим развитием умеренной лейкопении, нейропении, эритроцитопении. Изменения костного мозга носят характер реактивного компенсаторного напряжения регенерации. Обычно эти изменения возникают у лиц по роду своей работы постоянно находившихся под действием ЭМ-излучения с достаточно большой интенсивностью. Работающие с МП и ЭМП, а также население, живущее в зоне действия ЭМП, жалуются на раздражительность, нетерпеливость. Через 1-3 года у некоторых появляется чувство внутренней напряженности, суетливость. Нарушаются внимание и память. Возникают жалобы на малую эффективность сна и на утомляемость.

Учитывая важную роль коры больших полушарий и гипоталамуса в осуществлении психических функций человека, можно ожидать, что длительное повторное воздействие предельно допустимых ЭМ-излучения (особенно в дециметровом диапазоне волн) может повести к психическим расстройствам.

6. Комбинированное действие ЭМП и других факторов

Имеющиеся результаты свидетельствуют о возможной модификации биоэффектов ЭМП как тепловой, так и нетепловой интенсивности под влиянием ряда факторов как физической, так и химической природы. Условия комбинированного действия ЭМП и других факторов позволили выявить значительное влияние ЭМП сверхмалых интенсивностей на реакцию организма, а при некоторых сочетаниях может развиться ярко выраженная патологическая реакция.

7. Заболевания, вызываемые воздействием неионизирующих излучений

Острое воздействие встречается в исключительно редких случаях грубого нарушения техники безопасности улиц, обслуживающих мощные генераторы или лазерные установки. Интенсивное ЭМИ вызывает раньше всего тепловой эффект. Больные жалуются на недомогание, боль в конечностях, мышечную слабость, повышение температуры тела, головную боль, покраснение лица, потливость, жажду, нарушение сердечной деятельности. Могут наблюдаться диэнцефальные расстройства в виде приступов тахикардии, дрожи, приступообразной головной боли, рвоты.

При остром воздействии лазерного излучения степень поражения глаз и кожи (критических органов) зависит от интенсивности и спектра излучения. Лазерный луч может вызвать помутнение роговой оболочки, ожог радужки, хрусталика с последующим развитием катаракты. Ожог сетчатки ведет к образованию рубца, что сопровождается снижением остроты зрения. Перечисленные поражения глаз лазерным излучением не имеют специфических черт.

Поражения кожи лазерным пучком зависят от параметров излучения и носят самый разнообразный характер; от функциональных сдвигов в активности внутрикожных ферментов или легкой эритемы в месте облучения до ожогов, напоминающих электрокоагуляционные ожоги при поражении электротоком, или разрыва кожных покровов.

В условиях современного производства профессиональные заболевания, вызываемые воздействием неионизирующих излучений, относятся к хроническим.

Ведущее место в клинической картине заболевания занимают функциональные изменения центральной нервный системы, особенно ее вегетативных отделов, и сердечно-сосудистой системы. Выделяют три основных синдрома: астенический, астеновегетативный (или синдром нейроциркуляторной дистонии гипертонического типа) и гипоталамический.

Больные жалуются на головную боль, повышенную утомляемость, общую слабость, раздражительность, вспыльчивость, снижение работоспособности, нарушение сна, боль в области сердца. Характерны артериальная гипотензия и брадикардия. В более выраженных случаях присоединяются вегетативные нарушения, связанные с повышенной возбудимостью симпатического отдела вегетативной нервной системы и проявляющиеся сосудистой неустойчивостью с гипертензивными ангиоспастическими реакциями (неустойчивость артериального давления, лабильность пульса, бради- и тахикардия, общий и локальный гипергидроэ). Возможно формирование различных фобий, ипохондрических реакций. В отдельных случаях развивается гипоталамический (диэнцефальный) синдром, характеризующийся так называемыми симпатико-адреналовыми кризами.

Клинически обнаруживается повышение сухожильных и периостальных рефлексов, тремор пальцев, положительный симптом Ромберга, угнетение или усиление дермографизма, дистальная гипестезия, акроцианоз, снижение кожной температуры. При действии ПМП может развиться полиневрит, при воздействии электромагнитных полей СВЧ - катаракта.

Изменения в периферической крови неспецифичны. Отмечается наклонность к цитопении, иногда умеренный лейкоцитоз, лимфоцитоз, уменьшенная СОЭ. Может наблюдаться повышение содержания гемоглобина, эритроцитоз, ретикулоцитоз, лейкоцитоз (ЭППЧ и ЭСП); снижение гемоглобина (при лазерном излучении).

Диагностика поражений от хронического воздействия неионизирующего излучения затруднена. Она должна базироваться на подробном изучении условий труда, анализе динамики процесса, всестороннем обследовании больного.

Изменения кожи, вызванные хроническим воздействием неионизирующего излучения:

Актинический (фотохимический) кератоз

Актинический ретикулоид

Кожа ромбическая на затылке (шее)

Пойкилодермия Сиватта

Старческая атрофия (вялость) кожи

Актиническая [фотохимическая] гранулема

8. Основные источники ЭМП

Бытовые электроприборы

Все бытовые приборы, работающие с использованием электрического тока, являются источниками электромагнитных полей.

Наиболее мощными следует признать СВЧ-печи, аэрогрили, холодильники с системой “без инея”, кухонные вытяжки, электроплиты, телевизоры. Реально создаваемое ЭМП в зависимости от конкретной модели и режима работы может сильно различаться среди оборудования одного типа Все ниже приведенные данные относятся к магнитному полю промышленной частоты 50 Гц.

Значения магнитного поля тесно связаны с мощностью прибора - чем она выше, тем выше магнитное поле при его работе. Значения электрического поля промышленной частоты практически всех электробытовых приборов не превышают нескольких десятков В/м на расстоянии 0,5 м, что значительно меньше ПДУ 500 В/м.

В таблице 1 представлены данные о расстоянии, на котором фиксируется магнитное поле промышленной частоты (50 Гц) величиной 0,2 мкТл при работе ряда бытовых приборов.

Таблица 1. Распространение магнитного поля промышленной частоты от бытовых электрических приборов (выше уровня 0,2 мкТл)

Источник Расстояние, на котором фиксируется величина больше 0,2 мкТл
Холодильник, оснащенный системой "No frost" (во время работы компрессора) 1,2 м от дверцы; 1,4 м от задней стенки
Холодильник обычный (во время работы компрессора) 0,1 м от мотора
Утюг (режим нагрева) 0,25 м от ручки
Телевизор 14" 1,1 м от экрана; 1,2 м от боковой стенки.
Электрорадиатор 0,3 м
Торшер с двумя лампами по 75 Вт 0,03 м (от провода)

Электродуховка

Аэрогриль

0,4 м от передней стенки

1,4 м от боковой стенки


Рис. 1. Биологическое действие неионизирующего излучения

Неионизирующее излучение может усиливать тепловое движение молекул в живой ткани. Это приводит к повышению температуры ткани и может вызывать вредные последствия, такие, как ожоги и катаракты, а также аномалии развития утробного плода. Не исключена также возможность разрушения сложных биологических структур, например, клеточных мембран. Для нормального функционирования таких структур необходимо упорядоченное расположение молекул. Таким образом, возможны последствия более глубокие, чем простое повышение температуры, хотя экспериментальных свидетельств этого пока недостаточно.

Большая часть опытных данных по неионизирующим излучениям относится к радиочастотному диапазону. Эти данные показывают, что дозы выше 100 милливатт (мВт) на 1 см2 вызывают прямое тепловое повреждение, а также развитие катаракты в глазу. При дозах от 10 до 100 мВт/см2 наблюдались изменения, обусловленные термическим стрессом, включая врожденные аномалии у потомков. При 1-10 мВт/см2 отмечались изменения в иммунной системе и гематоэнцефалическом барьере. В диапазоне от 100 мкВт/см2 до 1 мВт/см2 не было достоверно установлено почти никаких последствий.

По-видимому, при воздействии неионизирующего излучения существенное значение имеют лишь ближайшие последствия, такие, как перегрев тканей (хотя имеются новые, пока неполные, данные о том, что рабочие, подвергающиеся действию микроволн, и люди, живущие очень близко к высоковольтным линиям электропередачи, могут быть больше подвержены заболеванию раком).

9. Микроволны и радиочастотное излучение

Отсутствию видимых последствий при низких уровнях микроволнового облучения нужно противопоставить тот факт, что рост использования микроволн составляет, по меньшей мере, 15% в год. Помимо применения в микроволновых печах они используются в радарах и, как средство передачи сигналов, в телевидении и в телефонной и телеграфной связи. В бывшем Советском Союзе для населения был принят предел в 1 мкВт/см2.

Промышленные рабочие, участвующие в процессах нагрева, сушки и изготовления слоистого пластика, могут подвергаться некоторому риску, так же, как и специалисты, работающие в радиовещательных, радарных и релейных башнях, или некоторые военнослужащие. Рабочие подавали иски на компенсацию с обвинением в том, что микроволны способствовали нетрудоспособности, и, по меньшей мере, в одном случае было принято решение в пользу рабочего.

С увеличением числа источников микроволнового излучения возрастает тревога в отношении его воздействия на население.

Приобретая бытовую технику проверяйте в Гигиеническом заключении (сертификате) отметку о соответствии изделия требованиям "Межгосударственных санитарных норм допустимых уровней физических факторов при применении товаров народного потребления в бытовых условиях", МСанПиН 001-96;

Используйте технику с меньшей потребляемой мощностью: магнитные поля промышленной частоты будут меньше при прочих равных условиях;

к потенциально неблагоприятным источникам магнитного поля промышленной частоты в квартире относятся холодильники с системой “без инея”, некоторые типы “теплых полов”, нагреватели, телевизоры, некоторые системы сигнализации, различного рода зарядные устройства, выпрямители и преобразователи тока – спальное место должно быть на расстоянии не менее 2-х метров от этих предметов если они работают во время Вашего ночного отдыха.

Средства и методы защиты от ЭМП подразделяются на три группы: организационные, инженерно-технические и лечебно-профилактические.

Организационные мероприятия предусматривают предотвращение попадания людей в зоны с высокой напряженностью ЭМП, создание санитарно-защитных зон вокруг антенных сооружений различного назначения.

Общие принципы, положенные в основу инженерно-технической защиты, сводятся к следующему: электрогерметизация элементов схем, блоков, узлов установки в целом с целью снижения или устранения электромагнитного излучения; защита рабочего места от облучения или удаление его на безопасное расстояние от источника излучения. Для экранирования рабочего места используют различные типы экранов: отражающие и поглощающие.

В качестве средств индивидуальной защиты рекомендуются специальная одежда, выполненная из металлизированной ткани, и защитные очки.

Лечебно-профилактические мероприятия должны быть направлены прежде всего на раннее выявление нарушений в состоянии здоровья работающих. Для этой цели предусмотрены предварительные и периодические медицинские осмотры лиц, работающих в условиях воздействия СВЧ, - 1 раз в 12 месяцев, УВЧ и ВЧ-диапазона - 1 раз в 24 месяца.

10. Инженерно-технические мероприятия по защите населения от ЭМП

Инженерно-технические защитные мероприятия строятся на использовании явления экранирования электромагнитных полей непосредственно в местах пребывания человека либо на мероприятиях по ограничению эмиссионных параметров источника поля. Последнее, как правило, применяется на стадии разработки изделия, служащего источником ЭМП.

Одним из основных способов защиты от электромагнитных полей является их экранирования в местах пребывания человека. Обычно подразумевается два типа экранирования: экранирование источников ЭМП от людей и экранирование людей от источников ЭМП. Защитные свойства экранов основаны на эффекте ослабления напряженности и искажения электрического поля в пространстве вблизи заземленного металлического предмета.

От электрического поля промышленной частоты, создаваемого системами передачи электроэнергии, осуществляется путем установления санитарно-защитных зон для линий электропередачи и снижением напряженности поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов. Защита от магнитного поля промышленной частоты практически возможна только на стадии разработки изделия или проектирования объекта, как правило снижение уровня поля достигается за счет векторной компенсации поскольку иные способы экранирования магнитного поля промышленной частоты чрезвычайно сложны и дороги.

Основные требования к обеспечению безопасности населения от электрического поля промышленной частоты, создаваемого системами передачи и распределения электроэнергии, изложены в Санитарных нормах и правилах "Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты"№ 2971-84. Подробно о требованиях к защите смотри в разделе "Источники ЭМП. ЛЭП"

При экранировании ЭМП в радиочастотных диапазонах используются разнообразные радиоотражающие и радиопоглощающие материалы.

К радиоотражающим материалам относятся различные металлы. Чаще всего используются железо, сталь, медь, латунь, алюминий. Эти материалы используются в виде листов, сетки, либо в виде решеток и металлических трубок. Экранирующие свойства листового металла выше, чем сетки, сетка же удобнее в конструктивном отношении, особенно при экранировании смотровых и вентиляционных отверстий, окон, дверей и т.д. Защитные свойства сетки зависят от величины ячейки и толщины проволоки: чем меньше величина ячеек, чем толще проволока, тем выше ее защитные свойства. Отрицательным свойством отражающих материалов является то, что они в некоторых случаях создают отраженные радиоволны, которые могут усилить облучение человека.

Более удобными материалами для экранировки являются радиопоглощающие материалы. Листы поглощающих материалов могут быть одно- или многослойными. Многослойные - обеспечивают поглощение радиоволн в более широком диапазоне. Для улучшения экранирующего действия у многих типов радиопоглощающих материалов с одной стороны впрессована металлическая сетка или латунная фольга. При создании экранов эта сторона обращена в сторону, противоположную источнику излучения.

Несмотря на то, что поглощающие материалы во многих отношениях более надежны, чем отражающие, применение их ограничивается высокой стоимостью и узостью спектра поглощения.

В некоторых случаях стены покрывают специальными красками. В качестве токопроводящих пигментов в этих красках применяют коллоидное серебро, медь, графит, алюминий, порошкообразное золото. Обычная масляная краска обладает довольно большой отражающей способностью (до 30%), гораздо лучше в этом отношении известковое покрытие.

Радиоизлучения могут проникать в помещения, где находятся люди через оконные и дверные проемы. Для экранирования смотровых окон, окон помещений, застекления потолочных фонарей, перегородок применяется металлизированное стекло, обладающее экранирующими свойствами. Такое свойство стеклу придает тонкая прозрачная пленка либо окислов металлов, чаще всего олова, либо металлов - медь, никель, серебро и их сочетания. Пленка обладает достаточной оптической прозрачность и химической стойкостью. Будучи нанесенной на одну сторону поверхности стекла она ослабляет интенсивность излучения в диапазоне 0,8 – 150 см на 30 дБ (в 1000 раз). При нанесении пленки на обе поверхности стекла ослабление достигает 40 дБ (в 10000 раз).

Для защиты населения от воздействия электромагнитных излучений в строительных конструкциях в качестве защитных экранов могут применяться металлическая сетка, металлический лист или любое другое проводящее покрытие, в том числе и специально разработанные строительные материалы. В ряде случаев достаточно использования заземленной металлической сетки, помещаемой под облицовочный или штукатурный слой..

В качестве экранов могут применяться также различные пленки и ткани с металлизированным покрытием.

Радиоэкранирующими свойствами обладают практически все строительные материалы. В качестве дополнительного организационно-технического мероприятия по защите населения при планировании строительства необходимо использовать свойство "радиотени" возникающего из-за рельефа местности и огибания радиоволнами местных предметов.

В последние годы в качестве радиоэкранирующих материалов получили металлизированные ткани на основе синтетических волокон. Их получают методом химической металлизации (из растворов) тканей различной структуры и плотности. Существующие методы получения позволяет регулировать количество наносимого металла в диапазоне от сотых долей до единиц мкм и изменять поверхностное удельное сопротивление тканей от десятков до долей Ом. Экранирующие текстильные материалы обладают малой толщиной, легкостью, гибкостью; они могут дублироваться другими материалами (тканями, кожей, пленками), хорошо совмещаются со смолами и латексами.

11. Лечебно-профилактические мероприятия

Санитарно-профилактическое обеспечение включают следующие мероприятия:

организация и проведение контроля выполнения гигиенических нормативов, режимов работы персонала, обслуживающего источники ЭМП;

выявление профессиональных заболеваний, обусловленных неблагоприятными факторами среды;

разработка мер по улучшению условий труда и быта персонала, по повышению устойчивости организма работающих к воздействиям неблагоприятных факторов среды.

Текущий гигиенический контроль проводится в зависимости от параметров и режима работы излучающей установки, но как правило не реже 1 раза в год. При этом определяются характеристики ЭМП в производственных помещениях, в помещениях жилых и общественных зданий и на открытой территории. Измерения интенсивности ЭМП также проводятся при внесении в условия и режимы работы источников ЭМП изменений, влияющих на уровни излучения (замена генераторных и излучающих элементов, изменение технологического процесса, изменение экранировки и средств защиты, увеличение мощности, изменение расположения излучающих элементов и т.д.).

В целях предупреждения, ранней диагностики и лечения нарушений в состоянии здоровья работники, связанные с воздействием ЭМП, должны проходить предварительные при поступлении на работу и периодические медицинские осмотры в порядке, установленном соответствующим приказом Министерства здравоохранения.

Все лица с начальными проявлениями клинических нарушений, обусловленных воздействием ЭМП (астенический астено-вегетативный, гипоталамический синдром), а также с общими заболеваниями, течение которых может усугубляться под влиянием неблагоприятных факторов производственной среды (органические заболевания центральной нервной системы, гипертоническая болезнь, болезни эндокринной системы, болезни крови и др.), должны браться под наблюдение с проведением соответствующих гигиенических и терапевтических мероприятий, направленных на оздоровление условий труда и восстановление состояния здоровья работающих.


Заключение

В настоящее время ведется активное изучение механизмов биологического действия физических факторов неионизирующего излучения: акустических волн и электромагнитных излучений на биологические системы разного уровня организации; ферментов, клеткок, переживающих срезов мозга лабораторных животных, поведенческих реакций животных и развитие реакций в цепях: первичные мишени - клетка - популяции клеток – ткани.

Развиваются исследования по оценке экологических последствий воздействия на природные и аграрные ценозы техногенных стрессоров - СВЧ- и УФ-В-радиации, основными задачами которых являются:

изучение последствий истощения озонного слоя на компоненты агроценозов нечерноземной зоны России;

изучение механизмов действия УФ-В-радиации на растения;

исследование раздельного и комбинированного действия электромагнитного излучения различных диапазонов (СВЧ, гамма, УФ, ИК) на сельскохозяйственных животных и модельные объекты с целью разработки методов гигиенического и экологического нормирования электромагнитного загрязнения окружающей среды;

разработка экологически чистых технологий, основанных на применении физических факторов, для различных отраслей АПП (растениеводство, животноводство, пищевая и перерабатывающая промышленность с целью интенсификации сельскохозяйственного производства.

При интерпретации результатов исследований биологического действия неионизирующих излучений (электромагнитных и ультразвуковых) центральными и до сих пор мало изученными вопросами остаются вопросы о молекулярном механизме, первичной мишени и порогах действия излучений. Одно из важнейших следствий состоит в том, что сравнительно небольшие изменения локальной температуры в нервной ткани (от десятых долей до нескольких градусов) способны приводить к заметному изменению скорости синаптической передачи вплоть до полного выключения синапса. Такие изменения температуры могут быть вызваны излучениями терапевтической интенсивности. Из этих предпосылок следует гипотеза о существовании общего механизма действия неионизирующих излучений - механизма, в основе которого лежит небольшой локальный разогрев участков нервной ткани.

Таким образом, столь сложный и малоизученный аспект, как неионизирующие излучения и их влияние на экологию еще предстоит изучать в дальнейшем.


Список использованной литературы:

1. http://www.botanist.ru/

2. Активное выявление злокачественных новообразований кожи Денисов Л.Е., Курдина М.И., Потекаев Н.С., Володин В.Д.

3. Нестабильность ДНК и отдаленные последствия воздействия излучений.





Зависит будущее нации. На пострадавших территориях Украины, где плотность радиоактивного загрязнения по 137Cs составила от 5 до 40 Ku/км2, возникли условия длительного воздействия малых доз ионизирующего излучения, влияние которого на организм беременной и плода до Чернобыльской катастрофы фактически не изучалось. С первых дней аварии велось тщательное наблюдение за состоянием здоровья...

Или плотность потока мощности - S, Вт/м2. За рубежом ППЭ обычно измеряется для частот выше 1 ГГц. ППЭ характеризует величину энергии, теряемой системой за единицу времени вследствие излучения электромагнитных волн. 2. Природные источники ЭМП Природные источники ЭМП делятся на 2 группы. Первая - поле Земли: постоянное магнитное поле. Процессы в магнитосфере вызывают колебания геомагнитного...

Биофизики был предложен комплекс организационно-технических, санитарно-гигиенических и эргономических требований /36/, которые являются существенным дополнением к методическим рекомендациям /19/. В соответствии с ГОСТ 12.1.06-76 Электромагнитные поля радиочастот.Допустимые уровни и требования к контролю для СВЧ-излучения нормативная величина энергетической нагрузки: ЭНПДУ=2Втч/м2 (200мкВтч/см2 ...

Эндокринная и половая. Эти системы организма являются критическими. Реакции этих систем должны обязательно учитываться при оценке риска воздействия ЭМП на население. Влияние электромагнитного поля на нервную систему. Большое число исследований и сделанные монографические обобщения позволяют отнести нервную систему к одной из наиболее чувствительных к воздействию электромагнитных полей систем...

Тема 5. Защита от ионизирующих излучений.

Воздействие ионизирующих излучений на человека.
Ионизирующее излучение

Ионные пары

Разрыв молекулярных соединений

(свободные радикалы).

Биологический эффект

Радиоактивность - самораспад атомных ядер, сопровождающийся излучением гамма-квантов, выбрасыванием - и -частиц. При ежедневной длительности (несколько месяцев или лет) облучения в дозах превышающих ПДД, у человека развивается хроническая лучевая болезнь (1 стадия - функциональное нарушение центральной нервной системы, повышенная утомляемость, головные боли, снижение аппетита). При однократном облучении всего тела высокими дозами (>100 бэр) развивается острая лучевая болезнь. Доза 400-600 бэр - возникает смерть у 50% облученных. Первичный этап воздействия на человека - ионизация живой ткани, молекул йода. Ионизация приводит к разрыву молекулярных соединений. Образуются свободные радикалы (H, OH), которые вступают в реакции с другими молекулами, что разрушает тело, нарушает работу нервной системы. Радиоактивные вещества накапливаются в организме. Выводятся они крайне медленно. В дальнейшем возникает острая или хроническая лучевая болезнь, лучевой ожог. Отдаленные последствия - лучевая катаракта глаз, злокачественная опухоль, генетические последствия. Естественный фон (космическое излучение и излучение радиоактивных веществ в атмосфере , на земле, в воде). Мощность эквивалентной дозы 0,36 - 1,8 мЗв/год, что соответствует мощности экспозиционной дозы 40-200 мР/год. Рентгеновские снимки: черепа - 0,8 - 6 Р; позвоночника - 1,6 - 14,7 Р; легких (флюорография) - 0,2 - 0,5 Р; рентгеноскопия - 4,7 - 19,5 Р; желудочно-кишечного тракта - 12,82 Р; зубов -3-5 Р.

Различные виды облучения не одинаково воздействуют на живую ткань. Воздействие оценивают по глубине проникновения и количеству пар ионов, образующихся на одном см пути частицы или луча. - и -частицы проникают лишь в поверхностный слой тела, - на несколько десятков мкм и образует несколько десятков тысяч пар ионов на пути одного см. - на 2,5 см и образуют несколько десятков пар ионов на пути 1 см. Рентгеновское и  - излучение обладает большой проникающей способностью и малым ионизирующим действием.  - кванты, рентгеновское, нейтронное излучение с образованием ядер отдачи и вторичным излучением. При равных поглощенных дозах Д погл разные виды излучения вызывают не одинаковый биологический эффект. Это учитывается эквивалентной дозой

Д экв = Д погл * К i , 1 Кл/кг =3,876 * 10 3 Р

i =1

где Д погл - поглощенная доза разных излучений, рад;

К i - коэф качества излучения.

Экспозиционная доза Х - применяется для характеристики источника излучения по ионизирующей способности ед измерения кулон на кг (Кл/кг). Дозе 1 Р соответствует образование 2,083 * 10 9 пар ионов на 1 см 3 воздуха 1 Р = 2,58 * 10 -4 Кл/кг.

Единицей измерения эквивалентной дозы излучения является зиверт (ЗВ ), спец. единица этой дозы - биологический эквивалент рентгена (БЭР) 1 ЗВ = 100 бэр. 1 бэр - доза эквивалентного излучения, которое создает такое же биологическое поражение, как и 1 рад рентгеновского или  - излучения (1 бэр = 0,01Дж/кг). Рад - внесистемная единица поглощенной дозы соответствует энергии 100 эрг поглощенной веществом массой 1г (1 рад = 0,01Дж/кг =2,388 * 10 -6 кал/г). Единица поглощенной дозы (СИ) - Грей - характеризует поглощенную энергию в 1 Дж на массу в 1кг облученного вещества (1 Грей = 100 рад).
Нормирование ионизирующих облучений

Согласно нормам радиационной безопасности (НРБ- 76) для человека установлены предельно допустимые дозы облучения (ПДД). ПДД - это годовая доза облучения, которая при равномерном накоплении в течение 50 лет не вызовет неблагоприятных изменений здоровья облучаемого и его потомства.

Нормами установлены 3 категории облучения:

А - облучение лиц работающих с источниками радиоактивных излучений (персонал АЭС);

Б - облучение лиц работающих в соседних помещениях (ограниченная часть населения);

В - облучение населения всех возрастов.

Значения ПДД облучения (сверх естественного фона)

Однократная доза внешнего облучения допускается равной 3 бэр в квартал при условии, что годовая доза не привысит 5 бэр. В любом случае доза накопленная к 30 годам не должна превышать 12 ПДД т.е. 60 бэр.

Естественный фон на земле - 0,1 бэр/год (от 00,36 до 0,18 бэр/год).

Контроль облучения (службой радиационной безопасности или специальным работником).

Осуществляют систематическим измерением доз ионизирующих излучений источников на рабочих местах.

Приборы дозиметрического контроля основаны на ионизационном сцинтилляционном и фотографическом методах регистрации.

Ионизационный метод - основан на способности газов под действием радиоактивных излучений становится электропроводными (за счет образования ионов).

Сцинтилляционный метод - основан на способности некоторых люминесцирующих веществ, кристаллов, газов испускать вспышки видимого света при поглощении радиоактивного излучения (фосфор, флуор, люминофор).

Фотографический метод - основан на воздействии радиоактивного излучения на фотоэмульсию (почернение фотопленки).

Приборы: КПД - 6 (карманный индивидуальный дозиметр 0,02-0,2Р); счетчики Гейгера(0,2-2Р).

Радиоактивность - самопроизвольное превращение неустойчивых атомных ядер в ядра элементов, сопровождающиеся испусканием ядерных излучений.

Известны 4 типа радиоактивности: альфа - распад, бета - распад, спонтанное деление атомных ядер, протонная радиоактивность.

Для измерения мощности экспозиционной дозы: ДРГ-0,1; ДРГ3-0,2;СГД-1

Дозиметры экспозиционной дозы накопительного типа: ИФК-2,3; ИФК-2,3М; КИД -2; ТДП - 2.
Защита от ионизирующих излучений

Ионизирующие излучения поглощает любой материал, но в различной степени. Используют следующие материалы:

к - коэфф. пропорциональности, к  0,44 * 10 -6

Источник - электровакуумный аппарат. Напряжение U = 30-800 кВ, ток анода I= десятки мА.

Отсюда толшина экрана:

d = 1/ * ln ((P 0 /P доп)*B)

На основании выражения построены номонограммы которые позволяют для необходимой кратности ослабления и заданного напряжения определять толщину экрана из свинца.

К осл = P 0 /P доп по К осл и U -> d

к = I*t*100/36*x 2 P доп

I - (мА)- ток в рентгеновской трубке

t (ч) в нед.

P доп - (мР/нед).

Для быстрых нейтронов с энерг.
J x =J 0 /4x 2 где J 0 - абсолютный выход неитронов в 1 сек.

Защита водой или парафином (из-за больш. колич. водорода)

Контейнеры для хранения и транспортировки - из смеси парафина с каким - либо веществом, сильно поглощающим медленные нейтроны (напр различные соединения бора).

Способы и средства защиты от радиоактивных излучений.

Радиоактивные вещества как потенциальные источники внутреннего облучения по степени опасности разделяют на 4 группы - А,Б,В,Г (в убывающем порядке по степени опасности).

Установлены “ Основными санитарными правилами работы с радиоактивными веществами и источниками ионизирующих излучений” - ОСП -72. Все работы с открытыми радиоактивными веществами разделяются на 3 класса (см табл). Сп и ср-ва защиты для работ с открытыми радиоактивными в-ми установлены в зависимости от класса (I,II,III) радиационной опасности работ с изотопами.
Активность препарата на рабочем месте мкКи


Класс опасности работ

А

Б

В

Г

I

> 10 4

>10 5

>10 6

>10 7

II

10 -10 4

100-10 5

10 3 - 10 6

10 4 - 10 7

III

0.1-1

1-100

10-10 3

10 2 -10 4

Работы с открытыми источниками класса I, II требуют специальных мер защиты и проводятся в отдельных изолированных помещениях. Не рассматриваются. Работы с источниками III класса проводятся в общих помещениях специально оборудованных местах. Для этих работ установлены следующие меры защиты:

1) На оболочке прибора мощность экспозиционной дозы должна быть 10 мр/ч;


    На расстоянии 1 м от прибора мощность экспозиционной дозы  0,3 мр/ч;

    Приборы помещаются в специальном защитном контейнере, в защитном кожухе;

    Сокращают продолжительность работ;

    Вывешивают знак радиационной опасности

    Производство работ осуществляется по наряду, бригадой в составе 2 человек, с квалификационной группой - 4.

    До работ допускаются лица старше 18 лет, специально обученные, медосмотры не реже 1 раза в 12 мес.

    Применяются СИЗ: халаты, шапочки, из х.б. ткани, очки из стекла со свинцом, манипуляторы, инструмент.

    Стены помещения окрашены масляной краской на высоту больше 2 метров, полы стойкие к моющим средствам.

ТЕМА 6.

Эргономические основы охраны труда.
В процессе труда на человека воздействуют психофизические факторы, физические нагрузки, среда обитания и др.

Изучением совокупного воздействия этих факторов, согласованием их с человеческими возможностями , оптимизацией условий труда занимается эргономика.
Расчет категории тяжести труда.

Тяжесть труда подразделена на 6 категорий в зависимости от изменения функционального состояния человека по сравнению с исходным состоянием покоя. Категория тяжести труда определяется медицинской оценкой или эргономическим расчетом (результаты близки).

Порядок расчета следующий:

Составляется “ Карта условий труда на рабочем месте”, в которую заносят все биологически значимые показатели (факторы) условий труда с оценкой их по 6-ти бальной шкале. Оценка на основе норм и критериев. “Критерии для оценки условий труда по шестибальной системе”.

Баллы рассматриваемых факторов k i суммируют и находят усредненный балл:

k ср = 1/n  i =1 n k i

Определяют интегральный показатель воздействия на человека всех факторов:

k  = 19.7 k ср - 1.6 k ср 2

Показатель работоспособности:

k работ = 100-((k  - 15,6)/0,64)

По интегральному показателю из таблицы находят категорию тяжести труда.

1 категория - оптимальные условия труда, т.е. такие, которые обеспечивают нормальное состояние организма человека. Опасные и вредные факторы отсутствуют. k   18 Работоспособность высокая, отсутствуют функциональные сдвиги по медицинским показателям.

3 категория - на грани допустимых. Если по расчету категория тяжести труда окажется выше 2 кат., то необходимо принимать технические решения по рационализации наиболее тяжелых факторов и доводить их до нормальных.

тяжести труда.

Показатели психофизиологической нагрузки: напряжение органов зрения, слуха, внимания, памяти; количество информации, проходящей через органы слуха, зрения.

Физическая работа оценивается по энергозатратам в Вт:

Условия окруж среды (микроклимат, шум, вибрация, состав воздуха, освещение и др.). Оцениваются по нормам ГОСТов ССБТ.

Безопасность труда (электробезопасность, облучение, взрыво- и пожаробезопасность). Оцениваются по нормам ПТБ и ГОСТов ССБТ.

Информационная нагрузка оператора определяется следующим образом. Афферентные (операции без воздействия.), эфферентные (операции по управлению).

Определяется энтропия (т.е. количество информации, приходящейся на одно сообщение) каждого источника информации:

Hj = -  pi log 2 pi, бит/сигн.

где j - источников информации, в каждом по n сигналов (элементов);

Hj - энтропия одного (j- го) источника информации;

pi = k i /n - вероятность i -го сигнала рассматриваемого источника информации;

n - число сигналов от 1 источника информации;

ki - число повторений одноименных сигналов или однотипных элементов работы.

Определяется энтропия всей системы


    число источников информации.
Допустимой энтропией информации считается 8-16 бит/сигн.

Определяется расчетный поток информации

Фрасч = H  * N/t,

где N - общее число сигналов (элементов) всей операции (системы);

t - длительность операции, сек.

Проверяется условие Фмин  Фрасч  Фмакс, где Фмин =0,4 бит/сек, Фмакс = 3,2 бит/сек – наименьшее и наибольшее допустимые количества информации обрабатываемые оператором.

«ИНСТИТУТ УПРАВЛЕНИЯ»

(г. Архангельск)

Волгоградский филиал

Кафедра «_______________________________»

Контрольная работа

по дисциплине: « безопасность жизнедеятельности »

тема: «ионизирующее излучение и защита от них »

Выполнил студент

гр. ФК – 3 – 2008

Зверков А. В.

(Ф.И.О.)

Проверил преподаватель:

_________________________

Волгоград 2010

Введение 3

1.Понятие ионизирующего излучения 4

2. Основные методы обнаружения ИИ 7

3. Дозы излучения и единицы измерения 8

4. Источники ионизирующего излучения 9

5. Средства защиты населения 11

Заключение 16

Список используемой литературы 17


С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана. Вскоре этим явлением заинтересовалась Мария Кюри, молодой химик, полька по происхождению, которая и ввела в обиход слова «радиоактивность». В 1898 году она и ее муж Пьер Кюри обнаружили, что уран после излучения превращается в другие химические элементы. Один из этих элементов супруги назвали полонием в память о родине Марии Кюри, а еще один – радием, поскольку по-латыни это слово обозначает «испускающий лучи». Хотя новизна знакомства состоит лишь в том, как люди пытались ионизирующее излучение использовать, а радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли.

Нет необходимости говорить о том положительном, что внесло в нашу жизнь проникновение в структуру ядра, высвобождение таившихся там сил. Но как всякое сильнодействующее средство, особенно такого масштаба, радиоактивность внесла в среду обитания человека вклад, который к благотворным никак не отнесёшь.

Появилось также число пострадавших от ионизирующей радиации, а сама она начала осознаваться как опасность, способная привести среду обитания человека в состояние, не пригодное для дальнейшего существования.

Причина не только в тех разрушениях, которые производит ионизирующее излучение. Хуже то, что оно не воспринимается нами: ни один из органов чувств человека не предупредит его о приближении или сближением с источником радиации. Человек может находиться в поле смертельно опасного для него излучения и не иметь об этом ни малейшего представления.

Такими опасными элементами, в которых соотношение числа протонов и нейтронов превышает 1…1,6. В настоящее время из всех элементов таблицы Д.И. Менделеева известно более 1500 изотопов. Из этого количества изотопов лишь около 300 стабильных и около 90 являются естественными радиоактивными элементами.

Продукты ядерного взрыва содержат более 100 нестабильных первичных изотопов. Большое количество радиоактивных изотопов содержится в продуктах деления ядерного горючего в ядерных реакторах АЭС.

Таким образом, источниками ионизирующего излучения являются искусственные радиоактивные вещества, изготовленные на их основе медицинские и научные препараты, продукты ядерных взрывов при применении ядерного оружия, отходы атомных электростанций при авариях на них.

Радиационная опасность для населения и всей окружающей среды связана с появлением ионизирующих излучений (ИИ), источником которых являются искусственные радиоактивные химические элементы (радионуклиды), которые образуются в ядерных реакторах или при ядерных взрывах (ЯВ). Радионуклиды могут попадать в окружающую среду в результате аварий на радиационно-опасных объектах (АЭС и др. объектах ядерного топливного цикла – ЯТЦ), усиливая радиационный фон земли.

Ионизирующими излучениями называют излучения, которые прямо или косвенно способны ионизировать среду (создавать раздельные электрические заряды). Все ионизирующие излучения по своей природе делятся на фотонные (квантовые) и корпускулярные. К фотонному (квантовому) ионизирующему излучению относятся гамма-излучение, возникающее при изменении энергетического состояния атомных ядер или аннигиляции частиц, тормозное излучение, возникающее при уменьшении кинетической энергии заряженных частиц, характеристическое излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома и рентгеновское излучение, состоящее из тормозного и/или характеристического излучений. К корпускулярному ионизирующему излучению относят α-излучение, электронное, протонное, нейтронное и мезонное излучения. Корпускулярное излучение, состоящее из потока заряженных частиц (α-, β-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении, относится к классу непосредственно ионизирующего излучения. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят. Соответственно, корпускулярное излучение, состоящее из потока незаряженных частиц, называют косвенно ионизирующим излучением.

Нейтронное и гамма излучение принято называть проникающеё радиацией или проникающим излучением.

Ионизирующие излучения по своему энергетическому составу делятся на моноэнергетические (монохроматические) и немоноэнергетические (немонохроматические). Моноэнергетическое (однородное) излучение – это излучение, состоящее из частиц одного вида с одинаковой кинетической энергией или из квантов одинаковой энергии. Немоноэнергетическое (неоднородное) излучение – это излучение, состоящее из частиц одного вида с разной кинетической энергией или из квантов различной энергии. Ионизирующее излучение, состоящее из частиц различного вида или частиц и квантов, называется смешанным излучением.

При авариях реакторов образуются a+ ,b± частицы и g-излучение. При ЯВ дополнительно образуются нейтроны -n° .

Рентгеновское и g-излучение обладают высокой проникающей и достаточно ионизирующей способностью (g в воздухе может распространяться до 100м и косвенно создать 2-3 пары ионов за счёт фотоэффекта на 1 см пути в воздухе). Они представляют собой основную опасность как источники внешнего облучения. Для ослабления g-излучения требуются значительные толщи материалов.

Бета- частицы (электроны b- и позитроны b+) краткобежны в воздухе (до 3,8м/МэВ), а в биоткани – до несколько миллиметров. Их ионизирующая способность в воздухе 100-300 пар ионов на 1 см пути. Эти частицы могут действовать на кожу дистанционно и контактным путём (при загрязнении одежды и тела), вызывая «лучевые ожоги». Опасны при попадании внутрь организма.

Альфа – частицы (ядра гелия) a+ краткобежны в воздухе (до 11 см), в биоткани до 0,1 мм. Они обладают большой ионизирующей способностью (до 65000 пар ионов на 1 см пути в воздухе) и особо опасны при попадании внутрь организма с воздухом и пищей. Облучение внутренних органов значительно опаснее наружного облучения.

Последствия облучения для людей могут быть самыми различными. Они во многом определяются величиной дозы облучения и временем её накопления. Возможные последствия облучения людей при длительном хроническом облучении, зависимость эффектов от дозы однократного облучения приведены в таблице.

Таблица 1. Последствия облучения людей.

Таблица 1.
Радиационные эффекты облучения
1 2 3
Телесные (соматические) Вероятностные телесные (соматические - стохастические) Гинетические
1 2 3

Воздействуют на облучаемого.

Имеют дозовый порог.

Условно не имеют дозового порога.
Острая лучевая болезнь Сокращение продолжительности жизни. Доминантные генные мутации.
Хроническая лучевая болезнь. Лейкозы (скрытый период 7-12 лет). Рецессивные генные мутации.
Локальные лучевые повреждения. Опухоли разных органов (скрытый период до 25 лет и более). Хромосомные абберации.

2. Основные методы обнаружения ИИ

Чтобы избежать ужасных последствий ИИ, необходимо производить строгий контроль служб радиационной безопасности с применением приборов и различных методик. Для принятия мер защиты от воздействия ИИ их необходимо своевременно обнаружить и количественно оценить. Воздействуя на различные среды ИИ вызывают в них определенные физико-химические изменения, которые можно зарегистрировать. На этом основаны различные методы обнаружения ИИ.

К основным относятся: 1) ионизационный, в котором используется эффект ионизации газовой среды, вызываемой воздействием на неё ИИ, и как следствие – изменение ее электропроводности; 2) сцинтилляционный, заключающийся в том, что в некоторых веществах под воздействием ИИ образуются вспышки света, регистрируемые непосредственным наблюдением или с помощью фотоумножителей; 3) химический, в котором ИИ обнаруживаются с помощью химических реакций, изменения кислотности и проводимости, происходящих при облучении жидкостных химических систем; 4) фотографический, заключающийся в том, что при воздействии ИИ на фотопленку на ней в фотослое происходит выделение зерен серебра вдоль траектории частиц; 5) метод, основанный на проводимости кристаллов, т.е. когда под воздействием ИИ возникает ток в кристаллах, изготовленных из диэлектрических материалов и изменяется проводимость кристаллов из полупроводников и др.

3. Дозы излучения и единицы измерения

Действие ионизирующих излучений представляет собой сложный процесс. Эффект облучения зависит от величины поглощенной дозы, ее мощности, вида излучения, объема облучения тканей и органов. Для его количественной оценки введены специальные единицы, которые делятся на внесистемные и единицы в системе СИ. Сейчас используются преимущественно единицы системы СИ. Ниже в таблице 10 дан перечень единиц измерения радиологических величин и проведено сравнение единиц системы СИ и внесистемных единиц.

Таблица 2. Основные радиологические величины и единицы

Таблица 3. Зависимость эффектов от дозы однократного (кратковременного) облучения человека.

Необходимо учитывать, что радиоактивное облучение, полученное в течение первых четырёх суток, принято называть однократными, а за большое время – многократными. Доза радиации, не приводящая к снижению работоспособности (боеспособности) личного состава формирований (личного состава армии во время войны): однократная (в течение первых четырёх суток) – 50 рад; многократная: в течение первых 10-30 суток – 100 рад; в течение трёх месяцев – 200 рад; в течение года – 300 рад. Не путать, речь идёт о потере работоспособности, хотя последствия облучения сохраняются.

4. Источники ионизирующего излучения

Различают ионизирующее излучение естественного и искусственного происхождения.

Облучению от естественных источников радиации подвергаются все жители Земли, при этом, одни из них получают большие дозы, чем другие. В зависимости, в частности, от местожительства. Так уровень радиации в некоторых местах земного шара, там, где особенно залегают радиоактивные породы, оказывается значительно выше среднего, в других местах - соответственно, ниже. Доза облучения зависит также от образа жизни людей. Применение некоторых строительных материалов, использование газа для приготовления пищи, открытых угольных жаровен, герметичность помещений и даже полеты на самолетах - все это увеличивает уровень облучения за счет естественных источников радиации.

Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. Остальную часть радиации вносят космические лучи.

Космические лучи, в основном, приходят к нам из глубин Вселенной, но некоторая их часть рождается на Солнце во время солнечных вспышек. Космические лучи могут достигать поверхности Земли или взаимодействовать с ее атмосферой, порождая вторичное излучение и приводя к образованию различных радионуклидов.

За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров, для поиска полезных ископаемых. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом.

Индивидуальные дозы, получаемые разными людьми от искусственных источников радиации, сильно различаются. В большинстве случаев эти дозы весьма невелики, но иногда облучение за счет техногенных источников оказывается во много тысяч раз интенсивнее, чем за счет естественных.

В настоящее время основной вклад в дозу, получаемую человеком от техногенных источников радиации, вносят медицинские процедуры и методы лечения, связанные с применением радиоактивности. Во многих странах этот источник ответствен практически за всю дозу, получаемую от техногенных источников радиации.

Радиация используется в медицине как в диагностических целях, так и для лечения. Одним из самых распространенных медицинских приборов является рентгеновский аппарат. Получают все более широкое распространение и новые сложные диагностические методы, опирающиеся на использование радиоизотопов. Как ни парадоксально, но одним из способов борьбы с раком является лучевая терапия.

Источником облучения, вокруг которого ведутся наиболее интенсивные споры, являются атомные электростанции, хотя в настоящее время они вносят весьма незначительный вклад в суммарное облучение населения. При нормальной работе ядерных установок выбросы радиоактивных материалов в окружающую среду очень невелики. Атомные электростанции являются лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Следующий этап - производство ядерного топлива. Отработанное в АЭС ядерное топливо иногда подвергают вторичной обработке, чтобы извлечь из него уран и плутоний. Заканчивается цикл, как правило, захоронением радиоактивных отходов. Но на каждой стадии ядерного топливного цикла в окружающую среду попадают радиоактивные вещества.

5. Средства защиты населения

1. Коллективные средства защиты: убежища, быстровозводимые убежища (БВУ), противорадиационные укрытия (ПРУ), простейшие укрытия (ПУ);

2. Индивидуальные средства защиты органов дыхания: фильтрующие противогазы, изолирующие противогазы, фильтрующие респираторы, изолирующие респираторы, самоспасатели, шланговые, автономные, патроны к противогазам;

3. Индивидуальные средства защиты кожи: фильтрующие, изолирующие;

4. Приборы дозиметрической разведки;

5. Приборы химической разведки;

6. Приборы - определители вредных примесей в воздухе;

7. Фотографии.

6. Радиационный контроль

Под радиационной безопасностью понимается состояние защищённости настоящего и будущего поколения людей, материальных средств и окружающей среды от вредного воздействия ИИ.

Радиационный контроль является важнейшей частью обеспечения радиационной безопасности, начиная со стадии проектирования радиационно-опасных объектов. Он имеет целью определение степени соблюдения принципов радиационной безопасности и требований нормативов, включая не превышение установленных основных пределов доз и допустимых уровней при нормальной работе, получение необходимой информации для оптимизации защиты и принятия решений о вмешательстве в случае радиационных аварий, загрязнения местности и зданий радионуклидами, а также на территориях и в зданиях с повышенным уровнем природного облучения. Радиационный контроль осуществляется за всеми источниками излучения.

Радиационному контролю подлежат: 1) радиационные характеристики источников излучения, выбросов в атмосферу, жидких и твердых радиоактивных отходов; 2) радиационные факторы, создаваемые технологическим процессом на рабочих местах и в окружающей среде; 3) радиационные факторы на загрязненных территориях и в зданиях с повышенным уровнем природного облучения; 4) уровни облучения персонала и населения от всех источников излучения, на которые распространяется действие настоящих Норм.

Основными контролируемыми параметрами являются: годовая эффективная и эквивалентная дозы; поступление радионуклидов в организм и их содержание в организме для оценки годового поступления; объёмная или удельная активность радионуклидов в воздухе, воде, продуктах питания, строительных материалов; радиоактивное загрязнение кожных покровов, одежды, обуви, рабочих поверхностей.

Поэтому, администрация организации может вводить дополнительные, более жесткие числовые значения контролируемых параметров - административные уровни.

Причём государственный надзор за выполнением Норм радиационной безопасности осуществляют органы Госсанэпиднадзора и другие органы, уполномоченные Правительством Российской Федерации в соответствии с действующими нормативными актами.

Контроль за соблюдением Норм в организациях, независимо от форм собственности, возлагается на администрацию этой организации. Контроль за облучением населения возлагается на органы исполнительной власти субъектов Российской Федерации.

Контроль за медицинским облучением пациентов возлагается на администрацию органов и учреждений здравоохранения.

Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним.

От альфа-лучей можно защититься путём:

Увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;

Использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;

Исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

В качестве защиты от бета-излучения используют:

Ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;

Методы и способы, исключающие попадание источников бета-излучения внутрь организма.

Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):

Увеличение расстояния до источника излучения;

Сокращение времени пребывания в опасной зоне;

Экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);

Использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;

Использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;

Дозиметрический контроль внешней среды и продуктов питания.

Для населения страны, в случае объявления радиационной опасности существуют следующие рекомендации:

Укрыться в жилых домах. Важно знать, что стены деревянного дома ослабляют ионизирующее излучение в 2 раза, а кирпичного - в 10 раз. Погреба и подвалы домов ослабляют дозу излучения от 7 до 100 и более раз;

Принять меры защиты от проникновения в квартиру (дом) радиоактивных веществ с воздухом. Закрыть форточки, уплотнить рамы и дверные проёмы;

Сделать запас питьевой воды. Набрать воду в закрытые ёмкости, подготовить простейшие средства санитарного назначения (например, мыльные растворы для обработки рук), перекрыть краны;

Провести экстренную йодную профилактику (как можно раньше, но только после специального оповещения!). Йодная профилактика заключается в приёме препаратов стабильного йода: йодистого калия или водно-спиртового раствора йода. При этом достигается стопроцентная степень защиты от накопления радиоактивного йода в щитовидной железе. Водно-спиртовой раствор йода следует принимать после еды 3 раза в день в течение 7 суток: а) детям до 2 лет - по 1-2 капли 5%-ной настойки на 100 мл молока или питательной смеси; б) детям старше 2 лет и взрослым - по 3-5 капель на стакан молока или воды. Наносить на поверхность кистей рук настойку йода в виде сетки 1 раз в день в течение 7 суток.

Начать готовиться к возможной эвакуации: подготовить документы и деньги, предметы, первой необходимости, упаковать лекарства, минимум белья и одежды. Собрать запас консервированных продуктов. Все вещи следует упаковать в полиэтиленовые мешки. Постараться выполнить следующие правила: 1) принимать консервированные продукты; 2) не пить воду из открытых источников; 3) избегать длительных передвижений по загрязненной территории, особенно по пыльной дороге или траве, не ходить в лес, не купаться; 4) входя в помещение с улицы, снимать обувь и верхнюю одежду.

В случае передвижения по открытой местности используйте подручные средства защиты:

Органов дыхания: прикрыть рот и нос смоченными водой марлевой повязкой, носовым платком, полотенцем или любой частью одежды;

Кожи и волосяного покрова: прикрыть любыми предметами одежды, головными уборами, косынками, накидками, перчатками.

Заключение

И так как только были открыты ионизирующие излучения и их вредное воздействие на живые организмы, появилась необходимость контролировать облучение этими излучениями человека. Каждый человек должен знать об опасности радиации и уметь защищаться от нее.

Радиация по своей природе вредна для жизни. Малые дозы облучения могут «запустить» не до конца еще изученную цепь событий, приводящих к раку или генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.

В медицине одним из самых распространенных приборов является рентгеновский аппарат, также получают все более широкое распространение и новые сложные диагностические методы, опирающиеся на использование радиоизотопов. Как ни парадоксально, но одним из способов борьбы с раком является лучевая терапия, хотя и облучение направлено на исцеление больного, но нередко дозы оказываются неоправданно высокими, поскольку дозы, получаемые от облучения в медицинских целях, составляют значительную часть суммарной дозы облучения от техногенных источников.

Огромный ущерб приносят и аварии на объектах, где присутствует радиация, яркий этому пример Чернобыльская АЭС

Таким образом необходимо всем нам задуматься, чтобы не получилось так, что упущенное сегодня может оказаться совершенно непоправимым завтра.

Список используемой литературы

1. Небел Б. Наука об окружающей среде. Как устроен мир. В 2 томах, М., «Мир», 1994.

2. Ситников В.П. Основы безопасности жизнедеятельности. –М.: АСТ. 1997.

3. Защита населения и территорий от ЧС. (ред. М.И.Фалеев) – Калуга: ГУП «Облиздат», 2001.

4. Смирнов А.Т. Основы безопасности жизнедеятельности. Учебник для 10, 11 классов СШ. – М.: Просвещение, 2002.

5. Фролов. Основы безопасности жизнедеятельности. Учебник для студентов учебных заведений среднего профессионального образования. – М.: Просвещение, 2003.

Ионизирующее излучение

Ионизирующие излучения -- это электромагнитные излучения, которые создаются при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образуют при взаимодействии со средой ионы различных знаков.

Источники ионизирующих излучений. На производстве источниками ионизирующих излучений могут быть используемые в технологических процессах радиоактивные изотопы (радионуклиды) естественного или искусственного происхождения, ускорительные установки, рентгеновские аппараты, радиолампы.

Искусственные радионуклиды в результате ядерных превращений в тепловыделяющих элементах ядерных реакторов после специального радиохимического разделения находят применение в экономике страны. В промышленности искусственные радионуклиды применяются для дефектоскопии металлов, при изучении структуры и износа материалов, в аппаратах и приборах, выполняющих контрольно-сигнальные функции, в качестве средства гашения статического электричества и т. п.

Естественными радиоактивными элементами называют радионуклиды, образующиеся из находящихся в природе радиоактивных тория, урана и актиния.

Виды ионизирующих излучений. В решении производственных задач имеют место разновидности ионизирующих излучений как (корпускулярные потоки альфа-частиц, электронов (бета-частиц), нейтронов) и фотонные (тормозное, рентгеновское и гамма-излучение).

Альфа-излучение представляет собой поток ядер гелия, испускаемых главным образом естественным радионуклидом при радиоактивном распаде, Пробег альфа-частиц в воздухе достигает 8--10 см, в биологической ткани нескольких десятков микрометров. Так как пробег альфа-частиц в веществе невелик, а энергия очень большая, то плотность ионизации на единицу длины пробега у них очень высока.

Бета-излучение -- поток электронов или позитронов при радиоактивном распаде. Энергия бета-излучения не превышает нескольких Мэв. Пробег в воздухе составляет от 0,5 до 2 м, в живых тканях -- 2-- 3 см. Их ионизирующая способность ниже альфа-частиц.

Нейтроны -- нейтральные частицы, имеющие массу атома водорода. Они при взаимодействии с веществом теряют свою энергию в упругих (по типу взаимодействия биллиардных шаров) и неупругих столкновениях (удар шарика в подушку).

Гамма-излучение -- фотонное излучение, возникающее при изменении энергетического состояния атомных ядер, при ядерных превращениях или при аннигиляции частиц. Источники гамма-излучения, используемые в промышленности, имеют энергию от 0,01 до 3 Мэв. Гамма-излучение обладает высокой проникающей способностью и малым ионизирующим действием.

Рентгеновское излучение -- фотонное излучение, состоящее из тормозного и (или) характеристического излучения, возникает в рентгеновских трубах, ускорителях электронов, с энергией фотонов не более 1 Мэв. Рентгеновское излучение, так же как и гамма-излучение, имеет высокую проникающую способность и малую плотность ионизации среды.

Ионизирующего излучения характеризуется целым рядом специальных характеристик. Количество радионуклида принято называть активностью. Активность -- число самопроизвольных распадов радионуклида за единицу времени.

Единицей измерения активности в системе СИ является беккерель (Бк).

1Бк = 1 распад/с.

Внесистемной единицей активности является ранее используемая величина Кюри (Ки). 1Ки = 3,7 * 10 10 Бк.

Дозы излучения. Когда ионизирующее излучение проходит через вещество, то на него оказывает воздействие только та часть энергии излучения, которая передается веществу, поглощается им. Порция энергии, переданная излучением веществу, называется дозой. Количественной характеристикой взаимодействия ионизирующего излучения с веществом является поглощенная доза.

Поглощенная доза D n -- это отношение средней энергии?E , переданной ионизирующим излучением веществу в элементарном объеме, к единице массы?m вещества в этом объеме

В системе СИ в качестве единицы поглощенной дозы принят грей (Гр), названный в честь английского физика и радиобиолога Л. Грея. 1 Гр соответствует поглощению в среднем 1 Дж энергии ионизирующего излучения в массе вещества, равной 1 кг; 1 Гр = 1 Дж/кг.

Доза эквивалентная Н T,R - поглощенная доза в органе или ткани D n , умноженная на соответствующий взвешивающий коэффициент для данного излучения W R

Н T,R = W R * D n ,

Единицей измерения эквивалентной дозы является Дж/кг, имеющий специальное наименование - зиверт (Зв).

Значения W R для фотонов, электронов и мюонов любых энергий составляет 1, а для Ь- частиц, осколков тяжелых ядер - 20.

Биологическое действие ионизирующих излучений. Биологическое действие радиации на живой организм начинается на клеточном уровне. Живой организм состоит из клеток. Ядро считается наиболее чувствительной жизненно важной частью клетки, а основными его структурными элементами являются хромосомы. В основе строения хромосом находится молекула диоксирибонуклеиновой кислоты (ДНК), в которой заключена наследственная информация организма. Гены расположены в хромосомах в строго определенном порядке и каждому организму соответствует определенный набор хромосом в каждой клетке. У человека каждая клетка содержит 23 пары хромосом. Ионизирующее излучение вызывает поломку хромосом за которым происходит соединение разорванных концов в новые сочетания. Это и приводит к изменению генного аппарата и образованию дочерних клеток, неодинаковых с исходными. Если стойкие хромосомные поломки происходят в половых клетках, то это ведет к мутациям, т. е. появлению у облученных особей потомства с другими признаками. Мутации полезны, если они приводят к повышению жизнестойкости организма, и вредны, если проявляются в виде различных врожденных пороков. Практика показывает, что при действии ионизирующих излучений вероятность возникновения полезных мутаций мала.

Помимо генетических эффектов, которые могут сказываться на последующих поколениях (врожденные уродства), наблюдаются и так называемые соматические (телесные) эффекты, которые опасны не только для самого данного организма (соматическая мутация), но и его потомства. Соматическая мутация распространяется только на определенный круг клеток, образовавшихся путем обычного деления из первичной клетки, претерпевшей мутацию.

Соматические повреждения организма ионизирующим излучением являются результатом воздействия излучения на большой комплекс -- коллективы клеток, образующих определенные ткани или органы. Радиация тормозит или даже полностью останавливает процесс деления клеток, в котором собственно и проявляется их жизнь, а достаточно сильное излучение в конце концов убивает клетки. К соматическим эффектам относят локальное повреждение кожи (лучевой ожог), катаракту глаз (помутнение хрусталика), повреждение половых органов (кратковременная или постоянная стерилизация) и др.

Установлено, что не существует минимального уровня радиации, ниже которого мутации не происходит. Общее количество мутаций, вызванных ионизирующим излучением, пропорционально численности населения и средней дозе облучения. Проявление генетических эффектов мало зависит от мощности дозы, а определяется суммарной накопленной дозой независимо от того, получена она за 1 сутки или 50 лет. Полагают, что генетические эффекты не имеют дозового порога. Генетические эффекты определяются только эффективной коллективной дозой человеко-зиверты (чел-Зв), а выявление эффекта у отдельного индивидуума практически непредсказуемо.

В отличие от генетических эффектов, которые вызываются малыми дозами радиации, соматические эффекты всегда начинаются с определенной пороговой дозы: при меньших дозах повреждения организма не происходит. Другое отличие соматических повреждений от генетических заключается в том, что организм способен со временем преодолевать последствия облучения, тогда как клеточные повреждения необратимы.

К основным правовым нормативам в области радиационной безопасности относятся Федеральный закон «О радиационной безопасности населения» №3-ФЗ от 09.01.96 г., Федеральный закон «О санитарно-эпиде-миологическом благополучии населения» № 52-ФЗ от 30.03.99 г., Федеральный закон «Об использовании атомной энергии» № 170-ФЗ от 21.11.95 г., а также Нормы радиационной безопасности (НРБ--99). Документ относится к категории санитарных правил (СП 2.6.1.758 -- 99),утвержден Главным государственным санитарным врачом Российской Федерации 2 июля 1999 года и введен в действие с 1 января 2000 года.

Нормы радиационной безопасности включают в себя термины и определения, которые необходимо использовать в решении проблем радиационной безопасности. Они также устанавливают три класса нормативов: основные дозовые пределы; допустимые уровни, являющиеся производными от дозовых пределов; пределы годового поступления, объемные допустимые среднегодовые поступления, удельные активности, допустимые уровни загрязнения рабочих поверхностей и т. д.; контрольные уровни.

Нормирование ионизирующих излучений определяется характером воздействия ионизирующей радиации на организм человека. При этом выделяются два вида эффектов, относящихся в медицинской практике к болезням: детерминированные пороговые эффекты (лучевая болезнь, лучевой ожог, лучевая катаракта, аномалии развития плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни).

Обеспечение радиационной безопасности определяется следующими основными принципами:

1. Принцип нормирования -- непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения.

2. Принцип обоснования -- запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучения.

3. Принцип оптимизации -- поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения.

Приборы контроля ионизирующих излучений. Все используемые в настоящее время приборы можно разбить на три основные группы: радиометры, дозиметры и спектрометры. Радиометры предназначены для измерения плотности потока ионизирующего излучения (альфа- или бета-), а также нейтронов. Эти приборы широко используются для измерения загрязнений рабочих поверхностей, оборудования, кожных покровов и одежды персонала. Дозиметры предназначены для изменения дозы и мощности дозы, получаемой персоналом при внешнем облучении главным образом гамма-излучением. Спектрометры предназначены для идентификации загрязнений по их энергетическим характеристикам. В практике применяются гамма-, бета- и альфа-спектрометры.

Обеспечение безопасности при работе с ионизирующими излучениями. Все работы с радионуклидами правила подразделяют на два вида: на работу с закрытыми источниками ионизирующих излучений и работу с открытыми радиоактивными источниками.

Закрытыми источниками ионизирующих излучений называются любые источники, устройство которых исключает попадание радиоактивных веществ в воздух рабочей зоны. Открытые источники ионизирующих излучений способны загрязнять воздух рабочей зоны. Поэтому отдельно разработаны требования к безопасной работе с закрытыми и открытыми источниками ионизирующих излучений на производстве.

Главной опасностью закрытых источников ионизирующих излучений является внешнее облучение, определяемое видом излучения, активностью источника, плотностью потока излучения и создаваемой им дозой облучения и поглощенной дозой. Основные принципы обеспечения радиационной безопасности:

Уменьшение мощности источников до минимальных величин (защита, количеством); сокращение времени работы с источниками (защита временем); увеличение расстояния от источника до работающих (защита расстоянием) и экранирование источников излучения материалами, поглощающими ионизирующие излучения (защита экранами).

Защита экранами -- наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов применяют различные материалы, а их толщина определяется мощностью излучения. Лучшими экранами для защиты от рентгеновского и гамма-излучений является свинец, позволяющий добиться нужного эффекта по кратности ослабления при наименьшей толщине экрана. Более дешевые экраны делаются из просвинцованного стекла, железа, бетона, барритобетона, железобетона и воды.

Защита от открытых источников ионизирующих излучений предусматривает как защиту от внешнего облучения, так и защиту персонала от внутреннего облучения, связанного с возможным проникновением радиоактивных веществ в организм через органы дыхания, пищеварения или через кожу. Способы защиты персонала при этом следующие.

1. Использование принципов защиты, применяемых при работе с источниками излучения в закрытом виде.

2. Герметизация производственного оборудования с целью изоляции процессов, которые могут явиться источниками поступления радиоактивных веществ во внешнюю среду.

3. Мероприятия планировочного характера. Планировка помещении предполагает максимальную изоляцию работ с радиоактивными веществами от других помещений и участков, имеющих иное функциональное назначение.

4. Применение санитарно-гигиенических устройств и оборудования, использование специальных защитных материалов.

5. Использование средств индивидуальной защиты персонала. Все средства индивидуальной защиты, используемые для работы с открытыми источниками, разделяются на пять видов: спецодежда, спецобувь, средства защиты органов дыхания, изолирующие костюмы, дополнительные защитные приспособления.

6. Выполнение правил личной гигиены. Эти правила предусматривают личностные требования к работающим с источниками ионизирующих излучений: запрещение курения в рабочей зоне, тщательная очистка (дезактивация) кожных покровов после окончания работы, проведение дозиметрического контроля загрязнения спецодежды, спецобуви и кожных покровов. Все эти меры предполагают исключение возможности проникновения радиоактивных веществ внутрь организма.

Службы радиационной безопасности. Безопасность работы с источниками ионизирующих излучений на предприятиях контролируют специализированные службы -- службы радиационной безопасности комплектуются из лиц, прошедших специальную подготовку в средних, высших учебных заведениях или специализированных курсах Минатома РФ. Эти службы оснащены необходимыми приборами и оборудованием, позволяющими решать поставленные перед ними задачи.

Основные задачи, определяемые национальным законодательством по контролю радиационной обстановки в зависимости от характера проводимых работ, следующие:

Контроль мощности дозы рентгеновского и гамма-излучений, потоков бета-частиц, нитронов, корпускулярных излучений на рабочих местах, смежных помещениях и на территории предприятия и наблюдаемой зоны;

Контроль за содержанием радиоактивных газов и аэрозолей в воздухе рабочих и других помещений предприятия;

Контроль индивидуального облучения в зависимости от характера работ: индивидуальный контроль внешнего облучения, контроль за содержанием радиоактивных веществ в организме или в отдельном критическом органе;

Контроль за величиной выброса радиоактивных веществ в атмосферу;

Контроль за содержанием радиоактивных веществ в сточных водах, сбрасываемых непосредственно в канализацию;

Контроль за сбором, удалением и обезвреживанием радиоактивных твердых и жидких отходов;

Контроль уровня загрязнения объектов внешней среды за пределами предприятия.

РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ


1. Определение понятий: радиационная безопасность; радионуклиды, ионизирующие излучения

Радиационная безопасность - это состояние защищенности настоящего и будущего поколения людей от вредного воздействия ионизирующего излучения.

Радионуклиды - это изотопы, ядра которых способны самопроизвольно распадаться. Период полураспада радионуклида – это промежуток времени, в течение которого количество исходных атомных ядер уменьшается вдвое (Т ½).

Ионизирующее излучение – это излучение, которое создается при радиоактивном распаде ядерных превращений торможения заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков. Сходство между разными излучениями состоит в том, что все они обладают высокой энергией и осуществляют свое действие через эффекты ионизации и последующее развитие химических реакций в биологических структурах клетки. Что может привести к ее гибели. Ионизирующее излучение не воспринимается органами чувств человека, мы не чувствуем его воздействия на наше тело.

2. Естественные источники излучений

Естественные источники излучения оказывают внешнее и внутреннее воздействие на человека и создают естественный или природный радиационный фон, который представлен космическим излучение и излучением радионуклидов земного происхождения. В Беларуси естественный радиационный фон находится в пределах 10-20 мкР/ч (микрорентген в час).

Существует такое понятие как технологически измененный естественный радиационный фон, который представляет собой излучение от природных источников, притерпевших изменения в результате деятельности человека. К технологически измененному естественному радиационному фону относятся излучения, в результате добычи полезных ископаемых, излучения при сгорании продуктов органического топлива, излучения в помещениях, построенных из материала, содержащих естественные радионуклиды. В почвах содержатся следующие радионуклиды: углерод-14, калий-40, свинец-210, полоний-210, среди наиболее распространенных в РБ можно назвать радон.

3. Искусственные источники излучений.

Создают радиационный фон в окружающей среде.

ИИИ ионизирующих излучений созданы человеком и обуславливают искусственный радиационный фон, который составляют глобальные выпадения искусственных радионуклидов, связанных с испытанием ядерного оружия: радиоактивные загрязнения локального, регионального и глобального характера за счет отходов ядерной энергетики и радиационных аварий, а также радионуклиды, которые используются в промышленности, с/х, науке, медицине и др. Искусственные источники радиации оказывают внешнее и внутреннее воздействие на человека.

4. Корпускулярное излучение (α, β, нейтронное) и его характеристика, понятие о наведенной радиоактивности.

Важнейшими свойствами ионизирующего излучения является их проникающая способность и ионизирующее действие.

α-излучение – это поток тяжелых положительно заряженных частиц, которые вследствии большой массы при взаимодействии с веществом быстро теряют свою энергию. α-излучение обладает большим ионизирующим действием. На 1 см своего пути α-частицы образуют десятки тысяч пар ионов, но проникающая способность их незначительная. В воздухе они распространяются на расстоянии до 10 см, а при облучении человека проникают в глубину поверхностного слоя кожи. В случае внешнего облучения для защиты от неблагоприятного воздействия α-частиц достаточно использовать обычную одежду или лист бумаги. Высокая ионизирующая способность α-частиц делает их очень опасными при попадании внутрь организма с пищей, водой, воздухом. В этом случае α-частицы оказывают высокий разрушительный эффект. Для защиты органов дыхания от α-излучения достаточно использовать ватно-марлевую повязку, противопылевую маску или любую подручную ткань, предварительно смочив водой.

β-излучение – это поток электронов или протонов, которые испускаются при радиактивном распаде.

Ионизирующее действие β-излучения значительно ниже, чем у α-излучения, но проникающая способность гораздо выше, в воздухе β-излучение распространяется на 3 м и больше, в воде и биологической ткани до 2 см. Зимняя одежда защищает тело человека от внешнего β-излучения. На открытых поверхностях кожи при попадании β-частиц могут образоваться радиационные ожоги различной степени тяжести, а при попадании β-частиц на хрусталик глаза развивается лучевая катаракта.

Для защиты органов дыхания от β-излучения персоналом используется респиратор или противогаз. Для защиты кожи рук тем же персоналом используются резиновые или прорезиненные перчатки. При поступлении источника β-излучения внутрь организма происходит внутреннее облучение, которое приводит к тяжелому лучевому поражения организма.

Нейтронное облучение – представляет собой нейтральное не несущие электрического заряда частицы. Нейтронное излучение непосредственно взаимодействует с ядрами атомов и вызывает ядерную реакцию. Оно обладает большой проникающей способность, которая в воздухе может составлять 1 000 м. Нейтроны глубоко проникают в организм человека.

Отличительной особенностью нейтронного излучения является их способность превращать атомы стабильных элементов в их радиоактивные изотопы. Это называется наведенной радиоактивностью .

Для защиты от нейтронного облучения используется специализированное убежище или укрытия, построенные из бетона и свинца.

5. Квантовое (или электромагнитное) излучение (гамма y, рентгеновское) и его характеристика.

Гамма излучение представляет собой коротковолновое электромагнитное излучение, которое испускается при ядерных превращениях. По свой природе гамма излучение аналогично световому, ультрафиолетовому, рентгеновскому, оно обладает большой проникающей способностью. В воздухе распространяется на расстоянии 100м и более. Может проходить через свинцовую пластину, толщиной в несколько см, и полностью проходит через тело человека. Основную опасность гамма излучение представляет как источник внешнего облучения организма. Для защиты от гамма излучения используют специализированное укрытие, убежище, персонал использует экраны из свинца, бетона.

Рентгеновское излучение – основным источником является солнце, однако рентгеновские лучи, приходящие из космоса, поглощаются полностью земной атмосферой. Рентгеновские лучи могут создаваться специальными приборами и аппаратами и используются в медицине, биологии и т.д.


6. Определение понятия доза обучения, поглощенная доза и единицы ее измерения

Доза облучения – это часть энергии радиационного излучения, которая расходуется на ионизацию и возбуждение атомов и молекул любого облученного объекта.

Поглощенная доза – это количество энергии, переданной излучением веществу в пересчете на единицу массы. Измеряется в Греях (Гр) и радах (рад).

7. Экспозиционная, эквивалентная, эффективная дозы обучения и единицы их измерения.

Экспозиционная доза (1-я доза, которую можно измерить прибором) – используется для характеристики воздействия гамма и рентгеновского излучения на окружающую среду, измеряется в рентгенах (Р) и кулонах на кг; измеряется дозиметром.

Эквивалентная доза – она учитывает особенности повреждающего действия излучений на организм человека. 1 единица измерения – Зиверт (Зв) и бэр.

Эффективная доза – она является мерой риска возникновения отдаленных последствий облучения всего человека или отдельных его органов с учетом радиочувствительности. Измеряется в Зивертах и бэрах.

8. Способы защиты человека от радиации (физический, химический, биологический)

Физический:

Защита расстоянием и временем

Дезактивация продуктов питания, воды, одежды, различных поверхностей

Защита органов дыхания

Использование специализированных экранов и укрытий.

Химический:

Использование радиопротекторов (вещества, обладающие радиозащитным эффектом) химического происхождения, применение специальных лекарственных средств, применение витаминов и минералов (антиоксиданты-витамины)

Биологический (все натуральное):

Радиопротекторы биологического происхождения и отдельные продукты питания (витамины, такие вещества, как экстракты женьшеня, китайского лимонника повышают устойчивость организма к самым разным воздействиям, включая радиацию).

9. Мероприятия при авариях на АЭС с выбросом в окружающую среду радиоактивных веществ

В случае аварии на АЭС может произойти выброс радионуклидов в атмосферу, и поэтому возможны следующие виды радиационного воздействия на население:

а) внешнее облучение при прохождении радиоактивного облака;

б) внутреннее облучение при вдыхании радиоактивных продуктов деления;

в) контактное облучение из-за радиоактивного загрязнения кожи;

г) внешнее облучение, обусловленное радиоактивным загрязнением поверхности земли, зданий и т.д.

д) внутреннее облучение при потреблении загрязненных продуктов и воды.

В зависимости от обстановки для защиты населения могут быть приняты следующие меры:

Ограничение пребывания на открытой местности,

Герметизация жилых и служебных помещений на время формирования радиоактивного загрязнения территории,

Применение лекарственных препаратов, препятствующих накоплению радионуклидов в организме,

Временная эвакуация населения,

Санитарная обработка кожных покровов и одежды,

Простейшая обработка загрязненных продуктов питания (обмыв, удаление поверхностного слоя и др.),

Исключение или ограничение употребления в пищу загрязненных продуктов,

Перевод мелочно-продуктивного скота на незагрязненные пастбища или на чистые фуражные корма.

В случае, когда радиоактивное загрязнение таково, что требуется эвакуация населения, руководствуются «критерия- ми для принятия решений о мерах защиты населения в случае аварии реактора»

10. Понятие радиочувствительности и радиоустойчивости, радиочувствительность различных органов и тканей

Понятие радиочувствительности – определяет собой способность организма проявить наблюдаемую реакцию при малых дозах ионизирующей радиации. Радиочувствительность - каждому биологическому виду свойственна своя мера чувствительности к действию ионизирующей радиации. Степень радиочувствительности сильно варьирует и в пределах одного вида - индивидуальная радиочувствительность, а для определенного индивидуума зависит также от возраста и пола.

Понятие радиоустойчивости (радиорезистентности) подразумевает способность организма выжить при облучении в определенных дозах или проявить ту или иную реакцию на облучение.

Радиочувствительность различных органов и тканей.

В общем случае радиочувствительность органов зависит не только от радиочувствительности тканей, которые оставляют орган, но и от его функций. Желудочно-кишечный синдром, приводящий к гибели при облучении дозами 10–100 Гр, обусловлен в основном радиочувствительностью тонкого кишечника.

Легкие являются наиболее чувствительным органом грудной клетки. Радиационные пневмониты (воспалительная реакция легкого на действие ионизирующего излучения) сопровождаются потерей эпителиальных клеток, которые выстилают дыхательные пути и легочные альвеолы, воспалением дыхательных путей, легочных альвеол и кровеносных сосудов, приводя к фиброзам. Эти эффекты могут вызывать легочную недостаточность и даже гибель в течение нескольких месяцев после облучения грудной клетки.

В течение интенсивного роста кости и хрящи более радиочувствительны. После его окончания облучение приводит к омертвению участков кости - остеонекрозу - и возникновению спонтанных переломов в зоне облучения. Другим проявлением радиационного поражения является замедленное заживление переломов и даже образование ложных суставов.

Эмбрион и плод. Наиболее серьезные последствия облучения - гибель до или во время родов, задержка развития, аномалии многих тканей и органов тела, возникновение опухолей в первые годы жизни.

Органы зрения. Известны 2 вида поражения органов зрения – воспалительн6ые процессы в кнъюктевите и катаракта при дозе 6 Гр у человека.

Репродуктивные органы. При 2 Гр и более наступает полная стерилизация. Острые дозы порядка 4 Гр приводят к бесплодию.

Органы дыхания, ЦНС, эндокринные железы, органы выделения относятся к довольно устойчивы тканям. Исключение составляет щитовидная железа при облучении ее J131.

Очень высокая устойчивость костей, сухожилий, мышц. Абсолютно устойчива жировая ткань.

Радиочувствительность определяется, как правило, по отношению к острому облучению, притом однократному. Поэтому получается, что системы, состоящие из быстро обновляющихся клеток, более радиочувствительны.

11. Классификация лучевых поражений организма

1. Лучевая болезнь, острая хроническая форма – возникает при однократном внешнем облучении в дозе 1Гр и выше.

2. Местные лучевые поражения отдельных органов и тканей:

Лучевые ожоги различной степени тяжести вплоть до развития некроза и в последующем рака кожи;

Лучевой дерматит;

Лучевая катаракта;

Выпадение волос;

Лучевая стерильность временного и постоянного характера при облучении семенников и яичников

3. Лучевые поражения организма, вызванные попаданием внутрь радионуклидов:

Поражение щитовидной железы радиоактивным йодом;

Поражения красного костного мозга радиоактивным стронцием с последующим развитием лейкозов;

Поражение легких, печени радиоактивных плутонием

4. Комбинированные лучевые поражения:

Сочетание острой лучевой болезни с каким-либо травмирующим фактором (раны, травмы, ожоги).

12. Острая лучевая болезнь (ОЛБ)

ОЛБ возникает при однократном внешнем облучении в дозе 1Гр и выше. Выделят следующие формы ОЛБ:

Костномозговую (развивается при однократном внешнем равномерном облучении в дозах от 1 до 10 Гр в зависимости от поглощенной дозы ОЛБ подразделяются на 4 степени тяжести:

1 – легкая (при облучении в дозах 1-2 Гр

2 - средней (2-4 Гр)

3 – тяжелая (4-6 Гр)

4 – крайне тяжелая (6-10 Гр)

Кишечную

Токсемическую

Церебральную

ОЛБ протекает с определенными периодами:

1 период формирование подразделяется на 4 фазы:

1 фаза острая первичная реакция организма (развивается сразу после облучения, проявляется тошнотой, рвотой, диареей, головной боль, нарушение сознания, повышением t тела, покраснением кожи и слизистых в местах большего облучения. В эту фазу могут наблюдаются изменения в составе крови – снижается уровень лейкоцитов).

2 фаза скрытая или латентная. Проявляется мнимым благополучием. Состояние больного улучшается. Однако в крови продолжает снижаться уровень лейкоцитов, а также тромбоцитов.

3 фаза разгар болезни. Формируется на фоне резкого уменьшения уровня лейкоцитов и лимфоцитов. Состояние больного значительно ухудшается, развивается сильная слабость, резкая головная боль, диарея, анурексия, возникает кровоизлияние под кожу, в легкие, сердце, мозг, интенсивно выпадают волосы.

4 фаза восстановление. Характеризуестя значительным улучшением самочувствия. Уменьшается кровоточивость, нормализуются кишечные расстройства, восстанавливаются показатели крови. Продолжение этой фазы от 2 месяцев и более.

4 степень тяжести ОЛБ латентной или скрытой фазы не имеет. Фаза первичной реакции сразу переходит в фазу разгара болезни. Летальность при данной степени тяженим сожжет достигать 100%. Причины – кровоизлияние или инфекционные заболевания, т.к. иммунитет подавлен полностью.

13. Хроническая лучевая болезнь (ХЛБ)

ХЛБ – это общее заболевание всего организма, которое развивается при длительном воздействии излучения в дозах, превышающих предельно допустимые уровни.

Выделяют 2 варианта ХЛБ:

1 возникает при длительном, равномерном воздействии внешего обучения пли попадания в организм радионуклидов, которые равномерно распределяются в органах и тканях.

2 обусловлен неравномерным внешним облучением или попаданием в организма радионуклидов, которые накапливаются в определенных органах.

В течение ХЛБ выделяются 4 периода:

1 доклинический

2 формирование (определяется суммарной дозой облучения и в этом периоде 3 степени тяжести:

1 период возникает вегетососудистая дистония, наблюдаются умеренные изменения в составе крови, головные боли, бессонница.

2 период характеризуется функциональными нарушениями нервной, сердечно-сосудистой, пищеварительной систем, возникают значительные изменения со стороны эндокринных органов. Стойка угнетается кроветворением.

3 период возникают органические изменения в организме, появляются сильные боли в сердце, отдышка, диарея, нарушается менструальный цикл, у мужчин может развиваться половое бессилие, в костном мозге нарушается система кроветворения.

3 восстановительный (начинается при снижении дозы облучения или при прекращении облучения. Самочувствие больного значительно улучшается. Нормализуются функциональные нарушения)

4 – исход (характеризуется стойкими нарушениями деятельности нервной системы, развивается сердечная недостаточность, снижается функция печени, возможно развитие лейкозов, различных новообразований, анемий).

14. Отдаленные последствия лучевого воздействия

Являются случайными или вероятностными.

Выделяют соматические и генетические эффекты.

К соматическим относятся лейкозы, злокачественные новообразования, поражение кожи и глаз.

Генетические эффекты – это нарушения строения хромосом и мутаций генов, которые проявляются наследственными заболеваниями.

Генетические эффекты не проявляются у лиц, непосредственно подвергшихся облучению, а представляют опасность для их потомства.

Отдаленные последствия лучевого воздействия возникают при действии малых доз излучений меньше, чем 0,7 Гр (грей).

15. Правила действия населения при возникновении радиационной опасности (укрытие в помещениях, защита кожи, защита органов дыхания, индивидуальная дезактивация)

При сигнале "Радиационная опасность" - сигнал подается в населенных пунктах, по направлению к которым движется радиоактивное облако, по этому сигналу:

Для защиты органов дыхания надевают респираторы, противогазы, тканевую или ватно-марлевую повязку, противопылевые маски, взять запас продуктов, предметов первой необходимости, индивидуальные средства медицинской защиты;

Укрываются в противорадиационных укрытиях, они защищают людей от внешнего гамма-излучения и от попадания радиоактивной пыли в органы дыхания, на кожу, одежду, а также от светового излучения ядерного взрыва. Они устраиваются в подвальных этажах сооружений и зданий, могут использоваться и наземные этажи, лучше каменных и кирпичных сооружений (полностью защищают от альфа и бета-излучений). В них должны быть основные (укрытие людей) и вспомогательные (санузлы, вентиляционные) помещения и помещения для зараженной одежды. В загородной зоне под противорадиационные укрытия приспосабливают подполья, подвалы. Если нет водопровода, создается запас воды из расчета 3-4 л в сутки на человека.

Для защиты кожи от бета-излучения используют резиновые или прорезиненные перчатки; для защиты от гамма-излучения используют экраны из свинца.

Индивидуальная дезактивация – это процесс удаления радиоактивных веществ с поверхности одежды и других предметов. После нахождения на улице необходимо сначала вытряхнуть верхнюю одежду, став спиной к ветру. Наиболее грязные участки вычищают щеткой. Хранить верхнюю одежду нужно отдельно от домашней. При стирке одежду нужно предварительно замочить на 10 мин в 2% растворе суспензии на основе глины. Обувь необходимо регулярно мыть и менять при входе в помещение.

При нарастании радиационной угрозы возможно проведение эвакуации. При поступлении сигнала необходимо подготовить документы, деньги, предметы первой необходимости. А также собрать необходимые лекарства, минимум одежды, запас консервированных продуктов. Собранные продукты и вещи обязательно следует упаковать в полиэтиленовые меши и пакеты.

16. Экстренная йодная профилактика поражений радиоактивным йодом при авариях на АЭС

Экстренная йодная профилактика начинается только после специально оповещения. Данную профилактику осуществляют органы и учреждения Здравоохранения. Для этих целей используют препараты стабильного йода:

Калия йодит в таблетках, а при отсутствии его 5% водно-спиртовой раствор йода.

Калия йодит применяют в следующих дозах:

детям до 2 лет по 0,4 гр на 1 прием

детям старше 2 лет и взрослым по 0,125 гр на 1 прием

Препарат следует принимать после еды 1 р в день вместе с водой в течение 7 суток. Водно-спиртовой р-р йода детям до 2 лет по 1-2 капли на 100мл молока или питательной смени 3 р в день в течение 3-5 суток; детям старше 2 лет и взрослым 3-5 капель на 1 ст воды или молока после еды 3 р в день в течение 7 суток.

17. Авария на ЧАЭС и ее причины

Произошла 26 апреля 1986 года - на четвертом энергоблоке произошел взрыв ядерного реактора. Авария на Чернобыльской АЭС по своим долговременным последствиям явилась крупнейшей катастрофой современности. 25 апреля 1986 г четвёртый блок ЧАЭС предполагалось остановить для планового ремонта, во время которого была запланирована проверка работы регулятора магнитного поля одного из двух турбогенераторов. Эти регуляторы были разработаны для продления времени «выбега» (работы на холостом ходу) турбогенератора до момента выхода на полную мощность резервных дизель-генераторов.

Произошло 2 взрыва: 1 тепловой – по механизму взрыва, ядерный – по природе запасенной энергии.

2. химический (самый мощный и разрушительный) – выделилась энергия межатомных связей

Для взрыва на ЧАЭС характеры 2 поражающих фактора: проникающая радиация и радиоактивное загрязнение.

Причины аварии:

1. Конструктивные недостатки реактора, грубые ошибки в работе персонала (отключение системы аварийного охлаждения реактора)

2. Недостаточный надзор со стороны государственных органов и руководства станции

3. Недостаточная квалификация персонала (непрофессионализм) и несовершенная система безопасности

18. Радиоактивное загрязнение территории РБ в результате аварии на ЧАЭС, типы радионуклидов и их период полураспада.

В результате аварии радиоактивному загрязнению подверглись почти ¼ часть территории РБ с населением в 2,2 млн.человек. Особенно пострадали Гомельская, Могилевская и Бресткая области. Среди наиболее загрязненных районов Гомельщины следует назвать Брагинский, Кормянский, Наровлянский, Хойникский. Ветковский и Чечерский. В Могилевской области наиболее радиоактивно загрязнены Краснопольский, Чериковский, Славгородский, Быховский и Костюковичский районы. В Брестской области загрязнены: Лунинецкий, Столинский, Пинский и Дрогичинский районы. Радиационные осадки отмечены в Минской и Гродненской областях. Только Витебщина считается практически чистой областью.

Первое время после аварии основной вклад в суммарную радиоактивность вносили короткоживущие радионуклиды: йод-131, стронций-89, теллур-132 и другие. В настоящее время загрязнение нашей республики определяет в основном цезий-137, в меньшей степени – стронций-90 и плутониевые радионуклиды. Объясняется это тем, что более летучий цезий отнесен на большие расстояния. А более тяжелые, стронций и частицы плутония, осели ближе к ЧАЭС.

Из-за загрязнения территории были сокращены посевные площади, ликвидированы 54 колхоза и совхоза, закрыто свыше 600 школы и детских садов. Но самыми тяжелыми оказались последствия для здоровья населения, увеличилось количество различных заболеваний и сократилась продолжительность жизни.

Тип радионуклида

Излучение

Период полураспада

J 131 (йод)

излучатель - β, гамма 8 суток (щавель, молоко, зерно)

Cs 137 (цезий)

накапливается в мышцах

излучатель – β, гамма 30 лет конкурентом, который препятствует поглощению цезия в организм является калий (баранина, калий, говядина, зерно, рыба)

Sr 90 (стронций)

накапливается в костях

излучатель β 30 лет Конкурент кальций (зерно)

Pu 239 (плутоний)

излучатель – α, гамма, рентген 24 065 лет

конкурент – железо

(гречка, яблоки, гранат, печень)

Am 241 (америций)

излучатель - α, гамма 432 года

19. Характеристика йода-131 (накопление в растениях и животных), особенности воздействия на человека.

Йод-131 - радионуклид с периодом полураспада 8 сут., бета- и гамма-излучатель. Вследствие высокой летучести практически весь йод-131, имевшийся в реакторе, был выброшен в атмосферу. Его биологическое действие связано с особенностями функционирования щитовидной железы . Щитовидная железа детей в три раза активнее поглощает попавший в организм радиойод. Кроме того, йод-131 легко проникает через плаценту и накапливается в железе плода.

Накопление в щитовидной железе больших количеств йода-131 ведет к радиационному поражению секреторного эпителия и к гипотиреозу - дисфункции щитовидной железы. Возрастает также риск злокачественного перерождения тканей. У женщин риск развития опухолей в четыре раза выше, чем у мужчин, у детей в три-четыре раза выше, чем у взрослых.

Величина и скорость всасывания, накопление радионуклида в органах, скорость выведения из организма зависят от возраста, пола, содержания стабильного йода в диете и других факторов. В этой связи при поступлении в организм одинакового количества радиоактивного йода поглощенные дозы значительно различаются. Особенно большие дозы формируются в щитовидной железе детей, что связано с малыми размерами органа, и могу в 2-10 раз превышать дозы облучения железы у взрослых.

Профилактика поступления йода-131 в организм человека

Эффективно предотвращает поступление радиоактивного йода в щитовидную железу прием препаратов стабильного йода. При этом железа полностью насыщается йодом и отвергает попавшие в организм радиоизотопы. Прием стабильного йода даже через 6 ч после разового поступления 131I может снизить потенциальную дозу на щитовидную железу примерно в два раза, но если отложить йодопрофилактику на сутки, эффект будет небольшим.

Поступление йода-131 в организм человека может произойти в основном двумя путями: ингаляционным, т.е. через легкие, и пероральным - через потребляемые молоко и листовые овощи.

20. Характеристика стронция-90 (накопление в растениях и животных), особенности воздействия на человека.

Мягкий щелочноземельный металл серебристо-белого цвета. Очень химически активен и на воздухе быстро реагирует с влагой и кислородом, покрываясь желтой оксидной плёнкой

Стабильные изотопы стронция сами по себе малоопасны, но радиоактивные изотопы стронция представляют собой большую опасность для всего живого. Радиоактивный изотоп стронция стронций-90 по праву считается одним из наиболее страшных и опасных антропогенных радиационных загрязнителей. Связано это, прежде всего, с тем, что он имеет весьма короткий период полураспада - 29 лет, что обуславливает очень высокий уровень его активности и мощное радиоционное излучение, а с другой стороны его способностью эффективно метаболизироваться и включаться в жизнедеятельность организма.

Стронций является почти полным химическим аналогом кальция, поэтому проникая в организм, он откладывается во всех содержащих кальций тканях и жидкостях - в костях и зубах, обеспечивая эффективное радиационное поражения тканей организма изнутри. Стронций-90 поражает костную ткань и, самое главное, особо чувствительный к действию радиации костный мозг. Под действием облучения в живом веществе происходят химические изменения. Нарушаются нормальная структура и функции клеток. Это приводит к серьезным нарушениям обмена веществ в тканях. А в итоге развитие смертельно опасных болезней – рака крови (лейкемия) и костей. Кроме того, излучение действует на молекулы ДНК и влияет на наследственность.

Стронций-90, освободившийся например в результате техногенной катастрофы, попадает в виде пыли в воздух, заражая землю и воду, оседает в дыхательных путях людей и животных. Из земли он попадает в растения, продукты питания и молоко, а далее и в организм людей принявших зараженные продукты. Cтронций-90 не только поражает организм носителя, но и сообщает его потомкам высокий риск врожденных уродств и дозу через молоко кормящей матери.

В организме человеке радиоактивный стронций избирательно накапливается в скелете, мягкие ткани задерживают менее 1% исходного количества. С возрастом отложение стронция-90 в скелете понижается, у мужчин он накапливается больше, чем у женщин, а в первые месяцы жизни ребенка отложение стронция-90 на два порядка выше, чем у взрослого человека.

Радиоактивный стронций может поступать в окружающую среду в результате ядерных испытаний и аварий на АЭС.

Для того чтобы вывести его из организма, понадобится 18 лет.

Стронций-90 активно участвует в обмене веществ у растений. В растения стронций-90 попадает при загрязнении листьев и из почвы через корни. Особенно много стронция-90 накапливают бобовые (горох, соя), корне- и клубнеплоды (свекла, морковь) в наименьшей степени – в зерновых злаках. Радионуклиды стронция накапливаются в надземных частях растений.

В организм животных радионуклиды могут поступать по следующим путям: через органы дыхания, желудочно-кишечный тракт и поверхность кожи. Стронций накапливается в основном костной тканью. Наиболее интенсивно поступают в организм молодых особей. Больше накапливают радиоактивные элементы животные, обитающие в горах, чем низинах, это связано с тем, что в горах выпадает больше осадков, больше листовой поверхности растений, больше бобовых растений, чем в низинах.

21. Характеристика плутония-239 и америция-241 (накопление в растениях и животных), особенности воздействия на человека

Плутоний - очень тяжелый серебристый металл. Вследствие своей радиоактивности, плутоний теплый на ощупь. Он обладает самой низкой теплопроводностью изо всех металлов, самой низкой электропроводностью. В своей жидкой фазе это самый вязкий металл. Pu-239 - единственный подходящий изотоп для оружейного использования.

Токсические свойства плутония появляются как следствие альфа-радиоактивности. Альфа частицы представляют серьезную опасность только в том случае, если их источник находится в теле (т.е. плутоний должен быть принят внутрь). Хотя плутоний излучает еще и гамма-лучи и нейтроны, которые могут проникать в тело снаружи, уровень их слишком мал, чтобы причинить сильный вред.

Альфа-частицы повреждают только ткани, содержащие плутоний или находящиеся в непосредственном контакте с ним. Значимы два типа действия: острое и хроническое отравления. Если уровень облучения достаточно высок, ткани могут страдать острым отравлением, токсическое действие проявляется быстро. Если уровень низок, создается накопляющийся канцерогенный эффект. Плутоний очень плохо всасывается желудочно-кишечным трактом, даже когда попадает в виде растворимой соли, впоследствии она все равно связывается содержимым желудка и кишечника. Загрязненная вода, из-за предрасположенности плутония к осаждению из водных растворов и к формированию нерастворимых комплексов с остальными веществами, имеет тенденцию к самоочищению. Наиболее опасным для человека является вдыхание плутония, который накапливается в легких. Плутоний может попадать в организм человека с едой и водой. Он откладывается в костях. Если он проникнет в систему кровообращения, то с большой вероятностью начнет концентрироваться в тканях, содержащих железо: костном мозге, печени, селезенке. Если разместится в костях взрослого человека, в результате ухудшится иммунитет и через несколько лет может развиться рак.

Америций металл серебристо-белого цвета, тягучий и ковкий. Этот изотоп, распадаясь, испускает альфа-частицы и мягкие, малоэнергичные гамма-кванты. Защита от мягкого излучения америция-241 сравнительно проста и немассивна: вполне достаточно сантиметрового слоя свинца.

22. Медицинские последствия аварии для Республики Беларусь

Медицинские исследования, проведённые в последние годы, показывают, что Чернобыльская катастрофа оказала очень вредное воздействие на жителей Беларуси. Установлено, что в Беларуси сегодня самая малая продолжительность жизни человека по сравнению с её соседями - Россией, Украиной, Польшей, Литвой и Латвией.

В медицинских исследованиях указывается, что число практически здоровых детей за годы, прошедшие после Чернобыля, уменьшилось, хроническая патология выросла с 10% до 20%, установлен рост числа заболеваний по всем классам болезней, частота врождённых пороков развития увеличилась в Чернобыльских районах в 2,3 раза.

Следствием постоянного облучения в малых дозах является повышение доли врождённых пороков развития детей, матери которых не прошли специальный медицинский контроль. Растёт удельный вес и распространённость сахарного диабета, хронических болезней желудочно-кишечного тракта, дыхательных путей, иммуннозависимых и аллергических болезней, а также рака щитовидной железы, злокачественных заболеваний крови. Постоянно нарастает заболеваемость детским и подростковым туберкулёзом. Воздействие накопленных в организме радионуклидов, прежде всего цезия-137, на здоровье детей было установлено при изучении сердечно-сосудистой системы, органов зрения, эндокринной системы, женской репродуктивной системы, состояния печени и обмена веществ, кроветворной системы. Сердечно-сосудистая система оказалась наиболее чувствительной к накоплению радиоактивного цезия. Поражение сосудистой системы под влиянием радиоактивного цезия проявляется в росте числа лиц с тяжелейшим патологическим процессом - повышенным артериальным давлением - гипертензией, формирование которой происходит уже в детском возрасте. Среди патологических изменений органов зрения чаще всего наблюдается катаракта, деструкция стекловидного тела, цикластения, аномалии рефракции. Почки активно накапливают радиоактивный цезий, при этом его концентрация может достигать очень больших величин, являясь причиной патологических изменений в почках.

Губительным оказывается воздействие радиации на печень.

Значительно страдает от радиации иммунная система человека. Радиоактивные вещества снижают защитные функции организма, причём, как и в предыдущих случаях, чем выше накопление радиации, тем слабее иммунная система человека.

Радиоактивные вещества, накопленные в человеческом организме, поражают также кроветворную, женскую репродуктивную, нервную систему человека.

Медицинскими исследованиями доказано, что, чем больше радиоактивных веществ содержится в организме человека и, чем дольше они там находятся, тем больший вред они наносят человеку.

С 1992 г. в Беларуси началось снижение рождаемости.

23. Экономические последствия аварии для Республики Беларусь

Чернобыльская авария оказала воздействие на все сферы общественной жизни и производства Беларуси. Из общего потребления исключены значительные природные ресурсы плодородные пахотные земли, леса, полезные ископаемые. Существенно изменились условия функционирования объектов производственного и социального назначения, расположенных на загрязнённых радионуклидами территориях. Отселение жителей из загрязнённых радионуклидами районов привело к прекращению деятельности многих предприятий и объектов социальной сферы к закрытию свыше 600 школ и детских садов. Республика понесла большие потери и продолжает нести убытки от снижения объёмов производства, неполной окупаемости средств, вложенных в хозяйственную деятельность. Существенны потери топлива, сырья и материалов.

По оценкам общая сумма социально-экономического ущерба от аварии на ЧАЭС за 1986-2015 гг. в Республике Беларусь составит 235 млрд. долларов США. Это равно почти 32 госбюджетам Беларуси доаварийного 1985 года. Беларусь была объявлена зоной экологического бедствия.

Пострадали предприятия по переработке мяса, молока, картофеля, льна, по заготовке и переработке хлебопродуктов. Были закрыты 22 месторождения полезных ископаемых (строительного песка, гравия, глин, торфа, мела), а всего в зоне загрязнения оказались 132 месторождения. Третья составляющая общего ущерба – это упущенная выгода (13,7 млрд долл. США). Она включает стоимость загрязненной продукции, затраты на ее переработку или восполнение, а также потери от расторжения контрактов, аннулирования проектов, замораживания кредитов, штрафов.

Пострадали лесное хозяйство, строительный комплекс, транспорт (дорожное хозяйство и железные дороги), предприятия связи, водные ресурсы. Огромный урон нанесла авария социальной сфере. При этом наиболее сильно пострадало жилищное хозяйство, рассредоточенное по всей территории, подвергшейся радиоактивному загрязнению

24. Экологические последствия аварии для Республики Беларусь (загрязнение растительного и животного мира)

В растения радионуклиды попадают из почвы, при фотосинтезе и во время атмосферных осадков. У лиственных деревьев накопление радионуклидов меньше, чем у хвойных. Менее чувствительны к радиации кустарники, трава. Степень воздействия излучения на растительный мир зависит от плотности загрязнения данной местности. Так, при относительно небольшом загрязнении наблюдается ускорение роста некоторых деревьев, а при очень высоком – рост прекращается.

В настоящее время радионуклиды в растения поступают главным образом из почвы и особенно те, которые хорошо растворимы в воде. Лишайники, мхи, грибы, бобовые, злаки, петрушка, укроп, гречка являются сильными накопителями радионуклидов. Весьма велико содержание радионуклидов в дикорастущих ягодах чернике, бруснике, клюкве, смородине. В меньшей мере – ольхе, фруктовых деревьях, капусте, огурцах, картофеле, томате, кабачках, луке, чесноке, свекле, редисе, моркови, хрене и редьке.

Облучение животных приводит к появлению у них тех же болезней, что и у человека. больше всех страдают дикие кабаны, волки, среди домашних животных – крупный рогатый скот. Внутреннее облучение млекопитающих вызвало, кроме увеличения различных заболеваний, снижение плодовитости и генетические последствия. Следствием этого является появление на свет животных с различными уродствами. (напр. встречаются ежи, но без иголок, значительно больших размеров зайцы, животные с 6 ногами, с двумя головами). Чувствительность животных к облучению различна, и, соответственно, страдают они от этого в разной степени. Одними из более устойчивых к воздействию радиации являются птицы.

25. Пути преодоления последствий аварии на ЧАЭС (Государственная программа преодоления последствий аварии)

После Чернобыльской катастрофы в Беларуси была создана система радиационного контроля. Задачей этой системы является радиационный контроль среды обитания человека, то есть контроль организован при министерствах и ведомствах и охватывает контроль воздуха, почв, водных ресурсов, лесных угодий, продуктов питания и так далее.

Правительственные органы республики приняли комплекс мер по радиационной защите населения и обеспечению радиационной безопасности.

К основным из них относятся:

1) эвакуация и отселение;

2) дозиметрический контроль радиационной обстановки на всей территории республики и её прогнозирование;

3) дезактивация территории, объектов, техники и т.п.;

4) комплекс лечебно-профилактических мероприятий;

5) комплекс санитарно-гигиенических мероприятий;

6) контроль над переработкой и нераспространением загрязнённых радионуклидами продуктов;

7) компенсация ущерба (социального, экономического, экологического);

8) контроль над использованием, нераспространением и захоронением радиоактивных материалов;

9) реабилитация сельскохозяйственных угодий и организация агропромышленного производства в условиях радиоактивного загрязнения.

В Республике Беларусь создана налаженная система радиоэкологического мониторинга, которая носит, в основном, ведомственный характер.

Проводятся защитные санитарно-гигиенические мероприятия, решающие основные задачи радиационной гигиены: снижение дозы внешнего и внутреннего облучения людей, использование радиопротекторов, обеспечение экологически чистыми продуктами питания.

Разработано законодательство Республики Беларусь по обеспечению радиационной безопасности: принят закон «О социальной защите граждан, пострадавших от катастрофы на ЧАЭС», который даёт право на получение льгот и компенсации за ущерб, причиненный здоровью в результате аварии.

Приняты закон «О правовом режиме территорий, подвергшихся радиоактивному загрязнению в результате катастрофы на ЧАЭС» и закон «О радиационной безопасности населения», которые содержат ряд положений, направленных на снижение риска неблагоприятных последствий от действия ионизирующих излучений природного или техногенного характера.

26. Способы дезактивации продуктов питания (мясо, рыба, грибы, ягоды)

Наибольшую опасность для человека представляет внутреннее облучение, т.е. радионуклиды, попавшие внутрь организма вместе с пищей.

Снижению внутреннего облучения способствует уменьшение поступления радионуклидов в организм.

Поэтому мясо необходимо вымачивать 2-4 часа в подсоленной воде. Желательно перед вымачиванием нарезать мясо на небольшие куски. Нужно исключить из рациона мясокостные бульоны, особенно с кислыми продуктами, т.к. стронций в основном переходит в бульон в кислой среде. При приготовление мясных и рыбных блюд следует слить воду и заменить на свежую, но после первой воды необходимо удалить из кастрюли и отделенные от мяса кости так выводится до 50% радиоактивного цезия.

Перед приготовлением блюд из рыбы и птицы следует удалить внутренности, сухожилия и головы, поскольку в них происходит наибольшее накопление радионуклидов. При варке рыбы в 2-5 раз уменьшается концентрация радионуклидов.

Грибы необходимо вымачивать в двухпроцентном растворе поваренной соли в течение нескольких часов.). Снижения содержания радиоактивных веществ в грибах можно достичь отвариванием их в солёной воде в течение 15-60 минут, причём, каждые 15 минут отвар необходимо сливать. Добавление в воду столового уксуса или лимонной кислоты увеличивает переход радионуклидов из грибов в отвар. При засолке или мариновании грибов можно уменьшить содержание радионуклидов в них в 1,5-2 раза. В шляпках грибов радиоактивных веществ накапливается больше, чем в ножках, поэтому желательно снимать кожицу со шляпок грибов. Сушить можно только чистые грибы, так как сушка не снижает содержание радионуклидов. Не совсем желательно применение сушеных грибов, т.к. при их последующем употреблении радионуклиды практически полностью переходят в продукты питания.

Необходимо тщательно мыть овощи и фрукты, снимать кожуру. Овощи следует предварительно замачивать в воде на несколько часов.

Дары леса наиболее загрязнены (основное количество радионуклидов располагается в верхнем слое лесной подстилки толщиной 3-5 сантиметров). Из ягод наименее загрязнены рябина, малина, земляника, наиболее черника, клюква, голубика, брусника.

27. Коллективные и индивидуальные средства защиты человека при возникновении радиационной опасности

Средства коллективной защиты разделяются на устройства: оградительные, предохранительные, тормозные, автоматического контроля и сигнализации, дистанционного управления и знаки безопасности.

Простейшие укрытия – открытые и перекрытые щели, ниши, траншеи, котлованы, овраги и т.д.

Индивидуальные:

Гражданские противогазы,

Респираторы – противопылевые, противогазовые, газопылезащитные – обеспечивают защиту органов дыхания от радиоактивной и другой пыли

Ватно-марлевая повязка (кусок марли 100х50 см, посередине помещают слой ваты толщиной 1-2 см)

Противопылевая тканевая маска – они надежно защищают органы дыхания от радиоактивной пыли (сами можем сделать)

Одежда: куртки, брюки, комбинезоны, полукомбинезоны, халаты с капюшонами, сшитые в большинстве случаев из брезента или из прорезиненной ткани, зимние вещи: пальто из грубого сукна или драпа, ватники, дубленки, кожаные пальто., сапоги, боты, резиновые перчатки.